Data Communication Mechanisms for Systems with
Heterogeneous Timing

Tan G. Clark® Fei Xia

Alex V. Yakovlev

Delong Shang

School of Electrical, Electronic and Computer Engineering,
Merz Court, Newcastle University,
Newcastle-upon-Tyne, NE1 7RU, England.
IGClark@iee.org, {Fei.Xia; Alex.Yakovlev; Delong.Shang}@ncl.ac.uk

Abstract

In this paper Asynchronous Communication Mechanisms
(ACMs) are discussed in several guises based upon
whether or not the heterogeneously timed processes which
communicate through an ACM may be forced to wait or
not. A classification method is presented based upon the
temporal effects of this communication. The mechanisms’
application to event driven and self motivated processing
is discussed, revealing an interesting application as an in-
terface between real-time and low power processing units.

1 Introduction

Many applications (e.g. portable equipment, control or
signal processing systems, etc.) are characterized by
the requirements to guarantee real-time regimes in some
parts and power ecomony in others. From the sys-
tem implementation point of view, the ITRS roadmap
(http://public.itrs.net/) indicates that systems-on-chip
(SoC) are increasingly becoming heterogeneous in their
behaviour, including mixed analogue-discrete compo-
nents, time-driven and power-saving subsystems. An-
other feature of new systems is that their design is becom-
ing increasingly communication-centric. Consequently,
the need for data interfaces between subsystems and pro-
cesses with different temporal and power requirements,
with emphasis on real-time and energy consumption char-
acteristics, has become urgent.

Wilfred Pinfold of the Intel Microprocessor Research
Lab says that by the end of this decade, when Intel ex-
pects to be producing billion transistor devices, today’s
essentially homogeneous microprocessor market will have
to become much more diverse, characterised by multiple
heterogeneous designs, each optimised for the require-
ments of different application segments [5]. This will
mean that systems are more complex but with the added
advantage that “Heterogeneous systems can use ‘best-in-
class’ processors” (for cost, power, EMI, thermal budget),
and can also support lagacy software [4].

Practical examples of systems with heterogeneous tim-
ing and power-saving requirements include embedded
real-time control and signal processing systems, used in
aerospace, automotive, telecom and other applications.
Constructing such systems as digital networks with inher-
ent heterogeneous timing conditions (called “hets” from

*Also with the School of Computing and Information Systems,
Kingston University, Kingston-upon-Thames, Surrey, KT1 2EE,
England.

“heterogeneously timed nets”) in which computational el-
ements interact through ACMs holds many attractions.
These include a more formal recognition of system tim-
ing heterogenity, a network and potentially hierarchical
view of the system composed of clearly active and passive
elements, and direct representation of data flow through
the system, all of which facilitates both top-down and
bottom-up design approaches and the assembling of sys-
tems from sub-systems and elements. Although the idea
of building hets does not itself stipulate that such sys-
tems are necessarily implemented in hardware, our per-
ception is that this approach may be particularly effective
in building the new generation of VLSI systems, or SoCs,
where demands for higher speed, global asynchronisation
and power savings come into one complex interplay. As
the scope for the use of SoCs will continue to grow unabat-
ing, particularly as embedded systems with interfaces to
real-time and analogue environments, serious re-thinking
of fundamental principles of system design is needed to
make the most of the future semiconductor technology.
This will need a wide range of communication elements
adequately geared to the types of data being exchanged
in the system, and to the dynamic properties of the data,
such as uniqueness, continuity, differentiatability etc.

Power considerations can also mean that subsystems
in distributed systems cannot all be in the same timing
domain. For instance, subsystems may have bounded en-
ergy resources, and it may be desirable for them to enter
a sleeping mode if there is no change (or no need for
change) in its input/output data. It is also possible to
have subsystems where the operational speed may be a
function of local energy supply conditions (a subsystem
can be slowed down when its energy reserve becomes low)
and not dependent on other subsystems with whom they
are communicating.

Clearly, such interfaces need to adjust to the inher-
ent contradiction between the different desired temporal
and power characteristics of its client processes. There-
fore, radical changes need to be made at the level of
data communication mechanisms, such as the use of
asynchronous/clock-free circuits and more direct use of
hardware (for temporal predictability and power saving)
instead of layers of software to support communication
protocols.

In addition, in recent years, “soft-computing” technolo-
gies such as fuzzy logic and neural networks have be-
come increasingly popular, particularly in the context of
embedded systems. The unifying characteristic of these
technologies is their somewhat relaxed view of the impor-

tance of the precision of individual items of data. The
increased robustness of such techniques makes it possible
to soften the requirement on data precision, leading to
various advantages in implementation.

Similar levels of attention, however, has not been paid
to the possible “softening” of the requirement on tem-
poral relations between processing elements in complex
systems. Even for soft-computing technologies, it has al-
most invariably been assumed that systems operate un-
der global synchrony. In addition, in established soft-
computing technologies, the softening of data happens
at processing units, while data communications between
processing units are assumed to be fully conventionally
precise. In other words, communication units are still re-
quired to treat the data being passed through them as
inviolable, although from the system-wide point of view
the precision of individual data items is not important.
This does not present a problem if the system is assumed
to operate under global synchrony.

Requiring that every item of data generated by a pro-
cessing unit reach its destination and the intended re-
ceiver of a data stream receive an exact copy of the stream
generated for it without any error makes it impossible not
to have some synchronization between the generating and
receiving processes. This implies that all processing units
in a system may be required to be temporally related
to one another. This is considerably relaxed from global
synchrony or a single clock, but is still too restrictive for
many real-time systems.

If, on the other hand, data softening can be applied
to the loss and repetition of items, processing units can
be given temporal independence for the purpose of real-
time safety, power savings or making SoC implementa-
tions more practical. In other words, softening synchrony
via the allowance of data loss or repetition holds attrac-
tions for both real-time operations potentially catering to
wait-free operations of components and very high scale
system integration where unified clocks are impractical.

These application considerations also support the con-
cept of hets. Figure 1 shows the hets concept of building
systems with ACMs connecting active computational el-
ements.

process process

process ACM

ACM

Figure 1: A het is a digital network with computational
elements connected through ACMs.

This paper centers around the notion of ACMs which
are the key to constructing hets. We present a classi-
fication of ACMs based on their temporal relationships
with their access processes. We demonstrate the feasibil-
ity of building hets in hardware by presenting a system-
atic approach to ACMs, including methods of definition,
specification, design and implementation at various lev-
els, and analysis. We are especially interested in ACMs
that are capable of interfacing an active element with self-
motivated timing with another active element.

Previous work: The MASCOT (Modular Approach
to Software Construction Operation and Test) design

methodology, developed primarily at BAe and RSRE
[17] for constructing real-time distributed systems of a
safety-critical nature, provides initial stimulus for study-
ing systems with multiple self-motivated timing domains
(sometimes called “timing motive powers”), and forms
a methodological basis for the investigation of hets. Up
to now, the MASCOT method has been used for build-
ing systems which consist of off-the-shelf processor blocks
running microkernels, and most of their communication
mechanisms implemented in software, or if in hardware,
then using sufficiently large “timing reserves” (use of the
so called fundamental mode, which allows the circuit to
stabilise before the next input stimuli are applied).
More recently, Metropolis, a design environment for
heterogeneous embedded systems, has been reported [1].
The Metropolis method emphasizes the separation of
computation and communication as orthogonal aspects
of system design, and the decoupling of such orthogonal
aspects over a set of abstraction levels is used to enhance
the reusability of components. The explicit recognition of
system hetergenity, including temporal hetergenity, and
the emphasis on the orthoganality between computation
and communication are similar to concerns in hets and
ACMs, although detailed communication elements inves-
tigation has not been reported yet in Metropolis. Moses
is another recently reported tool, which uses Petri nets
and can model and simulate heterogeneous systems [12].

2 Asynchronous Communication
Mechanism Taxonomy

In heterogeneously timed systems, data interfaces may
need to be maintained between subsystems not belonging
to the same timing domain. The minimal form of this
problem is the unidirectional passing of data between two
single-thread processes.

When the two communicating processes are not syn-
chronized, it is often necessary to pass the data through
some intermediate data repository, usually in the form of
shared memory, as schematically shown in part of Figure
1. The writing process is labelled ‘A’, the shared memory
is labelled ‘1’ and the reading process is labelled ‘B’.

An ACM is a scheme which manages the transfer of
data between two or more processes not necessarily syn-
chronized for the purpose of data transfer. Here we as-
sume that there are only two processes involved. It is also
assumed that the data being passed consists of a stream
of individual items of a given type. It is further assumed
that the processes in question are single thread cycles,
one providing and the other making use of a single item
of data during each access to the ACM. The provider of
data is known as the “writer” and the user of data is
known as the “reader” of the ACM.

The aim of the ACM is to pass data between the
two processes without interference according to given
data properties (see later) and according to certain tem-
poral rules based upon the type of communication re-
quired. The different communication types are based
upon whether the writer or reader is required to wait or
not, see Figure 2. This waiting is dependant on the data
state of the ACM. This is a modification to a classification
system previously given by Simpson [20, 21], which was
based upon destructive and non-destructive operations
between the communicating processes and the ACM.

In Simpson’s original ACM taxonomy if the writing of

data was non-destructive and the reading of data was also
non-destructive then the resulting communication proto-
col was called a ‘Constant’. Data could be written into
a Constant once, normally during the system set up or
start, and could never be modified. In the modified classi-
fication Constant is replaced by ‘Message’. The ‘Message’
protocol is more relevant for interfacing between real-time
(self motivated) and low-power (event motivated) sub-
systems.

L < >

writer reader writer reader
no wait no wait may wait may wait
Figure 2: Symbols for temporal relations between

reader/writer and ACM.

Intuitively, without going into the details of specifica-
tion and implementation, ACMs can be classified into four
groups based on the combination of may require wait-
ing/may not require waiting for the two access processes.

There is an implied desire, for any ACM, that as much
of the information from the writer should be passed on to
the reader as possible, once the basic asynchrony specifi-
cations of the ACM are satisfied. This means that when
a “no waiting” requirement implies imperfection in the
passing of data, a method must be found to minimize
such imperfection. There is also an implied desire, for any
ACM, that as much asynchrony as possible is accorded to
the writer and the reader within the specification. This
means that any waiting, in a “may require waiting” spec-
ification, should be invoked only when absolutely neces-
sary.

For the writer, the question of waiting or not waiting
therefore comes up only when an ACM is full of items of
data which have not been read. If it is important that
every item of data from the writer must eventually reach
the reader, the writer must be required to wait in this
situation. On the other hand, if the writer process can-
not be obliged to wait for data communication purposes,
data must be discarded or lost in this situation. Straight
discarding of the current item of data by the writer pro-
cess is not a good solution, since this item of data, being
of newer vintage than those already in the ACM, should
normally be regarded as more important (cf. freshness
property defined later in this section). It is, therefore, a
better idea if overwriting should occur, in other words,
some item already in the ACM should be replaced by the
current item of data the writer has ready to write.

Similarly, when an ACM contains no previously un-
read data items, in order for its reader process not to be
blocked by the data state, the reader must be allowed to
go away empty handed or with some item of data it has
acquired during a previous access. The best option here,
in view of the desire of generating some data passage with
this visit of the reader, is to allow the reader to re-read
the item of data which it obtained during the immediately
previous data access.

Overwriting and re-reading are also superior to straight
discarding and doing nothing in the sense that they re-
quire essentially the same time to be carried out, in any
realistic implementation, as normal writing and reading.
This means that a temporal consistency exists for ACM
accesses for the reader and the writer. Such temporal
consistency is crucial, or at least desirable, in many hard

real-time, safety critical systems.

Permitting overwriting (but not necessarily requiring
overwriting all the time) implies that the writer cannot
be held up (blocked) by the data state, while permitting
re-reading (but not necessarily requiring re-reading all the
time) implies that the reader cannot be held up (blocked)
by the data state. A new ACM classification system based
on whether these actions are permitted by any ACM pro-
tocol is proposed below. It has full correspondence to the
no waiting required /waiting may be required paradigm.

2.1 ACM classification:

Formally, an ACM has a capacity, a non-negative integer
constant, which is the number of data items it contains.
Each data item an ACM contains is either read or unread,
at any time. The basic data state of an ACM consists of
the number of unread data items it contains.

Write data accesses are divided into writing and over-
writing. Read data accesses are divided into reading and
re-reading. Writing increases the data state by 1 (one
more unread item in the ACM) and reading decreases it
by 1 (one less unread item in the ACM) while overwriting
and re-reading do not modify the data state. Overwriting
may occur, if permitted by the ACM protocol, only when
the ACM’s data state is equal to its capacity, i.e. when
all items of data in it are unread. Re-reading may occur,
if permitted by the ACM protocol, only when the ACM’s
data state is 0, i.e. when none of the items of data in it
is unread.

ACMs are classified according to whether overwriting
and re-reading are permitted, as shown in Figure 3.

: reader may wait : reader no wait
: (no re-reading) : (re—reading)

writer may wait
(no overwriting)

writer no wait
(overwriting)

DSignaI I:l Pool

Figure 3: Graphic symbols for ACM types.

The Channel, Pool and Signal protocol names are in-
herited from Simpson’s classification in [21]. A new ACM
type, “Message”, is introduced as the dual of Signal.

In terms of the data state blocking data access, if re-
reading is permitted there is no holding up of the reader
and if overwriting is permitted there is no holding up of
the writer. If re-reading is not permitted, reader must
wait when the data state is 0. If overwriting is not per-
mitted, writer must wait when the data state equals the
ACM’s capacity.

Traditional computer systems, if they do not interface
to analogue or real-time environment, will only use Chan-
nels for communication, in the form of FIFO / LIFO /
RAM buffers. This is because for these systems, asyn-
chrony is secondary to the preservation of data. These
solutions are without data loss and repetition so have to
maintain some synchronisation. Typically, in such sys-
tems, data loss and repetition are treated as anomalies,
therefore part of fault tolerance considerations. They are
well studied in hardware implementation. The attention
of this paper will be focused on Signal and Pool. Since
Message is the dual of Signal, any work on Signal will also
shed light on Message directly.

2.2 Practical significance of various types
of ACMs:

In systems with heterogenous timing, there may exist ac-
tive elements which are self-motivated in timing (i.e. the
timing of such elements is entirely determined internally)
and other elements which have reactive timing (i.e. the
timing of such elements is dependent on their data com-
munication interfaces). More complex situations such as
a single element having a combination of self-motivated
and reactive timing can also exist.

For any specific ACM, its reader and writer processes
may belong to active elements which may need to have
self-motivated or reactive timing with regard to this
ACM. Self-motivated timing may be most useful when
an active element is charged with real-time tasks, where
precise timing and temporal predictability are important,
or when an active element may need to have specific and
controllable power and/or performance requirements and
needs to be able to speed up or slow down without consid-
ering its relationship with an ACM. On the other hand,
reactive timing may be useful when an active element is
charged with tasks with enough temporal flexibility to ac-
commodate waiting at an ACM to reduce data loss and/or
repetition or to reduce power consumption (do nothing
when no new data is available or needed).

In general, not requiring an access process to wait pro-
vides for the possibility of allowing that process to belong
to a active element with self-motivated timing. On the
other hand, (sometimes) requiring an access process to
wait implies at least some degree of reactive timing ex-
ists for the active element to which the access process
belongs. Therefore, Pool ACMs can be used to interface
elements with self-motivated timing to each other, Signal
and Message ACMs are best used to interface elements
with self-motivated timing to elements with reactive tim-
ing, and Channel ACMs can only be used to interface
elements with reactive timing to each other.

3 Data Properties

In addition to asynchrony, other important properties of
ACMs exist and some of these have been investigated in
previous work. The main data-passing properties include
data coherence, data freshness, data sequence, data loss
and data repetition. Other properties, such as power and
hardware efficiency and temporal consistency are also im-
portant. Some of these have not been dealt with in detail.

Data coherence refers to the integrity of individual data
items being passed through an ACM. Items of data ob-
tained by the reader should not have been modified since
their introduction by the writer. In other words, data
items going through an ACM should retain their indi-
vidual integrity or atomicity. If an item of data changes
between the writer and the reader, data coherence is said
to have been lost.

Data freshness refers to the desire for the reader to
obtain the most up to date data item in an ACM that
satisfies the particular protocol. For ACMs with capacity
1, this property is most easy to understand. For instance,
with a capacity 1 Pool, any read access should obtain the
data item introduced by the last write access to complete
before it.

Data sequence refers to the desire that the reader
should obtain data in the same order in which the writer
produced it. It may appear that this property is redun-

dant in light of data freshness above, however, when a
writer is producing data far more quickly than a slow
reader can acquire it, then there are instances where sev-
eral pieces of data all seem to have valid freshness and
data may be obtained out of order [3].

Data loss and data repetition are the results of over-
writing and re-reading, respectively, and are inevitable
consequences of no waiting and bounded ACM imple-
mentations. Data loss occurs when overwriting happens,
causing one item of data which was introduced by the
writer previously to be never available to the reader, in
other words, lost in transit. Data repetition occurs when
re-reading happens. In this case, the reader obtains an
item of data it has already obtained in an earlier cycle.
This type of analysis has been performed quantatively
[10].

Power efficiency refers to the desire to minimise
the power consumption of hardware implementations of
ACMs. Hardware efficiency refers to the desire to im-
plement any ACM with the smallest possible amount of
silicon [3]. Depending on the implementation, these two
properties may be directly related. Temporal consistency
refers to the desire to have uniform expected temporal
characteristics for a given writer or reader, i.e. all read
accesses to an ACM from the same reader should require
the same expected time to complete. Other well known
properties such as latency and throughput may also be
considered with regard to ACMs.

4 Metastability

Metastability [6, 11] is unavoidable in systems using
latches between unsychronized processes (i.e. sampling
data from an unknown temporal source). Some design-
ers use metastability to their advantage [7]. Simpson
calls this phenomenon ‘dither’ and claims that if enough
time is allowed for the signals to settle then the output
will either settle to its old value or its new one. This
however requires that the designer leave delays for such
settling (i.e. fundamental mode). In some systems this
may be possible because, as in Simpson’s MASCOT sys-
tems, the ACMs are controlled by software instructions
which progress relatively slowly compared to raw hard-
ware. Metastability can be modelled in descrete environ-
ments by having an M’ state [2], and this can help to
determine what effect a metastable state may have on a
system.

If latches prone to metastability were used in the data
path of the ACM the results could be dangerous. If one
bit of a multi-bit word were to go metastable, the output
could settle to a value which was neither the new value
nor the old one (in Lamport’s terminology this is known
as a safe register [9]). If data coherence is to be main-
tained, metastability must not be allowed to happen in
the data path. By employing multiple data slots! ACMs
in the literature solve this problem. “Control variables”
of the smallest granularity (binary or ternary) are used to
steer the reader and writer so that they never simultane-
ously access the same slot. Asynchrony is thus removed
from the data path to the control variables where the
consequences of metastability are more easily contained.

Solutions published in the literature [22, 8, 18] use these
techniques. These algorithms have been tested under sin-

In the terminology of multi-slot ACMs [18], a “data slot” is a
unique portion of the shared memory which may contain one item
of data.

gle metastable events using Petri net modelling and anal-
ysis techniques [3]. If however shared latches in the con-
trol circuitry are protected from concurrent activity by an
arbiter, allowing only one process access to a latch at any
time, then a trade off between possible control metasta-
bility and possible response latency can be made. In some
applications this may be unacceptable. An advantage of
using such arbitration is the reduction in the number of
slots required for successful implementation.

5 Modelling

In this section the various ACM types with capacity 1 are
described with Petri net [13] models which are the basic
state-transition definitions of these protocols. These top-
level models define the various ACM protocols in suffi-
cient detail so that what has been said informally earlier
can be made unambiguous. They can also be helpful in
system design and analysis at a level where the detailed
implementations of ACMs are not important.

The basic definition of Signal treating read and write
accesses as atomic is shown in Figure 4. In this definition,
re-reading is not allowed, normal writing occurs when the
data state is 1 and overwriting occurs when the data state
is 0.

>—>® read (:>_>unread] read
write %@ write %@ | re-read

Channel Message
overwrite @Tﬂ/d»I read overwrite :7@M| read
write I~ read<), write =~ read<) f re-read
Signal Pool

Figure 4: ACMs with atomic reading and writing.

From this definition it can be seen that Signal is most
useful in connecting a writer process which exists in an
active element with self-motivated timing to a reader pro-
cess which exists in an active element with reactive tim-
ing. By disallowing re-reading, the reader side of the pro-
tocol puts the priority on the data passing properties. By
allowing overwriting, the writer side of the protocol puts
the priority on asynchrony. Thus the writer cannot be
blocked by the data state while the reader can. In other
words, the writer enjoys temporal decoupling from the
state of the ACM. Data passing through a Signal may be
of the interrupt/exception type, where the generator of
these requests must be accorded temporal independence,
and a new request would superceed any previous requests
still not handled.

At the same basic level, treating read and write accesses
as atomic, the Message protocol is also defined in Figure
4. This is a mirror image of the basic model of Signal,
showing that Message is the dual of Signal. Message is
therefore most useful in connecting a reader process which
exists in an active element with self-motivated timing to
a writer process which exists in an active element with
reactive timing. A new “message” type data item would
not be generated by the writer if previous ones have not
been acted on. This is different from “signals” which are
generated regardless of whether previous ones have been
dealt with by the reader.

Similarly, Pool type ACMs may be specified between
writer and reader processes both existing in elements with
self-motivated timing or when it is otherwise a good idea
to not allow data communications to affect the timing
of either communicating side, while Channel type ACMs
may be specified when the integrety of the data item
stream being transmitted is paramount and the timing
of both reading and writing processes can be made reac-
tive to accomodate this. The Petri net definitions of both
Channel and Pool can also be found in Figure 4.

6 Algorithms

We have designed Pool and Signal ACMs algorithms in
a number of different ways. Here two examples are pre-
sented to illustrate our method of ACM analysis and ver-
ification.

6.1 A Pool ACM using three data slots

The models in Figure 4 are sufficient to describe the basic
relations between reader and writer, but they treat the
read and write data accesses as atomic actions. This is
not true at the hardware level if a single data item is not
of very small size. If these accesses are regarded as non-
atomic processes that take non-zero time, a Pool should
be modelled by the PN fragment shown in Figure 5. This
specification gives total temporal independence to both
reader and writer with regard to the ACM and each other.

unread

Figure 5: Non-atomic Pool model

A Pool specified by Figure 5 cannot be implemented
with only one data slot and still provide data coher-
ence, because simultaneous reading and writing accesses
of multi-bit data items from the same data slot are likely
to result in the modification of data after leaving the
writer.

It has been shown [18, 23, 3] that a fully asynchronous
Pool with capacity 1 can only be implemented using three
or more data slots. Here we present a Pool ACM algo-
rithm using three data slots found in [18] shown here in
Figure 6.

In ACM implementations using multiple data slots, the
number of data slots should not be confused with the ca-
pacity of ACMs. In general, the number of slots needs
to be more than the capacity of a certain ACM if any
asynchrony between reader and writer is desired. This
does not necessarily present conflicts. For instance, in a
capacity 1 Pool ACM correctly implemented with three
slots, at any time, only one of these slots contains the
current data item in the ACM and the others are used
for avoiding the simultaneous reading and writing of the
same physical memory. In order for an ACM to be im-
plemented correctly with more slots than its capacity, the
vital property of data freshness must be maintained.

In the algorithm in Figure 6, the data in passage is held
in three data slots labelled slot 1 to slot 3. The control
variables n, I, and r are ternary. It is implied in this
algorithm that within the reader and writer processes,

writer reader

wr: write slot n = 10: 7 :=1
w0: l:=n rd: read slot r
wl: n:=-(l,r)

Figure 6: Algorithm of 3-slot Pool.

the statements must be executed in the order specified
and any statement may not start without the previous
one having completed.

The ‘differ’ statement wl: n := —(I,r) means that vari-
able n is assigned a value different from the current values
of both [and r. In practice, this can be done by using the
matrix —~(L,r) = ((2,3,2), (3,3,1), (2,1,1)). Such a “lookup
table” can be easily implemented in hardware if desired.

Whether any ACM implementation actually conforms
to the specification can be established using theoretical
analysis employing Petri net models which highlight the
important asynchrony and data properties such as the re-
quirement of waiting, data coherence and data freshness.
These kinds of modelling and analysis techniques have
been described in previous work [3, 23, 25]. Here we will
illustrate these techniques by modelling and analysing the
ACM algorithms presented in this paper.

Algorithms like the 3-slot Pool in Figure 6 consist of
two single-thread cyclic processes, which can be viewed
as finite state machines (FSMs). We use the standard
approach to derive Petri net models for such FSMs at the
top level, resulting in the Petri net model of the 3-slot
Pool algorithm shown in Figure 7.

r0_subnet

rd_subnet

— = setting
referencing

Figure 7: Top level view of 3-slot Pool Petri net model.

In this model, the subnets are virtual transitions which
describe the actions of statements in the writer and reader
processes in detail. The two FSMs are connected via
shared control variables, each of which, as specified in
the algorithm, is set by one side only. The other side
only reads/references the value of such a variable. In
this high-level net, the value of each ternery control vari-
able is represented with a single place. This means that
the setting and referencing arcs must be bidirectional to
signify that tokens move back and forth between a state-
ment subnet and the modified /referenced control variable
during either a setting or referencing statement. Initial
condition tokens are not shown in this overview model.

The data items in transit are not represented in the
model explicitly, because the analysis process is not inter-
ested in any specific data item values being transmitted

through the ACM. Only such basic properties as data
coherence, data freshness and asynchrony are of inter-
est here. Asynchrony is represented by the two separate
FSMs which in the model can progress at their own speed
if the Petri net is assumed to follow standard interleaving
semantics, to which our analysis conforms. Data coher-
ence and freshness can also be derived from models in the
shape of Figure 7 without explicit representation of data
items. This will be explained later.

The subnets describing statements can be derived using
well-known Petri net representations of value assignment
and binary state progression (reading/not reading and
writing/not writing of a slot being such states). For in-
stance, the writer statement w1l (n becomes different from
[and r) is shown in Figure 8. In this model, “or-arcs”
[3, 25] are employed to make the model simpler and easy
to read. A group of or-arcs (dashed arcs linked together
by a dashed cross-line) form an XOR set linking a transi-
tion with more than one place. This signifies that one and
only one of the places in question may be marked at any
time and the firing of the transition takes a token from
this place (and puts it back if the arc is a reference/read
arc). Any transition firing in this subnet sets the value of
n to be different from the values of [and r according to
the lookup table mentioned earlier.

“'*‘*O|=3
N

i

r=3.(1=2/3) \ " 1=3.(r=2/3)

1=L(=1p3) r=2.(1=1J2)

wi - wr
<) toall from all < >
transitions transitions

Figure 8: Subnet representing wl: n := —(l,r).

The wr and rd statements are represented with non-
atomic models with start writing/reading and finish writ-
ing/reading being represented by transitions and reading,
writing, not reading and not writing of each slot being
represented by places. This allows any number of actions
in the other side to interleave one data access, illustrat-
ing that data accesses are recognized as the major actions
that take relatively long periods of time. The models em-
ploy broadly similar techniques as those found in Figure
13 below but are simpler because for Pools re-reading is
a normal operating mode and need not be caught with
monitoring subnets.

The control variable statements w0, w1l and r0 can be
represented as atomic, as in Figure 8, or they can be
represented as non-atomic [2, 3, 23]. Ideally, for an ACM
algorithm to completely conform with specifications in
such a form as Figure 5, it should maintain all important
temporal and data properties even if all statements are
regarded as non-atomic. Representing control variable
statements as atomic follows the traditional assumption

that the smallest digital action (the setting/reading of
a binary or ternery variable) is assumed to be atomic
[9, 8, 22]. Representing them as non-atomic has revealed
previously unrecognized operating modes [18, 3, 23].

We use monitoring subnets to record such properties as
data coherence and data freshness during analysis. Such
monitoring nets are used together with the main model
of the algorithms in reachability searches to find out the
existence of undesirable states or operating modes.

Data coherence is lost iff simultaneous reading and
writing occurs on the same data slot. With reading and
writing of any slot already explicitely represented by indi-
vidual places in the wr and rd subnet models, such states
can be easily caught using the monitoring subnet shown
in Figure 9. If the place “coherence lost” ever gets marked
during a reachability search, the algorithm modelled does
not maintain data coherence in all operating modes.

reading slot & O\
H) coherence lost
wiitingsiota(O)~""

Figure 9: Monitoring data coherence.

Data freshness (as described earlier) refers to the desire
that the reader does not obtain stale data. A test for
freshness is given in Figure 10 [19]. Figure 10 contains
two independent timelines, one each for the writer (A)
and reader (B) which should not be read as having any
temporal relationship with each other. For the writer
timeline, the duration labelled “wr” is the time taken by
statement wr and the duration labelled “w0, w1” is the
time taken by statements w0 and wl. The arrow pointing
to the end of the “wr” duration means that at the end of
wr, the slot just written into is set to “fresh”. This form
of data freshness was discussed in depth in [3] and [23].
Figure 10 shows the addition of the arrow at the start of
the read pre-sequence which sets to ‘not valid’ all slots
except the slots which are fresh or previous (if it exists),
i.e. the last or previous last one written. As long as the
reader obtains the data from these slots or a newer item,

freshness is maintained.
>< w0, wl

wr: write data

fresh set to previous T T clear
dot just written is set to fresh & valid previous
A time
clear all valid
l set previous and fresh to valid
ro >< rd: read data
Tread should be valid
B time

Figure 10: Checking data freshness for 3-slot Pool (A:
writer timeline, B: reader timeline).

The subnets modelling the events at the arrows need
to be made atomic with the models of their related state-
ments. This can be achieved by a global “enable” place

acting like a mutex element in hardware, which maintains
relative atomicity of statement and monitoring subnets by
enclosing them within critical sections [3, 23].

An overall Petri net model of the three-slot Pool algo-
rithm in Figure 6 was established using the techniques
described above. Reachability searches were carried out
on this model. The results showed that the algorithm
maintains data coherence and data freshness if the state-
ment r0 can be regarded as atomic with regard to the
statements w0 and w1l (i.e. the entire sequence of w0 and
w1 does not start and finish completely within a single r0
statement in the order of r0 start, w0 and w1l start and
finish, r0 finish). If such atomicity cannot be assumed,
however, the algorithm may violate both data coherence
and data freshness. As an implementation, therefore, it is
only correct under certain assumptions of relative atom-
icity.

In practice, there are many ways in which this assump-
tion of atomicity can be made corresponding to physical
situations. For instance, the writer can be made to do
other things (such as the preparation of the data item
to be written in the next cycle, which should be much
more time-consuming than the setting of a control vari-
able) between statements wQ and w1, or arbitration may
be employed in hardware to ensure statement atomicity.

6.2 A Signal ACM using two data slots

Because a Signal ACM does not provide its reader with
full temporal independence, it is possible to implement it
with fewer slots than for a Pool. We again start from a
non-atomic model for Signal. This is shown in Figure 11.

Figure 11: Signal with blocking write and overwrite and
non-blocking read.

In this model, it is specified that the writer can initiate
and complete a data access at any time, but the reader
cannot initiate a data access when a writer access is in
progress or when the data state of the ACM is inappro-
priate (i.e. unread=0). This provides the writer with full
temporal independence.

We have developed an algorithm for a two-slot Signal
ACM observing these requirements [25]. This is shown in
Figure 12.

writer reader

wr: write slot w 10: r:=7T

wl: w:=T rd: wait until w # r
read slot r

Figure 12: Algorithm of 2-slot Signal.

Here the reader must wait when w=r. The “wait until”
clause specifies that the reader should be stimulated out
of waiting by a change of value on w.

The Petri net modelling of this algorithm follows
broadly similar lines as in the case of the three-slot Pool.

wr strtwr writingd endwr w0

eﬁdfd r0

stft’r'dI reading0

Figure 13: Model of one of the slots of the 2-slot Signal.

In Figure 13, the main model of the read and write
data accesses of slot 0 of the 2-slot Signal algorithm is
shown. A monitoring subnet for re-reading (re-reading
needs to be monitored for Signals) is also included in this
diagram. Places “wr”, “w0”, “rd” and “r0” denote the
“ready” state for the relevant statements. Transitions
with “strt” and “end” in their names represent the start
and end of the relevant statements respectively. The place
“re-read0” becomes marked if re-reading happens on slot
0, which is how reachability analysis can show up possible
faults in the design of the algorithm with regard to the
asynchrony requirement of no re-reading.

The top “strtrd” transition in Figure 13 is provided to
monitor the cases of potential start reading slot 0 when
the writer is in the middle of writing slot 0. This transi-
tion is needed because in this situation the main model
of the slot shows a data state of neither read nor unread
because of the way the writer is modelled. The middle
“strtrd” transition in Figure 13 is provided to monitor the
cases of potential start reading slot O when it has a data
state of read. Since all asynchrony and data properties are
supposed to be maintained by the control variables, these
transitions must be provided to monitor the potential of
control variables not working as designed. In other words,
if either place “slotO read” or place “writing0” is ever si-
multaneously marked with “r=0” and “w=1", these mon-
itoring subnets will catch it in reachability analysis. If, on
the other hand, the algorithm conforms with the specifi-
cation, these transitions should never fire in reachability
analysis. Such transitions are known as “facts”.

The model for read/write accesses of slot 1 is exactly
the same shape as Figure 13, with the appropriate la-
bel changes. The control variable setting statements are
modelled using similar techniques found in Figure 8 and
are not shown here.

Reachability analysis has been carried out on the 2-slot
Signal algorithm and the results confirm that it satisfies
all requirements including asynchronism, data coherence
and data freshness. This is true no matter if control vari-
able statements are regarded as atomic or not. This is
because there is no loop of control variable dependency
in the form of that among n, I, and r in the three-slot
Pool. Data freshness monitoring for the 2-slot Signal is
according to the timelines shown in Figure 14.

wr: write data >< w0

dot just written is set to fresh & valid
other dlot is set to not fresh

A time
rd: read data >< r0
T read should be valid Tset non fresh slots
read is set to not fresh to not valid
B time

Figure 14: Checking data freshness for 2-slot Signal (A:
writer timeline, B: reader timeline).

7 Example ACM hardware de-
signs and simulation results

Both ACM algorithms above have been implemented
in hardware. The implementations are based on
speed-independent (SI) circuits derived with the direct-
translation method based on a type of circuit element
known as David cells [15].

As shown above, the 3-slot Pool algorithm in Figure 6
maintains data coherence and data freshness if statement
r0 is assumed to be atomic in relation to statements w0
and wl. Because these are control variable statements
which should take relatively small amounts of time to ex-
ecute compared with the data access statements rd and
wr, a hardware solution incorporating this atomicity re-
striction sensibly needs not affect the temporal indepen-
dence of either writer or reader.

The top-level schematic of a hardware design imple-
menting this algorithm is shown in Figure 15.

wrl el dot1 rdl et :
datain WrZ done o 3L done_ : data out
wWr2 ot slot 2 rd2 ” MUX P>
Wwr 2 done rd2 dohe :
W3 dot3 rd3’, ‘
_|wr3done . Ll lid3done:
“ read start

write start

write control [:1 arbiter read oontrol :
. read done

write done
wo done r0 start
: iart done WO start rOdone :
o :
C=P differ & | ro
: L; nreg P rreg —p

Figure 15: Hardware design of 3-slot Pool.

The lower half of Figure 15 shows the control circuits of
the 3-slot Pool. The top half of this figure shows that the
values of the control variables are used to multiplex and
demultiplex the connections to the three slots from the
reader and the writer, so that at each wr and rd statement
an access process will be connected to the correct slot.
The writer control and reader control boxes contain logic
which manages the sequential statements for the write
and read sides. The start/done handshakes are used so
that the entire control circuit is speed independent (SI)
for safety. This includes the completion detection signals
being fed back from the data slots to the control circuits.
The registers implementing the control variables are built

to be SI with full completion detection. The arbiter is
used to preserve the atomicity of r0 with regard to w0
and wl.

The circuit implementing w1l using the lookup table
approach (the “differ & n reg.” block in Figure 15) is
shown in Figure 16. It is also entirely SI.

:

—

ST

E|
2
728
2

Figure 16: Circuit for wl.

A more detailed description of this hardware implemen-
tation of the 3-slot Pool can be found in [24].

For the 2-slot Signal algorithm in Figure 12, a hardware
implementation has also been created using similar tech-
niques. Arbitration (via synchronization blocks rather
than explicit arbiters) is again used to preserve the atom-
icity of crucial control variable statements with regard to
each other. One point distinguishing Signal ACMs from
Pool ACMs is the “wait until” statement in the reader
part of the algorithm. While this can be implemented
with polling, by using SI circuits it is possible to intro-
duce waiting which does not consume energy. This is
more in keeping with the overall view of potentially tar-
getting SoCs as an area of application for ACMs.

The block diagram sketch of the hardware design of the
2-slot Signal ACM based on the algorithm in Figure 12
is shown in Figure 17. Similar to Figure 15, it shows the
data path as well as the control parts.

w0 7 dot0 o " data out
wrQ done r(donf> MUX (e
wrl 7 dot1 rl ‘
,,,,,,,,,,,,,,, wildone . fldone
write start: oy i A i My . read start
: write control ‘ ’ read control :
write done Y ¥ ‘read done
: st/ ro rl :
: clear| |W test w SF/ r
: done el | done
w r r
wreg =~ sync [« - rreg

Figure 17: Hardware design of 2-slot Signal.

Again SI circuits have been used for circuit implemen-
tation. The write part of the circuit is shown in Figure 18.
It consists of a set of David cells [27] (shown in bold) to
store the distributed state of the control and blocks repre-
senting the controlled logic. The controlled (operational)
logic is simply inserted between the cells, by breaking the
wire that signals the next cell about the arrival of the to-
ken. Note, e.g., the insertion of blocks wrl and wrQ after
cells dc0 and dcl. Note also that the environment itself
is ‘inserted’ between cells (as handshake “done-wr”).

A more detailed description of this circuit can be found
in [28].

2de |3 - g@ e
p =2 =) deo
ckoH=] sync setw
@ | o
wrl

@ 4.—> r:l dcl
okl L YN drw
W @ wr0 do
e
T jl r=0 | sdea [T'
do |Ir ?
wr P done

Figure 18: Write part of 2-slot Signal.

The arbiter in Figure 15 and the sync blocks in Figure
18 do introduce possible additional blocking at the level
of control variable setting statements that is outside of
the specifications. This blocking however will be quanti-
tatively insignificant in operation, assuming that the data
access statements are much larger than the control vari-
able ones. If this assumption does not hold, it would
be better not to use multi-slot ACMs at all and stick to
mutexing on the data access.

Simulation results: The SI nature of the circuit de-
signs ensures that all requirements in the algorithms, such
as the sequential order of statements within the reader
and writer processes, are satisfied by the hardware. In
addition, both analogue and digital simulations were car-
ried out on the circuits implemented with Cadence in
VLSI (0.6 micron technology) and on-chip testing was
done to another fabricated Pool ACM circuit [28, 14, 24].
These correspond with the results of the theoretical anal-
yses and show that the hardware designs do implement
the algorithms.

8 Conclusion and Future Work

An important aspect of the proposed hets, ACMs, has
been studied. A classification method for ACMs, focus-
ing on their temporal relationships with their access pro-
cesses, has been developed. Descriptive definitions of
different types of ACMs have been given in an easy to
understand formalism, Petri nets. The viability of hets
has been demonstrated by the development of algorith-
mic and hardware implementations of different types of
ACMs and their theoretical analyses and simulation.
Het-based systems differ from traditional soft-
computing techniques in the following ways: (1) in the
treatment of data, errors within data items are not al-
lowed in communications, but items in a sequence can
be lost or repeated; (2) in the treatment of time, no
global synchrony is assumed and the full range of tempo-
ral relations between processes, from fully synchronized
to fully temporally independent, is provided. The lat-
ter provides for flexible interfaces between elements with
self-motivated and reactive timing, potentially facilitating
large scale integration without resorting to higher level
manipulations of time through such techniques as those
found in traditional networks. This has implications in
such important considerations as performance and power

in SoCs.

We are currently investigating the application of Hets
and specifically ACMs in the areas of distributed control
systems and distributed vision systems.

9 Acknowledgements

This work has been supported by the EPSRC (UK),
grant numbers GR/R32895 at Kingston University
and GR/R32666 at Newcastle University, project
COHERENT (http://async.org.uk/coherent). Also
GR/16754 at Newcastle University, project BESST
(http://async.org.uk/besst). The authors wish to thank
Alex Bystrov, Eric Campbell, Tony Davies, Hugo Simp-
son and Walter Vogler for valuable discussions.

References

[1] Burch J., Passerone R., Sangiovanni-Vincentelli A. Over-
coming heterophobia: modelling concurrency in hetero-
geneous systems, Proc. ICACSD2001, IEEE Computer
Press, Newcastle-upon-Tyne, UK, June 2001.

[2] Clark I., Xia F., Yakovlev A., Davies A.C., Petri net
models of latch metastability, Electronics letters, Vol.34,
No.7, pp.635-636, April 2, 1998.

[3] Clark I.G., A unified approach to the study of asyn-
chronous communication mechanisms in real time sys-
tems, Ph.D. Thesis, London University, King’s College,
May 2000. (http://IanGClark.net/)

[4] Cravotta R. Exploring the anatomy of Multiprocessor
Designs, EDN Europe, November 2002, pp.49-60.

[5] Dettmer R. Where next for the microprocessor?, IEE Re-
view, November 2002, p7.

[6] Horstmann J.U., Eichel, H'W. and Coates, R.L. Metasta-
bility behaviour of CMOS ASIC flip flops in theory and
test, IEEE Journal of Solid State Circuits, Vol. 24, No.
1, pp.146-157, February 1989.

[7] Kinniment D.J., Chester E.G. Design of an On-Chip
Random Number Generator using Metastability, Proc. of
the 28th European Solid-State Circuits Conference (ES-
SCIRC) 2002, 24-26 Sept. 2002, Florence, Italy.

[8] Kirousis L.M., Atomic multireader register, Proc. 2nd
Int. Workshop on Distributed Computing, Amsterdam,
LNCS-312, pp.278-296, Springer Verlag, 1987.

[9] Lamport L., On interprocess communication parts I and
II, Distributed Computing, pp.77-101, vol.1, 1986.

Madalinski A., Xia F., Yakovlev A. Studying the data
loss and data re-reading behavious of a four slot ACM
using SPN techniques, Proc. of 7th UK Asynchronous
Forum, 20-21st December 1999, University of Newcastle-
upon-Tyne.

[10]

[11] Marino L.R. General theory of metastable operation,

IEEE Trans. Comput., Vol. 30, No. 2, pp.107-115, 1981.

The Moses Project, Modeling, Simulation, and Evalua-
tion of Systems: http://www.tik.ee.ethz.ch/ moses/.

[12]

[13] Peterson J.L., Petri net theory and the modeling of sys-

tems, Prentice-Hall, 1981.

[14] Shang D., Xia F., Yakovlev A., Testing a self-timed asyn-
chronous communication mechanism (ACM) VLSI chip,
IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS) 2001, Gyor, Hungary,

18-20 April 2001. pp. 53-56.

Shang D., Xia F.; Yakovlev A.; Asynchronous circuit syn-
thesis via direct translation, Proc. ISCAS 2002, Phoenix,
Arizona, May 2002.

[15]

[16] Shang D. Asynchronous Communication Circuits: De-
sign, Test and Synthesis. PhD Thesis, University of New-
castle, September 2002.

Simpson H.R. The MASCOT method, Software Engi-
neering Journal, Vol.1, No.3, pp. 103-120, 1986.

[17]

[18] Simpson H.R. Four-slot fully asynchronous communica-
tion mechanism, IEE Proceedings, Vol. 137, Pt. E, No.

1, pp-17-30, January 1990.

Simpson H.R. Correctness analysis of class of asyn-
chronous communication mechanisms, IEE Proceedings,
Vol. 139, Pt. E, No. 1, pp.35-49, January 1992.

Simpson H.R. Methodological and notational conven-
tions in DORIS real time networks, Dynamics Division,
BAe, February 1994.

Simpson H.R., Campbell, E. Real-time network archi-
tecture: principles and practice, Proc. AINT 2000, Ayn-
chronous Interfaces: Tools, Techniques and Implemen-
tations, p.5 and handouts, TU Delft, The Netherlands,
July 19-20, 2000.

[22] Tromp J., How to construct an atomic variable, Proc. 3rd
Int. Workshop on Distributed Algorithms, Nice, LNCS,

Spring Verlag, pp.1.0-302, 1989.

Xia F., Supporting the MASCOT method with Petri
net techniques for real-time systems developement, Ph.D.
Thesis, London University, King’s College, January 2000.

Xia F., Yakovlev A.; Shang D., Bystrov A., Koelmans
A, Kinniment D.J., Asynchronous communication mech-
anisms using self-timed circuits, Proc. Async2000, Eilat,
Israel, pp. 150-159, April 2000.

Xia F., Clark I., Algorithms for Signal and Message
Asynchronous Communication Mechanisms and Their
Analysis, Proc. ICACSD2001, TEEE Computer Press,
Newcastle upon Tyne, UK, June 2001.

Xia F., Yakovelv A.V., Clark I.G., Shang D. Data com-
munication in systems with hetergeneous timing, IEEE
Micro, Nov-Dec 2002.

Yakovlev A.; Koelmans A.M., Petri nets and hardware
design, Lectures on Petri Nets IT: Applications. Advances
in Petri nets, LNCS-1492, pp.154-236, Springer-Verlag,
1998.

[23]

Yakovlev A., Xia F., Shang D.,Synthesis and implemen-
tation of a signal-type asynchronous data communica-
tion mechanism, Proc. Async2001, Salt Lake City, USA,
March 2001.

