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Practical examples of systems with
heterogeneous timing requirements include
the embedded real-time control and decision-
making systems used in aerospace, automo-
tive, and telecommunication applications. It
is attractive to construct such systems as dig-
ital networks with inherent heterogeneous
timing conditions. In these hets (short for het-
erogeneously timed nets), computational ele-
ments interact through asynchronous
communication mechanisms (ACMs). Hets
offer applications

• a more formal recognition of system tim-
ing heterogeneity,

• a networked and potentially hierarchical
view of the system composed of clearly
active and passive elements, and

• direct representation of data flow through
the system.

These characteristics facilitate both top-down
and bottom-up design approaches and the
assembly of systems from subsystems and
elements.

Why not synchronous?
There are several reasons why distributed-

system subsystems cannot all belong to the
same timing domain. Some of these reasons
have to do with power considerations. For
instance, subsystems can have bounded energy
resources; having such subsystems enter sleep
mode might be desirable if there is no change
(or need for change) in their input/output data.
It’s also possible for subsystems to have opera-
tional speed depend on local energy supply
conditions—that is, a subsystem can slow
down when its energy reserve becomes low—
rather than have operational speed depend on
communications with other subsystems.

From the application point of view, many
applications (such as portable equipment, and
control or signal processing systems) must
guarantee real-time regimes in some of their
parts and power savings in others. From the
system implementation point of view, the
International Technology Roadmap for Semi-
conductors (http://public.itrs.net) indicates
that systems on a chip (SOCs) are increasing-
ly becoming heterogeneous in behavior,
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because they now include mixed analog-dis-
crete components, and time-driven and
power-saving subsystems. New system designs
are also becoming increasingly communica-
tion centric. These factors create an urgent
need for data interfaces between subsystems
and processes with different temporal and
power requirements. 

Such interfaces must emphasize real-time
and energy consumption characteristics. They
must also adjust to the inherent contradiction
between the desired temporal and power char-
acteristics of client processes, requiring radical
changes at the level of data communication
mechanisms. These changes include the use of
asynchronous or clock-free circuits and more
direct use of hardware instead of software lay-
ers to support communication protocols.
(Hardware provides better temporal pre-
dictability and power saving than software.)

In addition, soft-computing technologies
such as fuzzy logic and neural networks have
become increasingly popular, particularly in
the context of embedded systems. The unify-
ing characteristic of these technologies is their
somewhat relaxed view of an individual data
item’s precision. The increased robustness of
such techniques makes it possible to soften
data precision requirements, leading to various
implementation advantages.

Similar levels of attention, however, have
not been paid to the possible softening of
requirements for temporal relations among
processing elements in complex systems. Even
in soft-computing technologies, designers
have almost invariably assumed that systems
operate under global synchrony. In addition,
established soft-computing technologies
incorporate data softening within processing
units, but assume conventional, full-precision
data communications among processing
units. In other words, such designs still require
communication units to treat data passing
through them as inviolable, although, from
the systemwide point of view, the precision of
individual data items is unimportant. Such a
dichotomy does not present a problem if
designers assume that systems operate under
global synchrony. However, global synchrony
is undesirable for distributed real-time systems
and is also becoming increasingly impractical
with the rapid increase in clock frequency and
integration level for single chips.

Heterogeneous timing
Alternatively, a system might require

• every data item generated by a process-
ing unit to reach its destination, and

• the intended receiver of a data stream
receives an exact copy of the stream gen-
erated for it without any error.

Such requirements still must have some syn-
chronization between the generating and
receiving processes, which in turn implies that
all system processing units need to temporal-
ly relate to one another. Although consider-
ably less restrictive than global synchrony or
a single clock, these requirements might still
be too restrictive for many real-time systems.

If, on the other hand, data softening can be
applied to the loss and repetition of items,
processing units can have temporal indepen-
dence for the purpose of real-time safety,
power savings, or making SOC implementa-
tions more practical. In other words, soften-
ing synchrony by permitting data loss or
repetition potentially caters to wait-free oper-
ations for components and helps avoid the
need for unified clocks. It therefore holds
attractions for both real-time operations and
very-high-scale system integration.

These application considerations also sup-
port the hets concept. Figure 1 shows the hets
concept of building systems with ACMs that
connect active computational elements.

Asynchronous communication mechanisms
Heterogeneously timed systems might need

to maintain data interfaces between subsys-
tems in different timing domains. The mini-
mal form of this problem is the unidirectional
passing of data between two single-thread
processes.

When the two communicating processes
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Figure 1. A het is a digital network with computational elements connected
through ACMs.



are unsynchronized, it’s often necessary to pass
the data through some intermediate data
repository, such as in the path formed by
processes A and B, and ACM 1 in Figure 1.

The ACM scheme manages data transfer
between two or more processes not necessar-
ily synchronized for the purpose of data trans-
fer. Here, we assume the involvement of only
two processes and that the data is a stream of
individual items of a given type. We further
assume that the processes in question are sin-
gle-thread cycles, one providing and the other
using a single item of data during each ACM
access. The data provider is the ACM writer;
the data user is the reader.

Lamport classified ACMs as safe, regular,
and atomic registers1 and tried to assemble the
more useful regular and atomic types out of
the more directly realizable safe type. The
smallest such “registers” transmit data items
of the single-bit type. Ignoring nondigital
behavior such as metastability, these registers
are implementable to atomic standards.
Exploiting this fact, researchers have proposed
many ACM protocols.2 These protocols typ-
ically employ less-than-safe registers for the
data path, and minimal (bit) control variables
manage access by reader and writer processes
to the data path. The results of these efforts
are better and more practical ACMs that per-
form to atomic or regular standards, assum-
ing atomic standards in the control variables.
All these ACMs allow full temporal indepen-
dence between reader and writer processes.

Simpson proposed a more general classifi-
cation system for ACMs, incorporating pro-
tocols that do not necessarily allow full
temporal independence for reader and writer.3

Compared with Lamport’s work, which
emphasizes data, Simpson’s classification
moves emphasis to the temporal relations
between reader and writer processes. Here, we
further develop this classification by focusing
directly on the temporal relations between
ACMs and their access processes.

The literature has consistently yielded
research that relaxes synchronization require-
ments from an assumption of full data trans-
mission. This research includes globally
asynchronous, locally synchronous systems
(GALSs),4 stretchable/pausible clocks,5 FIFO
buffers allowing more temporal differences,6

and most notably, in recent years, latency-

insensitive design.7 Because of the starting
point of full data transmission, none of these
provide a full spectrum of temporal relations
between the communicating sides. Such a
spectrum would run from fully independent
to fully synchronized and operate at the low-
est hardware level.

Our ACM approach starts from the tem-
poral relations between the reader and writer,
and regards data transmission quality to be of
secondary importance. This view differs rad-
ically from the traditional data-centric
approach to data communications, and makes
possible true temporal decoupling at the hard-
ware level.

Asynchrony and its consequences
From the hets point of view, it’s important

to classify ACM protocols based on whether
an ACM’s data state might oblige either the
reader or writer processes to wait under cer-
tain circumstances. Without going into the
details of specification and implementation,
we can classify ACMs into four groups based
on the combination of might- or might-not-
require waiting for the two access processes.

The implied desire for any ACM is that as
much of the writer’s information should pass
to the reader as possible, once the data trans-
fer satisfies the ACM’s basic asynchrony spec-
ifications. This means that when a no-waiting
requirement implies imperfection in data
transfer, designers should find a method to
minimize such imperfection.

There is also an implied desire for any ACM
to accord as much asynchrony as possible to
the writer and reader, while staying within the
specification. This means that an ACM must
invoke any waiting in a might-require-waiting
specification only when absolutely necessary.

For the writer, therefore, the question of
waiting or not waiting comes up only when
an ACM is full of unread data items. If it’s
important that every data item from the writer
must eventually reach the reader, the ACM
must require the writer to wait in this situa-
tion. On the other hand, if the ACM cannot
oblige the writer process to wait for data com-
munication purposes, it must discard or lose
data. Straight discarding of the current data
item is often not a good solution because a
newer data item should normally be more
important (per the freshness property we
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define later) than those already in the ACM.
It’s, therefore, often better to overwrite data;
that is, the current data item the writer has
ready to write should replace some item
already in the ACM.

Similarly, when an ACM contains no pre-
viously unread data items, to prevent the data
state from blocking the reader process, the
ACM must let the reader go away without
reading or read some data item it had already
acquired during a previous access. The best
option here to ensure some data passage with
this reader visit is to let the reader reread the
data item from the previous data access.

Overwriting and rereading are also superi-
or to straight discarding or no reading because
they take essentially the same time (in rea-
sonable implementations) as normal writing
and reading. This way, a temporal consisten-
cy exists for ACM accesses by the reader and
writer. Such temporal consistency is crucial—
or at least desirable—in many hard, real-time,
safety-critical systems.

Permitting overwriting but not necessarily
requiring it at all times implies that the data
state cannot hold up (block) the writer. Per-
mitting rereading but not necessarily requir-
ing it at all times implies that the data state
cannot hold up (block) the reader. Our new
ACM classification system categorizes these
protocols based on whether an ACM protocol
permits these actions. This classification sys-
tem fully corresponds to the no-waiting-
required/waiting-might-be-required paradigm.

Classifying ACMs
Formally, an ACM has a capacity, the num-

ber of data items it contains; this is a non-
negative integer constant. At any time, each
data item an ACM contains is either read or
unread. An ACM’s basic data state consists of
its number of unread data items.

We divide write data accesses into writing
and overwriting. Read data accesses are either
for reading or rereading. Writing increases the
data state by 1 (one more unread item in the
ACM) and reading decreases it by 1 (one less
unread item in the ACM); overwriting and
rereading do not modify the data state. Over-
writing, if permitted by the ACM protocol,
can only occur when the ACM’s data state
equals its capacity—that is, all of its data items
are unread. Rereading, if permitted by the

ACM protocol, can only occur when the
ACM’s data state is 0—none of its data items
are unread.

We classify ACMs according to whether
they permit overwriting and rereading. The
Channel, Pool, and Signal ACM protocols,
which we discuss later, inherit their names
from an earlier classification scheme.3 We
introduce a new ACM type, called Message,
as the dual of Signal.

In terms of the data state’s blocking of data
access, if an ACM protocol permits rereading,
it does not hold up the reader. If a protocol
permits overwriting, it does not hold up the
writer. If a protocol does not permit reread-
ing, the reader must wait when the data state
is 0. If the protocol does not permit over-
writing, the writer must wait when the data
state equals the ACM’s capacity.

Traditional computer systems, if they do
not interface to analog or real-time environ-
ments, will only use Channel protocols—in
the form of FIFO, LIFO, or RAM buffers—
for communication. This is because for these
systems, asynchrony is secondary to data
preservation. These solutions don’t permit
data loss and repetition so must maintain
some synchronization. Typically, such systems
treat data loss and repetition as anomalies, and
these situations are therefore part of fault tol-
erance considerations, which are well studied
in hardware implementations. (Incidentally,
the notion of dependability is normally more
general than fault tolerance. Unduly neglect-
ing dependability’s temporal aspects, such as
the need to support asynchronous interactions
and provisioning for that support, can lead to
catastrophic consequences.)

For these reasons, we focus attention on the
Signal and Pool protocols. Because Message
is Signal’s dual, any work on Signal also sheds
light on Message.

ACM symbols and combinations
We propose to use a set of

unique symbols for ACMs to
graphically represent an archi-
tectural view of a het with
ACMs. Such symbols specify
the temporal relation between
an access process and an
ACM. Figure 2 shows symbol
elements that specify whether
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Figure 2. Symbols for temporal relations
between the reader or writer and ACM:
writer (a) and reader (b) no wait; and writer
(c) and reader (d) may wait.



a protocol can require an access process to wait
at an ACM. We combine these symbols to
form other symbols, shown in Figure 3, to
represent the four ACM types.

With these symbols, it’s straightforward to
assemble an architectural view of any het with
active elements connected to one another
through ACMs. Figure 1 is one example. In
addition, it’s easy to express the notion of
directly combining several ACMs into a com-
posite. For instance, if a buffer of size n (an n-
capacity Channel) connects to a Signal on the
input side and a Message on the output side,
the resulting composite ACM would look like
Figure 4 and behave like a Pool to its reader
and writer in terms of overwriting and reread-
ing permission. The internal buffer can help
the flow rate of data items stay more even
than that of a simple Pool, at the expense of
extra latency.

Practical significance of various ACMs
Systems with heterogeneous timing can

incorporate

• active elements with self-motivated tim-
ing (these elements internally determine
their own timing), and

• other active elements that have reactive
timing, that is, their timing depends on
their data communication interfaces.

More complex situations, such as a single
active element having a combination of self-
motivated and reactive timing, can also exist.

For any specific ACM, its reader and writer
processes can belong to active elements that
might need self-motivated or reactive timing
with respect to this ACM. Self-motivated tim-
ing is most useful when an active element
must

• perform real-time tasks;
• work in a system where precise timing

and temporal predictability are impor-
tant; or

• have specific, controllable power and/or
performance requirements and speed up
or slow down without considering its
relationship with an ACM.

On the other hand, reactive timing can be
useful when an active element performs tasks
with enough temporal flexibility to accom-
modate waiting at an ACM. Such waiting
might be necessary to reduce data loss and/or
repetition, or to reduce power consumption—
that is, the active element does nothing when
no new data is available or needed.

In general, not requiring an access process
to wait lets that process belong to an active ele-
ment with self-motivated timing. On the other
hand, requiring an access process to wait occa-
sionally implies some degree of reactive tim-
ing in the active element that incorporates the
access process. Each of these situations bene-
fits from the use of a particular type of ACM:

• Pools can interface two elements with
self-motivated timing.

• Signals and Messages are best for inter-
facing elements with self-motivated tim-
ing to elements with reactive timing.

• Channels can interface two elements
with reactive timing.

ACMs make possible real asynchrony
between active elements in a system and do
so at the lowest hardware level. This capabil-
ity has significant implications in regulating
and saving power. For instance, it’s possible to
implement Pools so that both sides enjoy full
temporal independence from each other.
Designers can use this type of full temporal
decoupling to localize any temporal fluctua-
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Figure 3. ACM classification and graphical symbols for ACM
types.
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Figure 4. Composite Pool with n-capacity
buffer inside.



tions caused by dynamic power control in
parts of a system.

Designers can implement Signal and Mes-
sage ACMs so that communicating element 1
can have complete temporal independence
from element 2, but element 2 is not inde-
pendent of element 1. Such ACMs are useful
when communication affects the timing of
element 2 (say to save power), but doesn’t
affect element 1’s timing. For instance, hard-
ware implementing a reader could be off when
no new data is available, or hardware imple-
menting a writer could be off when the read-
er doesn’t need new data. Conventional
communication schemes don’t easily allow
this type of operation, at least not at the hard-
ware’s finest granularity. With appropriate
hardware implementations of ACMs and
active elements, such turning off and subse-
quent restarting can be low energy events.

Additional ACM properties
In addition to asynchrony, ACMs have

other important properties investigated in
previous work. An ACM’s main data-passing
properties include data loss, repetition, coher-
ence, and freshness. Other properties, such as
power and hardware efficiency, and temporal
consistency are also important. Research has
not dealt with some of these areas in detail.

Data loss and data repetition are the
inevitable consequences of no waiting and
ACM implementations of bounded size. Data
loss occurs because of overwriting; one data
item previously introduced by the writer
becomes permanently unavailable to the read-
er—in other words, lost in transit. Data rep-
etition occurs because of rereading. In this
case, the reader obtains a data item it obtained
in an earlier cycle.

Data coherence refers to the integrity of
individual data items that pass through an
ACM. This means that data items obtained
by the reader should remain unmodified after
their introduction by the writer. In other
words, data items going through an ACM
should retain their individual integrity or
atomicity. If a data item changes between the
writer and reader, data coherence is lost.

Data freshness refers to the reader obtaining
the most up-to-date data item in an ACM that
satisfies the particular protocol. For instance,
with a Pool of capacity 1, any read should

obtain the data item introduced by the last
write that completed before it.

Power efficiency refers to minimizing the
power consumption of ACM hardware imple-
mentations. Hardware efficiency refers to
implementing any ACM with the smallest pos-
sible silicon area. Depending on the imple-
mentation, these two properties can be related.

Temporal consistency refers to having uni-
form and predictable temporal characteristics
for a given writer or reader. For example, all
read accesses to an ACM from the same read-
er should require the same predictable amount
of time to complete. Other well-known prop-
erties, such as latency and throughput, might
also affect ACM design.

Algorithm designs and analyses
We have designed several Pool and Signal

algorithms; two examples illustrate our
method of ACM analysis and verification.

A Pool ACM with three data slots
The Petri net8 fragment in Figure 5 specifies

a Pool. In this specification, two complemen-
tary places—unread and read—represent the
data state of the Pool. Two other comple-
mentary places—(over)write and nw, repre-
sent the state of the writer. Place (over)write is
marked when the writer is in a data access of
the ACM, and place nw is marked when the
writer is not in a data access of the ACM.

Similarly, the complementary pair of places
(re)read and nr represents the reader state.
Double-headed arcs are contextual arcs, indi-
cating that although the transition is enabled
only when the place is marked; the transition’s
firing does not consume a token from the
place. The data state is modified at the end of
a write access (if writing is incomplete, an item
is not ready to be read) and the beginning of a
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read access. This specification gives total tem-
poral independence to both reader and writer.

The most direct method of implementing
such a Pool specification is to restrict any tim-
ing conflicts between the two sides to signals
of the smallest granularity within the system’s
scope. In most cases, this restriction implies
binary or ternary variables that can be set and
reset in hardware within the shortest possible
action time. By employing such control vari-
ables, it’s possible to remove any asynchrony
from large-scale actions, such as data item
access by one of the sides.

In multislot ACM terminology, a data slot
is a unique portion of shared memory that can
contain one data item.2 It is impossible to
implement the Pool ACM specified by Figure
5 with only one data slot and still provide data
coherence; simultaneous read and write
accesses of multibit data items from the same
data slot will likely result in the data’s modifi-
cation after it leaves the writer.

Research has shown that a fully asynchro-

nous Pool of capacity 1 is only implementable
using three or more data slots.2,9,10 In Figure 6,
we present a Pool algorithm using three data
slots proposed by Simpson.2

In ACM implementations that use multi-
ple data slots, the number of data slots should
not be confused with ACM capacity. In gen-
eral, the number of slots should be more than
the ACM capacity if any asynchrony between
reader and writer is desirable. This require-
ment does not necessarily present conflicts. For
instance, consider a Pool of capacity 1 correctly
implemented with three slots. At any time,
only one slot contains the nominal current
data item in the Pool; the Pool uses the other
slots to avoid simultaneous reads and writes of
the same physical memory. To correctly imple-
ment an ACM with more slots than its capac-
ity requires maintaining data freshness.

In the algorithm in Figure 6, the Pool holds
the passing data in one of three data slots
labeled slot 1, 2, or 3. Control variables n, l,
and r are ternary. This algorithm implies that
within the reader and writer processes, the
statements must be executed in the order spec-
ified, and any statement must not start with-
out the previous one having completed.

Statement w1: n := ¬(l, r) assigns variable
n a value different from the current values of
l and r. In practice, this differ statement can
be implemented by using the matrix ¬(l, r) =
{(2,3,2), (3,3,1), (2,1,1)}. Such a lookup table
is easily implementable in hardware.

A theoretical analysis employing Petri net
models can establish whether an ACM imple-
mentation conforms to the specification.
These models highlight important asynchrony
and data properties, such as waiting, data
coherence, and data freshness. Such model-
ing and analysis techniques come from previ-
ous work.11

Algorithms like that in Figure 6 consist of
two single-thread cyclic processes, which we
can view as finite state machines. Given this
view, we can derive Petri net models for such
FSMs at the top level, resulting in the Petri
net model of the three-slot Pool algorithm
shown in Figure 7.

In this model, the subnets are virtual tran-
sitions that describe detail actions that result
from statements in the writer and reader
processes. Shared control variables connect
the two FSMs. For any control variable, only
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writer reader
wr: write slot n r0: r : = l
w0: l : = n rd: read slot r
w1: n : = ¬(l,r)

Figure 6. Three-slot Pool algorithm.
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Figure 7. Top-level view of a three-slot Pool’s Petri net model.



one side sets its value, as specified in the algo-
rithm, and the other side reads or references its
value. In this high-level net, a single place rep-
resents the value of each ternary control vari-
able. This means that the setting and
referencing arcs must be bidirectional. The
arcs must represent how tokens move back
and forth between a statement subnet and the
modified/referenced control variable during
either a setting or referencing statement. This
overview model does not show initial-condi-
tion tokens. Earlier work describes this model
and the Petri net representations of such prop-
erties as data coherence and freshness.11

We carried out reachability searches on this
model. The results showed that the algorithm
maintains data coherence and freshness if and
only if statement r0 is atomic with respect to
statements w0 and w1. That is, the entire w0 to
w1 sequence does not start and finish completely
within a single r0 statement and in the order r0
start, w0 and w1 start and finish, then r0 finish.
In an implementation, therefore, data coherence
and freshness are only maintained under this
assumption of relative atomicity.

In practice, this assumption of atomicity is
correct in many physical situations. For
instance, between statements w0 and w1, the
writer might do such obvious tasks as prepar-
ing the data item to be written in the next cycle,
which should be more time-consuming than
setting a control variable. Or an ACM imple-
mentation can employ hardware arbitration to
ensure relative statement atomicity.9,10

A Signal with two data slots
Because a Signal does not provide its read-

er with full temporal independence, it needs
fewer slots to implement than a Pool. We
again start from a nonatomic model for the
Signal, shown in Figure 8.

This model specifies that the writer can ini-
tiate and complete a data access at any time.
On the other hand, the reader cannot initiate
a data access when a writer access is in
progress or when the ACM’s data state is
inappropriate (when unread = 0). This
scheme provides the writer with full tempo-
ral independence. Figure 9 shows an algo-
rithm we developed for a two-slot Signal that
observes these requirements.11

In this algorithm, the reader must wait
when w = r. The wait until clause specifies that

a change in value on w should stimulate the
reader out of waiting.

We have carried out Petri net modeling and
analysis for this algorithm following broadly
similar lines as in the case of the three-slot Pool
algorithm.11 Reachability search results con-
firm that this two-slot Signal algorithm satis-
fies all requirements, including asynchronism,
data coherence, and relaxed data freshness, as
long as we can regard control variable state-
ments as atomic.

Hardware designs and simulation
We have implemented both of the preced-

ing ACM algorithms in hardware. The imple-
mentations employ speed-independent
circuits derived with the direct-translation
method based on a type of circuit element
known as the David cell.12

As discussed earlier, the three-slot Pool algo-
rithm in Figure 6 maintains data coherence
and freshness if statement r0 is atomic in rela-
tion to statements w0 and w1. These are con-
trol variable statements that should take
relatively little time to execute compared with
the data access statements rd and wr. Thus, a
hardware solution that sensibly incorporates
this atomicity restriction need not compro-
mise the temporal independence of either
writer or reader. Figure 10 (next page) shows
the top-level schematic of a hardware design
implementing this algorithm.
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Figure 9. Two-slot Signal algorithm.
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The lower half of Figure 10 shows the con-
trol circuits for the three-slot Pool imple-
mentation. The figure’s top half shows that
the circuit uses the control variable values to
multiplex and demultiplex the connections
to the three slots between the reader and
writer. In this way, the access process will con-
nect to the correct slot at each wr and rd state-
ment. The writer and reader control boxes
contain logic that manages the sequential
statements for the write and read sides. The
start/done handshakes, which incorporate
completion detection signals fed back from

the data slots to the control
circuits, ensure that the entire
control circuit is speed inde-
pendent for safety. The regis-
ters implementing the
control variables are also
speed independent and have
full completion detection.
The arbiter preserves the
atomicity of r0 with respect
to w0 and w1. We provide a
more detailed description of
this three-slot Pool hardware
implementation in another
work.9

We have used similar tech-
niques to create a hardware
implementation for the two-
slot Signal algorithm in Fig-
ure 9. Arbitration (via
synchronization blocks rather
than explicit arbiters) again
preserves the atomicity of
crucial control variable state-
ments with respect to each
other. One point that distin-
guishes Signals from Pools is
the wait-until statement in
the part of the algorithm con-
cerned with the reader.
Although implementable by
polling, the wait-until state-
ment is more energy efficient
when implemented by using
speed-independent circuits.

Figure 11 shows the hard-
ware block diagram for the
two-slot Signal based on Fig-
ure 9’s algorithm. It shows the
data path (in the figure’s

upper portion) and the control parts (lower
portion). We offer a more detailed description
of this circuit elsewhere.10

Simulation results
The speed independence of circuit designs

ensures that the hardware satisfies all the algo-
rithms’ requirements, such as maintaining the
sequential order of statements within reader
and writer processes. To further increase our
confidence in the hardware’s functionality, we
performed both analog and digital simulations
on VLSI (0.6-micron technology) imple-
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mentations of the circuit, which we developed
using Cadence. We also performed on-chip
testing of another Pool ACM circuit, which
was fabricated after the Cadence process.9,10,13

The simulation and on-chip testing corre-
sponded with the theoretical-analysis results
and showed that the hardware designs do
implement the algorithms.

Figure 12 shows one series of digital simu-
lation results that illustrates the interesting
aspect of trading data items for temporal inde-
pendence in a Pool. These figures show the
values of data items being written into and
extracted from the Pool by the writer and
reader. The 00 parts are spacer states on the
reader’s side; these spacers denote times when
the reader is not carrying out a data access.
Random-number generators are used for
dynamically varying the duration of reader
and writer cycles. The ACM can maintain
both data freshness and data coherence even
under such variable operating modes. These
sequences clearly show overwriting and
rereading; other recorded data from individ-
ual signal wires also showed that neither side

suffers an ACM-imposed delay. These results
are consistent with the specification of a Pool
providing full temporal independence for
both reader and writer.

Other related work strengthens the foun-
dation for the het-based methodology of real-
time and embedded systems with potential
SOC applications. This work includes quan-
titative analyses of ACMs.14 Rather than rely
on simulations, these analyses showed it’s pos-
sible to analytically derive numerical results
for the rate of data loss and rereading with the
help of Petri net models.

Het-based systems provide for flexible
interfaces between elements with self-

motivated and reactive timing. This flexibili-
ty could facilitate large-scale integration
without resorting to higher-level manipula-
tions of time through techniques such as those
found in traditional networks (Ethernet,
ATM, bus management).

In the future, we plan to extend the work
we present here by further studying the effects
of ACMs in systems at higher levels and inves-
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tigating the behavior of systems employing
ACMs. It is important to establish a theoret-
ical framework for systems containing ACMs
at higher levels before such techniques can be
applied with confidence. MICRO
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