
Asynchronous Communication without Waiting:
from the Concept to the Hardware

Anthony C. Davies and Ian G. Clark

Department of Electronic Engineering, King’s College London,
Strand, London, WC2R 2LS, England,

E-mail : tonydavies@ieee.org, IGClark@iee.org

Abstract - A mechanism for wait-free communications between asynchronous processes is
described and an implementation in hardware is shown. The description goes from basic
concepts through to the development of a traditional gate and flip-flop level design.

1 Introduction
Technology is enabling implementation of single chips incorporating huge numbers of
independent high performance high-speed digital processors. Clock distribution diff iculties may
lead to less use of conventional fully-synchronous designs and systems known as ‘GALS’
(globally asynchronous locally synchronous) communicating asynchronously may become
popular. In this context, wait-free communications between writing and reading processes is
attractive.
If at all times the writer is to be free to write and the reader free to read, with no mutual
interference or use of arbiters to control access to shared memory, then at least four ‘slots’ are
needed for holding the data items to be communicated. Several four-slot solutions have been
devised and at least one implemented for use in real-time systems [1, 2].

2 Required behaviour of a wait-free ACM
Waiting is inherent in some forms of interprocess communications such as serial channels, but
when accessing ‘reference data’ [3] there is no requirement for the reader to read every item
written provided that the ‘newest’ data is available to the reader. Many writes are allowed
between two reads or many reads between two writes. The writer does not have to wait for the
reader and therefore may write at any time.
In any fully asynchronous multi -processor system a read and a write can partially or completely
overlap in time, which must never result in a simultaneous read from and write to the same
location. The ACM has to be able to avoid this by providing suff icient ‘slots’ .
Three behavioural properties must be satisfied:
(a) Coherence

Each data item is typically a multi -bit object (for example an array or record) so the reader must
always obtain a coherent item, as opposed to one which is partly ‘old’ and partly ‘new’ .

(b) Sequentiality
Once a data item has been read, all earlier items are effectively ‘out of date’ . A ‘ ..new, old,
new..’ sequence is incorrect. If an item has been read, subsequent reads must never access any
previously written item.

(c) Freshness
A mechanism could comply with the above two properties by repeatedly providing the reader
with the first item written. That is obviously unacceptable, so data coherence and sequencing are
necessary but not suff icient. The data items must be fresh (e.g. not ‘out of date’) .

Simpson has provided a thorough discussion of all three properties [7, 8]

3 Typical structure of an ACM
The writer and reader may be assumed embedded in endless loops, in which the writer prepares or
obtains a new data item and writes to the ACM, and the reader independently reads from the
ACM and uses the new data item.
Typical ACM designs comprise slots for holding the data items in memory shared by writer and
reader, and control variables to ensure that writing and reading is directed to the correct slot.

4 Algorithmic description of a typical ACM
To ill ustrate the development of an implementation, a simple ACM design was chosen from a
number of alternatives [12], derived from a software-based scheme proposed by Anderson and
Gouda [4] for creating an ‘atomic’ [5] data-area. The core has been extracted and simpli fied to
form the basis for a wait-free ACM which is easily implemented in hardware. This ‘Anderson-
Gouda’ ACM is similar to one proposed long before by Simpson [6].
There are four slots, arranged conceptually in two rows and two columns, addressed by using
array notation:

slot[row, column]
where row, column are each binary (0 or 1)
Shared (binary) control variables ensure that the writer can always write to an available slot and
the reader always reads from the slot with the most recently available data.
Successive writes with no intervening read use the same row and alternate column. Successive
reads with no intervening write use the same column and row as the previous read (and of course
get the same data every time). For a strictly alternating write, read sequence, the alternate row
and alternate column is used for each successive write and read.
Informally, the process may be described as follows:

Writer Process:

find which row the reader is/has been looking at and write to the opposite row and write to the
opposite column of the previous write

update shared variables so that the reader can discover where the writing took place
Reader Process:

find the slot of the last completed write and read from it

The Appendix shows a high-level ‘re-phrasing’ and simpli fication of the essentials of the
algorithm. Upper case denotes a shared variable and lower case denotes a variable local to reader
or writer. Z is a shared two-element array of type bit, SLOT is a two-dimensional four-element
array of type ‘data item’ and other variables are all single bits.
A further simpli fication is shown below, requiring 7 shared variables, so having a storage size
(space complexity [4]) of 4b+7 bits (where b is the number of bits required per data item).

Minimal algorithm description:

Writer Process:
w1: wp, walt := not RP, not walt
w2: SLOT[wp, walt] := input
w3: Z[wp] := walt
w4: WP := wp

Reader Process:
r1: RP := WP
r2: ralt := Z[RP]
r3: output := SLOT[RP, ralt]

Step w1 of the write cycle is a concurrent operation; the two assignments may overlap or be in
either sequential order, and of course in the hardware implementation they can be truly
simultaneous.
At each write cycle, wp is made opposite to RP (to avoid the row of the latest reader activity) and
walt is made opposite to the previous walt (to alternate the writing column). After the write, WP
and Z[wp] are updated so that the reader can find the location of the most recent completed write.
At each read cycle, RP is set to WP and ralt is set to Z[RP] (respectively the row and column of
the last completed write.
Thus, RP indicates to the writer the row of the latest read activity (enabling the writer to avoid a
collision and hence to maintain coherence) while WP, Z[•] inform the reader of the location of the
latest completed write (so ensuring freshness). Fig. 1 illustrates the concept.

input (from
writer

output (to
reader)

SLOT[0,0] SLOT[0,1]

SLOT[1,0]

SLOT[1,1]

wp

walt

walt

ralt

ralt

RP

Figure 1: Concept diagram, showing the data flows

5 Hardware implementation
From the algorithmic description a static-logic hardware implementation using D-type flip-flops
and NAND gates may be developed directly, as shown in Fig. 2. The two ‘switch’ blocks A and
B can be implemented with NAND gates as shown in Fig. 3. Finally, Fig. 4 shows how the
control part is used to address the memory forming the slots.
The timing sequence of the instructions corresponds to the waveforms used to clock the flip-
flops. Of course, actual instruction time durations depend on the processor and technology used.
A substantial delay can be expected between successive writes to a slot (w2) and between
successive reads from a slot (r3). However, because of the asynchronism, nothing at all may be
assumed about the relative timing of the reader and writer, so any r may overlap to any extent
with any w. For large data-objects, the duration of w2 and r3 may be substantial, increasing the
probabilit y that they will sometimes overlap in time.
For simplicity, the initialisation scheme is omitted: it just involves setting all flip-flops to a
desired initial state.
Using static logic would be unlikely in a modern high-speed CMOS chip; some form of skew-
tolerant multi -phase domino logic would be more likely. However, the implementation principles
would be similar.

6 Metastability Risks
In a data transfer between asynchronous processes, it is inevitable that occasionally the set-up or
hold times of latches will not be complied with, which may result in a metastable transient
[9,10,11]. The small probabilit y of metastability cannot be ruled out in an asynchronous transfer.
It is most unlikely in the data transfer path because of the control-variable steering but must be

allowed for in some control variables and not lead to failure of any of the three behavioural
properties.
Fig. 2 shows where metastabilit y could arise in the control variables. Three flip-flops (wp, RP,
ralt) are vulnerable because they are clocked from one process while their data-input comes from
the other process. Since writer and reader timing is independent, no guarantee can be given that
the set-up and hold times of these flip-flops will always be complied with. Our preliminary
analysis indicates that the required behavioural properties are maintained with metastabilit y of
any one variable in the control algorithm provided that the metastable transient has settled to its
final value (old or new value) before the value is used. This implies an upper limit to the
execution rate of the writer and reader instructions.

7 Conclusions
Many wait-free ACM proposals are diff icult to fully understand from the original descriptions.
Few consider implementation at the hardware level. The example shows how a high-level
description may be transformed into a straightforward implementation. An increased need for
such ACMs in real-time systems seems likely because of a trend towards ‘GALS’ integrated
circuits [13].

Acknowledgement
The U.K. EPSRC is thanked for financial support (Grant No. GR/L92471)

References
[1] Simpson H.R. ‘Four-slot fully asynchronous communication mechanism’ , IEE Proceedings,

Part E, Computers and Digital Techniques, 1990, 37, 17-30
[2] Campbell E. ‘DIA temporal characteristics and their experimental verification’ , British

Aerospace Defence Dynamics Ltd., Univ. of York, Admiral Management Services, 1992
[3] Simpson H.R. ’The Mascot Method’ IEE Software Engineering Journal, 1986,.1, 103-120
[4] Anderson J.H. and Gouda M.G. ‘A Criterion for Atomicity’ , Formal Aspects of Computing,

1992, 4, 273-298
[5] Lamport L. ‘On Interprocess Communication. I. Basic Formalism and II. Algorithms’ ,

Distributed Computing, 1986, 1, 77-101
[6] Simpson H. ‘Fully Asynchronous Communication’ IEE Colloquium on MASCOT in Real-time

Systems, London, 12 May 1987, 2/1-2/6
[7] Simpson H.R. ‘New algorithms for asynchronous communication’ , IEE Proceedings, Part E,

Computers and Digital Techniques, 1997, 144, 227-231
[8] Simpson H.R. ‘Correctness analysis for class of asynchronous communication mechanisms’ ,

IEE Proceedings, Part E, Computers and Digital Techniques, 1992, 139, 35-49
[9] Chaney T.J., Molnar C.E. ‘Anomalous Behaviour of Synchroniser and Arbiter Circuits’ , IEEE

Trans, 1973, C-22, 421-422
[10] Seitz C.L. ‘System Timing’ in Mead C. and Conway, L. Introduction to VLSI Systems,

Addison Wesley, 1980, 218-262
[11] Kinniment D.J., Yakovlev A. and Gao B. ‘Metastable behaviour and system performance’

Proc. 2nd UK Forum on Asynchronous Systems, Department of Computing Science,
University of Newcastle upon Tyne, July 1997

[12] Clark I.G., Davies A.C. ‘A Comparison of some wait-free Communications Mechanisms’ ,
Proc. Wksp on Asynchronous Interfaces: Tools, Techniques and Implementations
(AINT’2000), 19th-20th July 2000, Delft, Netherlands, 23-29.

[13] Davies A.C. ‘Reasons, Protocols and Mechanisms for Communicating Asynchronously
between Digital Processes – A Tutorial Review’ , W ����� SUHVHQWH � D � 6&6¶����,DúL��5RPDQLD����-
12 July 2001

Appendix Essentials of a (4b+9) ACM algorithm derived from Anderson and Gouda

mechanism Anderson_Gouda_four_slot is

 SLOT:array[bit,bit] of data := ((null,null),(null,null));
 Z : array[bit] of bit := (0, 0);
 WP, RP : bit := 0, 0;
 procedure write(item : in data) is
 d, wp, walt : bit := 0, 0, 0;
 begin
 d := RP;
 wp, walt := not d, not walt;
 SLOT[wp, walt] := item;
 Z[wp] := walt;
 WP := wp;
 end write;
 function read return data is
 ralt, rp : bit := 0, 0;
 begin
 rp := WP;
 RP := rp;
 ralt := Z[rp];
 return SLOT[rp, ralt];
 end read;
end Anderson_Gouda_four_slot;

 slot address a0, a1 for write

slot
address
a0, a1

for
read

A

B
Z[0]

Z[1] r2

r1 w4

w3
w1 walt ralt

RP
wp WP

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

Fig. 2: Hardware implementation

Fig. 3: Detail of ‘ switches’ A, B in Fig. 2 Fig. 4: Memory addressing scheme to access the slots

writer
cycle

reader
cycle

w1
w2

w4

r1

r2

r3

w3

A

D [0]

D [1]

w alt

w pZ [1]

Z [0]

Z [0]

Z [1]

B

RP

Z [0] . RP+ Z [1] .n o t RP

address 2
a2-aN

address 1
a2-aN

data outdata in

dual
port

memory
a1 read-slot
a0 address

write-slot a1
address a0

CS

R/not W

CS

R/not W

w2 r3

Port 1 Port 2

