Asynchronous Communicaionwithou Waiting:
from the Concept to the Hardware

Anthory C. Daviesand lan G. Clark
Department of Eledronic Engineaing, King's College London,
Strand, London,WC2R 2L S, England,

E-mail : tonydavies@ieeeorg, |IGClark@ieeorg

Abstract - A medhanism for wait-free @mmunicaions between asynchronous processes is
described and an implementation in hardware is diown. The description goes from basic
concepts through to the development of atraditional gate and flip-flop level design.

1 Introduction

Tedindogy is enabling implementation d single dips incorporating huge numbers of
independent high performance high-speed digital processors. Clock distribution dfficulties may
lead to less use of conventiona fully-synchronows designs and systems known as ‘GALS
(globally asynchronows locdly synchronows) communicaing asynchronowsly may become
popuar. In this context, wait-free @mmunicaions between writing and reading processes is
attradive.

If at al times the writer is to be free to write and the realer freeto read, with no mutual
interference or use of arbiters to control accessto shared memory, then at least four ‘slots’ are
nealed for halding the data items to be owmmunicaed. Several four-slot solutions have been
devised and at least one implemented for use in red-time systems|[1, 7.

2 Required behaviour of await-free ACM
Waiting is inherent in some forms of interprocess communicaions such as sria channels, bu
when accessng ‘reference data [3] there is no requirement for the reader to read every item
written provided that the ‘newest’ data is available to the reader. Many writes are dlowed
between two reads or many reals between two writes. The writer does not have to wait for the
reader and therefore may write & any time.
In any fully asynchronows multi-processor system a read and a write can partially or completely
overlap in time, which must never result in a simultaneous read from and write to the same
locaion. The ACM hasto be aleto avoid this by providing sufficient ‘slots’.
Threebehavioural properties must be satisfied:
(&) Coherence
Each dataitem istypicdly a multi-bit objea (for example an array or record) so the reader must
always obtain a mwherent item, as oppcsed to ore which is partly ‘old’ and pertly ‘new’.
(b) Sequentiality
Once adata item has been read, all ealier items are dfedively ‘out of date’. A ‘..new, dd,
new.. sequenceisincorred. If anitem has been read, subsequent reads must never accessany
previously written item.
(c) Freshness
A medanism could comply with the &owve two properties by repeaedly providing the reader
with the first item written. That is obviously unacceptable, so data wherence and sequencing are
necessary but not sufficient. The dataitems must be fresh (e.g. na ‘out of date’).
Simpson hes provided athorough dscusson o all threeproperties[7, §

3 Typical structureof an ACM

The writer and reader may be assumed embedded in endessloops, in which the writer prepares or
obtains a new data item and writes to the ACM, and the reader independently reals from the
ACM and wses the new data item.

Typicd ACM designs comprise slots for halding the data items in memory shared by writer and
reader, and control variables to ensure that writing and reading is direded to the corred dot.

4 Algorithmic description of atypical ACM
To ill ustrate the development of an implementation, a simple ACM design was chasen from a
number of aternatives [12], derived from a software-based scheme propcsed by Anderson and
Gouda [4] for creding an ‘atomic’ [5] dataarea The cre has been extraded and simplified to
form the basis for a wait-free ACM which is easily implemented in hardware. This ‘ Anderson-
Gouda’ ACM is gmilar to ore propcsed long before by Simpson [6].
There ae four dots, arranged conceptualy in two rows and two columns, addressed by using
array notation:

slot[row, column]
where row, column are eat binary (O or 1)
Shared (binary) control variables ensure that the writer can always write to an avail able slot and
the reader always reads from the slot with the most recently avail able data.
Successve writes with nointervening read use the same row and aternate mwlumn. Successve
reads with nointervening write use the same @lumn and row as the previous real (and d course
get the same data every time). For a strictly aternating write, read sequence, the dternate row
and alternate column is used for ead successve write and rea.
Informally, the processmay be described as foll ows:

Writer Process:
find which row the reader is’has been looking at and write to the oppasite row and write to the
oppaite wlumn o the previous write
update shared variables 0 that the reader can discover where the writing took dace
Reader Process:
find the dot of the last completed write and read from it

The Appendix shows a high-level ‘re-phrasing’ and simplificaion d the esentias of the
algorithm. Upper case denates a shared variable and lower case denotes a variable locd to reader
or writer. Z is a shared two-element array of type bit, SLOT is a two-dimensional four-element
array of type ‘dataitem’ and aher variables are dl single bits.

A further simplificaion is shown below, requiring 7 shared variables, so having a storage size
(space omplexity [4]) of 4b+7 hits (where b is the number of bitsrequired per dataitem).

Minimal algorithm description:
Writer Process:
wl: wp, walt := not RP, not walt
w2: SLOT[wp, walt] :=inpu
w3: Z[wp] :=walt

w4 WP :=wp
Reader Process;
rl: RP:=WP

r2. ralt:=Z[RP]
r3. output := SLOT[RP, ralt]

Step w1 of the write cycle is a concurrent operation; the two assignments may overlap or be in
either sequential order, and of course in the hardware implementation they can be truly
simultaneous.

At each write cycle, wp is made opposite to RP (to avoid the row of the latest reader activity) and
walt is made opposite to the previous walt (to alternate the writing column). After the write, WP
and Z[wp] are updated so that the reader can find the location of the most recent completed write.
At each read cycle, RP is set to WP and ralt is set to Z[RP] (respectively the row and column of
the last compl eted write.

Thus, RP indicates to the writer the row of the latest read activity (enabling the writer to avoid a
collision and hence to maintain coherence) while WP, Z[+] inform the reader of the location of the
latest completed write (so ensuring freshness). Fig. 1 illustrates the concept.

}» ralt

SLOT[0,0] SLOTI[0,1]
. walt |
mput (from output (to
writer | reader)
o= WP RP ~o0————————
| walt |
SLOT[1,0] SLOT[1,1]

}’ ralt

Figure 1. Concept diagram, showing the data flows

5 Hardwareimplementation

From the dgorithmic description a static-logic hardware implementation wsing D-type fli p-flops
and NAND gates may be developed dredly, as hown in Fig. 2. The two ‘switch’ blocks A and
B can be implemented with NAND gates as siown in Fig. 3. Finaly, Fig. 4 shows how the
control part is used to addressthe memory forming the slots.

The timing sequence of the instructions corresponds to the waveforms used to clock the flip-
flops. Of course, adua instruction time durations depend onthe processor and techndogy used.
A substantial delay can be expeded between successve writes to a ot (w2) and between
successve reads from a slot (r3). However, because of the aynchronism, nahing at al may be
asumed abou the relative timing of the reader and writer, so any r may overlap to any extent
with any w. For large data-objeds, the duration d w2 and r3 may be substantial, increasing the
probability that they will sometimes overlap in time.

For smplicity, the initialisation scheme is omitted: it just involves stting all flip-flops to a
desired initial state.

Using static logic would be unlikely in a modern high-speed CMOS chip; some form of skew-
tolerant multi-phase domino logic would be more likely. However, the implementation principles
would be similar.

6 Metastability Risks

In a data transfer between asynchronous processes, it is inevitable that occasionaly the set-up o
hold times of latches will not be complied with, which may result in a metastable transient
[9,10,13. The small probability of metastability canna be ruled out in an asynchronots transfer.
It is most unlikely in the data transfer path because of the @ntrol-variable steaing but must be

alowed for in some ontrol variables and nd lead to fallure of any of the three behavioural
properties.

Fig. 2 shows where metastability could arise in the @ntrol variables. Threeflip-flops (wp, RP,
ralt) are vulnerable because they are docked from one processwhil e their data-input comes from
the other process Since writer and realer timing is independent, no guarantee ca be given that
the set-up and hdd times of these flip-flops will aways be complied with. Our preliminary
anaysis indicaes that the required behavioural properties are maintained with metastability of
any one variable in the control algorithm provided that the metastable transient has sttled to its
final value (old o new value) before the value is used. This implies an upper limit to the
exeaution rate of the writer and reader instructions.

7 Conclusions

Many wait-free ACM propasals are difficult to fully understand from the original descriptions.
Few consider implementation at the hardware level. The example shows how a high-level
description may be transformed into a straightforward implementation. An incressed need for
such ACMs in red-time systems sans likely becaise of a trend towards ‘GALS' integrated
circuits[13].

Acknowledgement
The U.K. EPRCisthanked for financial suppat (Grant No. GR/L9247))

References

[1] Smpson H.R. ‘Four-got fully asynchronowus communicaion mechanism’, |IEE Procealings,
Part E, Computers andDigital Techniques, 1990, 37, 1730

[2] Campbell E. ‘DIA temporal charaderistics and their experimenta verificaion', British
AerospaceDefence Dynamics Ltd., Univ. of York, Admira Management Services, 1992

[3] SmpsonH.R.’The Mascot Method IEE Sdtware Engineeing Journal, 1986,.1, 103.20

[4] Anderson J.H. and Gouda M.G. ‘A Criterion for Atomicity’, Formal Aspeds of Computing,
1992, 4, 27298

[5] Lamport L. ‘On Interprocess Communicdion. |. Basic Formalism and Il. Algorithms',
Distributed Computing, 1986, 1, 77101

[6] Simpson H. ‘Fully Asynchronows Communicaion’ |EE Colloguumon MASCOT in Real-time
Systems, London, 12May 1987, 21-2/6

[7] Simpson H.R. ‘New algorithms for asynchronows communication’, IEE Procealings, Part E,
Computers andDigital Tedhniques, 1997, 144, 22-231

[8] Simpson H.R. ‘Correaness analysis for classof asynchronous communicaion medanisms’,
IEE Procedalings, Part E, Computers and Digital Techniques, 1992, 139, 3519

[9] Chaney T.J., Molnar C.E. ‘Anomalous Behaviour of Synchroniser and Arbiter Circuits', IEEE
Trans, 1973,C-22, 421422

[10] Seitz C.L. ‘System Timing' in Mea C. and Conway, L. Introdwction to VLS Systens,
Addison Wesley, 1980, 21862

[11] Kinniment D.J., Yakoviev A. and Gao B. ‘Metastable behaviour and system performance
Proc. 2nd UK Forum on Asynchronows Systems, Department of Computing Science,
University of Newcastle uponTyne, July 1997

[12] Clark 1.G., Davies A.C. ‘A Comparison d some wait-free Communicaions Medanisms',
Proc. Wksp on Asynchronows Interfaces. Tods, Tedniques and Implementations
(AINT 2000, 12h-20th July 2000,Delft, Netherlands, 23-29.

[13] Davies A.C. ‘Reasons, Protocols and Medanisms for Communicaing Asynchronously
between Digital Processes— A Tutorial Review’, to be presented at SCS’01, Iasi, Romania, 10-
12 July 2001

Appendix Essentialsof a (4b+9) ACM algorithm derived from Anderson and Gouda

mechani sm Ander son_Gouda_f our _sl ot

SLOT: array[bit,bit] of data :

is

((null,null),(null,null));

Z : array[bit] of bit := (0, 0);
W, RP : bit := 0, O;
procedure wite(item: in data) is
d, wp, walt bit :=0, 0, O;
begi n
d := RP;
wp, walt := not d, not walt;
SLOT[wp, walt] :=item
Z[wp] = walt;
WP : = wp;
end wite;
function read return data is
ralt, rp: bit := 0, O;
begi n
rp .= W
RP = rp;
ralt := Z[rp];
return SLOT[rp, ralt];
end read;
end Ander son_Gouda_four_sl ot;
slot address a0, al for write
,_“ B i
1 A wia 5
[{ - | B witer | w2
N I z[v - ode A
°Q “\N3 < o o— slot 5 5
wl fo | walt 4 ralt i [wal_
\ D Q 1 dc address
[: Z[1] r2 a0, al ; :
: < ! for reater __| rl
! RP read cyde [r2]
P QI wp |DQWPDQ g - el
C C —|c 1 5
w4 ri
Fig. 22 Hardware implementation
Z[0] ; B
Z1 | Z[0]. RP+ Z[1].not RP datain data out
dual
RP address 1 > address 2
az2-aN port a2-aN
210] memory i—
D[0] write-slot al— «——al read-slot
| address a0— a0 address
walt A) 3
] w cs cs r
D[1] ‘l_;: R/not W R/not W ::I_
Z[] wp Port 1 Port 2

Fig. 3: Detail of ‘switches’ A,BinFig.2 Fig.4: Memory addressng scheme to accessthe slots

