
IMPLEMENTATION OF A THREE-SLOT SIGNAL ACM

F. Hao, A. Yakovlev, E. G. Chester, F. Xia, I. G. Clark* , D. Shang
School of Electrical, Electronic and Computing Engineering, Univ. of Newcastle upon Tyne, UK

*Also with School of Computing and Information Systems, Kinston University, UK

ABSTRACT

As important communication components of
asynchronous systems, the ACMs have been studied for
many years. A well known Pool using 4 data slots was
proposed by H. R. Simpson. However, under certain
assumptions, the number of slots in shared memory can
be reduced to 3. Mutex, David Cells and SYNCs are used
here to implement the 3-slot Signal. The design
performed well, maintaining all the required
asynchronous properties. It is also a potential building
block for the design of low-power heterogeneous systems.

Key words: ACM, Signal, Petri net, David Cell

1. INTRODUCTION

An Asynchronous data Communication Mechanism
(ACM) is a scheme, which manages the transfer of data
between two processes not necessarily synchronised for
the purpose of data transfer. The provider of data is
called the “writer” , and the user of data is referred to as
the “reader”. The general scheme of these kinds of data
communication mechanisms is shown as follows:

Figure 1 ACM Using Shared Memory and Possibly
Control Variables

1.1 Classification of ACMs

ACM protocols can be classified in different ways.
According to the number of slots in shared memory, they
could be 1-slot, 2-slot, 3-slot and 4-slot mechanisms [1].

Based on whether overwriting and re-reading are
permitted, ACMs can also be classified into 4 types [2],
as shown below.

TABLE 1 -Classification of ACMs

 NRR RR
NOW Channel Message
OW Signal Pool

In table 1, NRR stands for Non Re-Reading and NOW
means Non OverWriting. The names of “Channel” ,
“Signal” and “Pool” are retained from Simpson’s
classification system [3], which is based on the number
of items of data in the ACM and its modification by the
reader and writer accessing the ACM. “Message” is
introduced as the dual of “Signal” .

4-slot ACMs have been well studied and designed by
many researchers. However, under certain assumptions
of atomicity of statements, the slot number in shared
memory could be reduced to 3 while still maintaining
the main asynchronous properties [4]. This
implementation of the 3-slot Signal was based on those
studies.

2. ALGORITHM OF THE 3-SLOT SIGNAL

The algorithm of the 3-slot Signal can be found in [5]:

Figure 2 Algorithm of 3-Slot Signal

In Figure 2, the statements of wr and rd are the data
accesses, and the others are control variable statements
used to determine which slot is to be accessed by
reader and writer.

From the definition in table 1, Signal does not allow re-
reading, that is, when there are no new data items in
the shared memory, the reader will keep waiting until a
new one is available. This is the function of the r0
statement.

Reader Writer

Shared
memory

Control
variables

ACM

Writer:
 wr: write slot w;
 w0: l:=w;
 w1: w=differ (l, r);

Reader:
 r0: wait until (r!=l) r:=l;
 rd: read slot r;

For the writer side, the new data is stored in the slot
which is neither being read (r) nor just written (l). This is
performed by the ‘differ’ function in statement w1. In the
implementation, the differ function is defined according
to the following table:

TABLE 2 -Differ Function

l=1

r=1, 2 (r!=3) w=3

r=3 w=2

l=2

r=1 w=3

r=2, 3 (r!=1) w=1

l=3

r=1, 3 (r!=2) w=2

r=2 w=1

The differ function can then be constructed using 3
SYNC arbiters (see 4.2).

3. PETRI NET MODEL

To investigate the algorithm, Petri net models were built
and analysed.

Figure 3 shows the Petri net for the writer. The initial
state in the figure is w=1 and r!=1. When a write access
signal (write_start) comes, the token moves to the next
place from the initial one, which enables the transition
wr1. After the transition is fired, l is set according to w
(not shown in the Petri net), and w is determined by the
current value of r. The write cycle is finished with a
write_done signal sent back to the environment.

The process for the reader is similar to that for the writer.
The initial state in Figure 4 is r=2. When there is a
read_start signal, the reader decides the next step
according to the current value of l. If l is the same as r,
the reader keeps waiting. Otherwise, l is assigned to r,
such as the transition r21. Consequently, the data item in
slot r is read. With a read_done signal sent out, the read
cycle is finished.

4. IMPLEMENTATION

From the Petri net models mentioned, circuits were built.
The places in each Petri net were implemented by David
Cells, a kind of memory element [6]. The transitions
were certain processes between two David Cells.

Because the control variable l is shared by both reader
and writer, if the statements are non-atomic, it will cause

problems in some cases. When a consecutive pair of
statements w0 and w1 is executed between the start and
finish of r0, the 3-slot ACM fails both data coherence
and data freshness requirements [4]. To solve this
problem, a mutual exclusion element (mutex) is added
between the reader and writer, which avoid the conflict
at l.

wr3

wr2

wr2_done

w=2

wr1

w21

r!=1

w=1

w=1

wr1_done r=2

r=1

w23

w=3

w=3

wr3_done

write_start

w32

w=2

r!=2

w31

w13

r!=3

r=3

w12

Figure 3 Petri Net for Writer

rd1

done

r12

l=2

r=2 r=3

read_start

r=1

r32

r23

r=1

r13

l=3

r=2 r=3

done done
rd2

rd3
l=3

l=2

l=1

r21 r31

l=1

Figure 4 Petri Net for Reader

4.1 David Cell (DC)

A David Cell is built essentially around SR flip-flops,
as shown in Figure 5. It represents the marking of the
corresponding places in the Petri net. A place holding a
token is represented by a DC with state 10 in the flip-
flop. State 01 associates with the absence of a token in
place.

The control logic of David Cell is shown in Figure 5,
[7] gives a detailed explanation of this.

4.2 SYNC Arbiter

Figure 5 David Cell

A SYNC arbiter, shown in Figure 6, is built from a
mutex and an AND gate. When ck0 is low, both of the
outputs are low. When ck0 becomes high, the outputs are
determined by rbar. If rbar is high, rbar_1 gives a high
signal; otherwise, rbar_0 becomes high.

Figure 6 Implementation of SYNC Arbiter

4.3 Implementation of Control Circuits

The control circuits are split into a read side and a write
side. Each of them is connected to the Mutex.

The signal flow of the write side is illustrated in Figure 7.
When a new data item is available, a write start signal
comes to the first DC. The DC sends a permission to
shared memory to write the data item into a certain slot.
After writing, the Mutex receives a request signal from
the second DC. The grant signal from the Mutex passes
to the latch, which is used to store the current l. The
completion signal from the latch is sent to SYNC abiters
as ck0 in Figure 6. According to the current value of r,
the SYNC arbiters determine which slot will be written
next. With the third DC sending out a completion signal,
the write cycle is completed.

Figure 8 illustrates the signal flow of the read side. When
a read access signal comes to the read side, the first DC
passes it to the C elements. The circuit keeps waiting
until l, from the write side, is not equal to r. A request is
then sent to the Mutex. The grant signal from the Mutex
is sent to a latch, which is used to store the current r.
According to r, the data item in a particular slot is read.

At the same time, a completion signal ‘read done’
comes out. The read cycle is thus completed.

Figure 7 Signal Flow of Write Side

Figure 8 Signal Flow of Read Side

The circuits in these two figures implement only one
branch of Figure 3 and 4. The rest two branches can be
implemented in the same way. In Figure 7, the first two
DCs represent the two places before and after the
transition “wr1(2, 3)” The transition of wr1(2, 3) is
implemented in the shared memory. The transition
following wr1(2, 3)_done place is implemented by the
circuits between second and third DCs. Figure 8 can be
related to Figure 4 similarly.

4.4 Implementation of the Data Path

Figure 9 Structure of the Data Path

The data path contains 4 D-latch sets, and one
multiplexer, as shown in Figure 9. Each D-latch set is

Output data

DC DC DC

Mutex
Shared Memo

wr ite star t

Latch Latch

SYNC

l

r

wr ite done

Input data

DC

l

r

read star t

read done
DC DC DC

Comp Mutex C

Shared Memo

Latch

DC

D latch

D latch

D latch

Multiplex D latch

wr1 start

wr2 start

wr3 start

Data out

wr3 done

wr2 done Data in

rd1 start
rd2 start

rd3 start

rd1 done

rd2 done
rd3 done

wr1 done

made from 8 D-latches, which can pass 8 bits in parallel.
When a wr_start, from the write side, comes to the data
path, the D-latch set stores the data item and passes it to
the output, which is connected to one of the inputs of the
multiplexer set. Subsequently, a wr_done is delivered to
the write side.

The rd_starts are connected to the multiplexer set to
control the link from its data inputs to outputs. The D-
latch set stores data from the multiplexer set and transfers
it to the outputs.

5. SIMULATION RESULTS

Digital simulations of the circuit were carried out with
the CadenceTM tool. Figure 10 shows the resulting
waveform of one digital simulation.

Figure 10 Result Waveforms

In this sequence, after data items 39 and 42 were read by
the reader, another read request arrived. The reader did
not respond to the requests until new data items were
available. During this period, the read_start stayed low.
On the other hand, when the writer delivered the data
items quickly, such as 3A to 3F, overwriting occurred
(3B, 3E and 3F were overwritten). The time taken by the
reader and writer outside the ACM was controlled by two
independent random number generators written in
Verilog. An exponential distribution was assumed and
the same mean value was set for both w0 to wr and rd to
r0. This gave enough variation for reader waiting and
writer overwriting to appear.

6. CONCLUSIONS AND FUTURE WORK

Models and implementations of the 3-slot Signal have
been presented introduced. The design maintains the
properties of asynchronous systems. Apart from the
conventional emphasis on ACMs, this design has the
potential of providing freedom for the power-aware
designer of heterogeneous systems, by allowing temporal
and power decoupling of various kinds between active
elements of a system. Since Message is the dual of Signal,
the hardware design of a 3-slot Message can be
developed in a similar way.

More work needs to be done on the analogue
simulation to obtain detailed information of the design,
such as circuit sizes, timing properties and effects of
metastability. Furthermore, applications of ACMs are
to be investigated.

7. ACKNOWLEDGEMENT

This work is part of the Coherent project
(http://async.org.uk/coherent) at the Newcastle
University supported by the EPSRC grant
(GR/R32666).

8. REFERENCES

[1] Simpson, H.R., “Four-slot fully asynchronous
communication mechanism” , IEE Proc. Vol. 137, Pt.E,
No.1, PP.17-30, January 1990.

[2] Fei Xia, Alex V. Yakovlev, Ian G. Clark, Delong
Shang. "Asynchronous communication mechanisms:
classification and hardware implementations",
MPCS'02, Fourth International Conference on
Massively Parallel Computer Systems, sponsored by
Euromicro, 10-12 April 2002, Ischia, Italy.

[3] Simpson, H.R., Campbell, E., “Real-time network
architecture: principles and practice” , Proc.
AINT’2000, Asynchronous Interfaces: Tools,
Techniques and Implementations, p.5 and handouts,
TU Delft, The Netherlands, July 19-20, 2000.

[4] F. Xia, I. G. Clark. "Studying the three-slot
asynchronous communication mechanism", 7th UK
Asynchronous Forum, 20-21st December 1999,
University of Newcastle upon Tyne.

[5] Fei Xia, Ian Clark. "Algorithms for Signal and
Message Asynchronous Communication Mechanisms
and their Analysis", Volume 50, Number 2 (2002),
pp.205-222, Fundamenta Informaticae, IOS Press

[6] David, R. "Modular Design of Asynchronous
Circuits Defined by Graphs", IEEE Trans. on Comp.,
Vol. 26, No. 8, pages 727-737. August 1977.

[7] A. Yakovlev, F. Xia, D. Shang. "Synthesis and
Implementation of A Signal-Type Asynchronous Data
Communication Mechanism", Seventh Int. Symp. on
Asynchronous Circuits and Systems (Async'2001),
March 2001, Salt Lake City, Utah.

