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ABSTRACT 
 
 
As important communication components of 
asynchronous systems, the ACMs have been studied for 
many years. A well known Pool using 4 data slots was 
proposed by H. R. Simpson. However, under certain 
assumptions, the number of slots in shared memory can 
be reduced to 3. Mutex, David Cells and SYNCs are used 
here to implement the 3-slot Signal. The design 
performed well, maintaining all the required 
asynchronous properties. It is also a potential building 
block for the design of low-power heterogeneous systems. 
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1. INTRODUCTION 
 
 
An Asynchronous data Communication Mechanism 
(ACM) is a scheme, which manages the transfer of data 
between two processes not necessarily synchronised for 
the purpose of data transfer. The provider of data is 
called the “writer” , and the user of data is referred to as 
the “reader”. The general scheme of these kinds of data 
communication mechanisms is shown as follows: 
 

 
Figure 1 ACM Using Shared Memory and Possibly 
Control Variables 

 
 
1.1 Classification of ACMs 
 
 
ACM protocols can be classified in different ways. 
According to the number of slots in shared memory, they 
could be 1-slot, 2-slot, 3-slot and 4-slot mechanisms [1]. 

Based on whether overwriting and re-reading are 
permitted, ACMs can also be classified into 4 types [2], 
as shown below. 
 

TABLE 1 -Classification of ACMs 

 NRR RR 
NOW Channel Message 
OW Signal Pool 

 
In table 1, NRR stands for Non Re-Reading and NOW 
means Non OverWriting. The names of “Channel” , 
“Signal”  and “Pool”  are retained from Simpson’s 
classification system [3], which is based on the number 
of items of data in the ACM and its modification by the 
reader and writer accessing the ACM. “Message”  is 
introduced as the dual of “Signal” . 
 
4-slot ACMs have been well studied and designed by 
many researchers. However, under certain assumptions 
of atomicity of statements, the slot number in shared 
memory could be reduced to 3 while still maintaining 
the main asynchronous properties [4]. This 
implementation of the 3-slot Signal was based on those 
studies. 
 
 
2. ALGORITHM OF THE 3-SLOT SIGNAL 
 
 
The algorithm of the 3-slot Signal can be found in [5]: 
 

 
 

Figure 2 Algorithm of 3-Slot Signal 

 
In Figure 2, the statements of wr and rd are the data 
accesses, and the others are control variable statements 
used to determine which slot is to be accessed by 
reader and writer.  
 
From the definition in table 1, Signal does not allow re-
reading, that is, when there are no new data items in 
the shared memory, the reader will keep waiting until a 
new one is available. This is the function of the r0 
statement.  

Reader Writer 

Shared 
memory 

Control 
variables 

ACM 

Writer: 
 wr: write slot w; 
 w0: l:=w; 
 w1: w=differ (l, r); 

Reader: 
 r0: wait until (r!=l) r:=l; 
 rd: read slot r; 



For the writer side, the new data is stored in the slot 
which is neither being read (r) nor just written (l). This is 
performed by the ‘differ’  function in statement w1. In the 
implementation, the differ function is defined according 
to the following table: 
 

TABLE 2 -Differ Function 

l=1 

r=1, 2 (r!=3) w=3 

r=3 w=2 

l=2 

r=1 w=3 

r=2, 3 (r!=1) w=1 

l=3 

r=1, 3 (r!=2) w=2 

r=2 w=1 

 
The differ function can then be constructed using 3 
SYNC arbiters (see 4.2). 
 
 
3. PETRI NET MODEL 
 
 
To investigate the algorithm, Petri net models were built 
and analysed.  
 
Figure 3 shows the Petri net for the writer. The initial 
state in the figure is w=1 and r!=1. When a write access 
signal (write_start) comes, the token moves to the next 
place from the initial one, which enables the transition 
wr1. After the transition is fired, l is set according to w 
(not shown in the Petri net), and w is determined by the 
current value of r. The write cycle is finished with a 
write_done signal sent back to the environment.  
 
The process for the reader is similar to that for the writer. 
The initial state in Figure 4 is r=2. When there is a 
read_start signal, the reader decides the next step 
according to the current value of l. If l is the same as r, 
the reader keeps waiting. Otherwise, l is assigned to r, 
such as the transition r21. Consequently, the data item in 
slot r is read. With a read_done signal sent out, the read 
cycle is finished. 
 
 
4. IMPLEMENTATION 
 
 
From the Petri net models mentioned, circuits were built. 
The places in each Petri net were implemented by David 
Cells, a kind of memory element [6]. The transitions 
were certain processes between two David Cells. 
 
Because the control variable l is shared by both reader 
and writer, if the statements are non-atomic, it will cause 

problems in some cases. When a consecutive pair of 
statements w0 and w1 is executed between the start and 
finish of r0, the 3-slot ACM fails both data coherence 
and data freshness requirements [4]. To solve this 
problem, a mutual exclusion element (mutex) is added 
between the reader and writer, which avoid the conflict 
at l. 
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Figure 3 Petri Net for Writer 
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Figure 4 Petri Net for Reader 

 
 
4.1 David Cell (DC) 
 
 
A David Cell is built essentially around SR flip-flops, 
as shown in Figure 5. It represents the marking of the 
corresponding places in the Petri net. A place holding a 
token is represented by a DC with state 10 in the flip-
flop. State 01 associates with the absence of a token in 
place. 
 
The control logic of David Cell is shown in Figure 5, 
[7] gives a detailed explanation of this. 
 



4.2 SYNC Arbiter  
 

 
Figure 5 David Cell 

 
A SYNC arbiter, shown in Figure 6, is built from a 
mutex and an AND gate. When ck0 is low, both of the 
outputs are low. When ck0 becomes high, the outputs are 
determined by rbar. If rbar is high, rbar_1 gives a high 
signal; otherwise, rbar_0 becomes high. 
 

 
Figure 6 Implementation of SYNC Arbiter 

 
4.3 Implementation of Control Circuits 
 
 
The control circuits are split into a read side and a write 
side. Each of them is connected to the Mutex. 
 
The signal flow of the write side is illustrated in Figure 7. 
When a new data item is available, a write start signal 
comes to the first DC. The DC sends a permission to 
shared memory to write the data item into a certain slot. 
After writing, the Mutex receives a request signal from 
the second DC. The grant signal from the Mutex passes 
to the latch, which is used to store the current l. The 
completion signal from the latch is sent to SYNC abiters 
as ck0 in Figure 6. According to the current value of r, 
the SYNC arbiters determine which slot will be written 
next. With the third DC sending out a completion signal, 
the write cycle is completed. 
 
Figure 8 illustrates the signal flow of the read side. When 
a read access signal comes to the read side, the first DC 
passes it to the C elements. The circuit keeps waiting 
until l, from the write side, is not equal to r. A request is 
then sent to the Mutex. The grant signal from the Mutex 
is sent to a latch, which is used to store the current r. 
According to r, the data item in a particular slot is read. 

At the same time, a completion signal ‘read done’  
comes out. The read cycle is thus completed. 
 

 
Figure 7 Signal Flow of Write Side 

 

 
Figure 8 Signal Flow of Read Side 

 
The circuits in these two figures implement only one 
branch of Figure 3 and 4. The rest two branches can be 
implemented in the same way. In Figure 7, the first two 
DCs represent the two places before and after the 
transition “wr1(2, 3)”  The transition of wr1(2, 3) is 
implemented in the shared memory. The transition 
following wr1(2, 3)_done place is implemented by the 
circuits between second and third DCs. Figure 8 can be 
related to Figure 4 similarly. 
 
 
4.4 Implementation of the Data Path 
 
 

 
Figure 9 Structure of the Data Path 

 
The data path contains 4 D-latch sets, and one 
multiplexer, as shown in Figure 9. Each D-latch set is 
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made from 8 D-latches, which can pass 8 bits in parallel.  
When a wr_start, from the write side, comes to the data 
path, the D-latch set stores the data item and passes it to 
the output, which is connected to one of the inputs of the 
multiplexer set. Subsequently, a wr_done is delivered to 
the write side. 
 
The rd_starts are connected to the multiplexer set to 
control the link from its data inputs to outputs. The D-
latch set stores data from the multiplexer set and transfers 
it to the outputs. 
 
 
5. SIMULATION RESULTS 
 
 
Digital simulations of the circuit were carried out with 
the CadenceTM tool. Figure 10 shows the resulting 
waveform of one digital simulation. 
 

Figure 10 Result Waveforms 

 
In this sequence, after data items 39 and 42 were read by 
the reader, another read request arrived. The reader did 
not respond to the requests until new data items were 
available. During this period, the read_start stayed low. 
On the other hand, when the writer delivered the data 
items quickly, such as 3A to 3F, overwriting occurred 
(3B, 3E and 3F were overwritten). The time taken by the 
reader and writer outside the ACM was controlled by two 
independent random number generators written in 
Verilog. An exponential distribution was assumed and 
the same mean value was set for both w0 to wr and rd to 
r0. This gave enough variation for reader waiting and 
writer overwriting to appear. 
 
 
6. CONCLUSIONS AND FUTURE WORK 
 
 
Models and implementations of the 3-slot Signal have 
been presented introduced. The design maintains the 
properties of asynchronous systems. Apart from the 
conventional emphasis on ACMs, this design has the 
potential of providing freedom for the power-aware 
designer of heterogeneous systems, by allowing temporal 
and power decoupling of various kinds between active 
elements of a system. Since Message is the dual of Signal, 
the hardware design of a 3-slot Message can be 
developed in a similar way. 
 

More work needs to be done on the analogue 
simulation to obtain detailed information of the design, 
such as circuit sizes, timing properties and effects of 
metastability. Furthermore, applications of ACMs are 
to be investigated. 
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