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Abstract 

This paper investigates the performance of moving average rule in an emerging market context, 
namely that of the Jordanian stock market. The returns from trading strategies based on various 
moving average rules are examined.  The results show that technical trading rules can help to 
predict market movements, and that there is some evidence that (short) rules may be profitable 
after allowing for transactions costs, although there are some caveats on this.  Sensitivity 
analysis of the impact of transaction costs is conducted and standard statistical testing is 
extended through the use of bootstrap techniques.  The conditional returns on buy or sell signals 
from actual data are compared to the conditional returns from simulated series generated by a 
range of models (random walk with a drift, AR (1), and GARCH-(M)) and the consistency of the 
general index series with these processes is then examined.  
 

 

1. INTRODUCTION 

This paper examines the performance of moving average trading rules when these are 

applied to the Index return on the Jordanian Stock market (ASE) [Amman Stock 

Exchange].  This form of technical analysis is extremely popular amongst 

practitioners and has been extensively studied in the academic literature (e.g. Neill 

(1931), Schabacker (1930), Gartley (1930), Caslow (1966), LeBaron (1990), Brock, 

Lakonishok and LeBaron (1992), Roberts (1959), Brealey (1969), Fama and Blume 

(1966) and Jensen and Benington (1970)).1 Much of this early work focussed on 

major stock markets such as the NYSM, but more recently there have been several 

studies of emerging markets.  For example, Renter and Leal (1999) examined the 

potential profit of technical trading strategies among 10 emerging equity markets of 

Latin American and Asia, technical trading strategies found to be profitable for some 

markets, others were not. Bessembinder and Chan (1995) found similarly mixed 

results for Asian stock markets.  

 

One might expect that Technical analysis might well ‘work’  rather better in emerging 

markets and there is some evidence that this is in fact the case. Harvey (1995) 

concluded that the autocorrelation in emerging markets is much higher than in 

developed markets, hence the profitability of technical trading rules in emerging 

markets is more likely  to produce significant results. (See also Bekaert and Harvey 

                                                
1 Whilst some forms of technical analysis can be viewed as ‘ art’  or ‘subjective judgement’ , the advent 
of computerised trading systems has led to great interest by practitioners in technical trading rules 
which can be programmed and hence automated - and this motivates the question of whether it is 
possible to earn abnormal profits by the use of such rules.    
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(1995) Bekaert and Harvey (1997), Claessens, Dasgupta, and Glen (1995), Campbell 

(1996), Jochum, Kirchgassner and Platek (1999)). 

 

The aim of the present paper is to add a further case study to this developing strand in 

the literature to examine to what extent the ASE behaves in similar ways to these 

other markets.2  Of course, many of the earlier  studies (such as Brock, Lakonishok 

and LeBaron (1992)) ignored transaction costs, costs that can be critical  when 

considering the performance of alternative forms of trading rule. For example, 

Alexander’s (1961) study of Technical Analysis suggested many technical strategies 

could be quite profitable. However, when Alexander (1964) replicated the earlier 

study, after adjusting for transactions costs, there was only minimal evidence of 

profitability. For the ASE, over the period under consideration, transactions costs 

have varied to some extent, and of course there is some variability depending on who 

effects the trade and how much is traded.  In studying the trading rules, we have 

chosen to conduct a sensitivity analysis regarding these trading costs by examining 

how the results are affected by assuming  ‘average’, ‘upper’  and ‘ lower’  bounds to 

these costs.3. 

  

Technical analysis is considered one of the original tools of investment analysis, and 

has been a part of financial practice dating back to the 1800s. It attempts to forecast 

prices by detecting patterns in stock prices. Technical analysis is used to examine the 

efficient market hypothesis by investigating predictability of equity returns from past 

returns. Some studies (e.g. Chopra, Lakonishok, and Ritter (1992) , and Fama and 

French (1986)) found negative serial correlations in returns, while other studies found 

negative serial correlations in first lags and positive correlations in longer lags (e.g. 

Jegadeesh (1990)).  Predictability of stock returns, manifest in various forms of stock 

market anomaly (such as the size effect, the turn-of-the-year effect, the weekend 

effect, earning/price (E/P) effect, and the momentum effect) was viewed in the early 

                                                
2 Adding further case studies is also beneficial given that emerging markets by definition have shorter 
data series in comparison with developed markets. 
3 In the ASE, an individual can access the market directly by incurring a variable (fixed percentage) 
transaction cost for each contract (unlike many other markets where individuals use an agent and pay a 
fixed fee. Brokers receive commissions calculated on the basis of the market value of both buying and 
selling transactions of the security. The lower limit for the commissions is 5.4 JD per thousand and the 
upper limit is 7.4 JD per thousand (see http://www.ase.com.jo/). 
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literature as evidence of stock market inefficiency.  More recently, the concept of 

market efficiency has been increasingly refined, and other explanations developed (for 

example, time-varying equilibrium returns, non-linear generating processes (see 

Neftci (1991), Hsieh (1991), Hsieh (1995), Antoniou, Ergul, and Holmes (1997), and 

Brorsen and Yang (1994) ). 

 

Whilst early studies often found Technical analysis to be ineffective, much of the later 

work has found some value in it.  For example, the Fama and Blume (1966) study of 

the Dow 30 in the late 1950s found no profits even for the best  rule after adjusting for 

transaction costs whilst the later study by Sweeney (1988), based on the same sample 

of stocks but for a later period, concluded that mechanical trading rules did have  

profit potential. Recent work has often found that technical analysis can be  an 

effective means for extracting information from market prices (see for example Pruitt 

and White (1988), Neftci (1991), Brock, Lakonishok and LeBaron (1992), Neely, 

Weller, and Dittmar (1997), Neely and Weller (1999), Chang and Osler (1994), and 

Osler and Chang (1995). 

 

The first object of the paper is to study, in this emerging market, the extent to which 

alternative moving average trading rules forecast future prices and hence can be 

profitable. The results of this part of the study generally suggest that technical 

analysis helps predict stock price changes in the ASE, with the returns during buy 

periods being larger than returns during sell periods. However, after accounting for 

transaction costs, taking the moving average rules as a whole (averaging across all the 

rules), they do not yield significant profit. On the other hand, the average performance 

of the trading rules actually masks weak performance by ‘ long rules’  and superior 

performance for particular ‘ short rules’ , which do appear to be profitable. However, 

these results are based on test statistics which may be unreliable in the face of non-

normality of the underlying return distribution.  The second objective of the paper is 

to take some account of this by studying the performance of the trading rules under 

alternative specifications for the underlying generating process (namely, random 

walk, AR1, GARCH-M). In each case, the model is fitted to the original data – and 

the residuals from that model are used in a bootstrap methodology as developed by 

Efron (1979), Freedman and Peters (1984), Efron and Tibshirami (1986), and Brock, 
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Lakonishok and Lebaron (1992).  The bootstrap technique can be used to generate 

trading rule returns for any given model of the underlying generating process. The 

comparison between returns from simulated series and those for the actual series 

reveals that actual trading profits are not consistent with those that would be generated 

using a random walk or AR(1) model (i.e. in both cases, average returns from the 

trading rules lie in the tails of the simulated distribution), but are consistent for most 

(but not all) trading rules with a GARCH-M model (there is inconsistency for some 

‘short rules’  for ‘Buy’  strategies).  Across all the rules, the GARCH-M model 

performs well in terms of forecast volatility.  

 

The remainder of the paper is structured as follows: Section 2 describes the data and 

technical trading rules; Section 3 gives empirical results obtained from applying 

trading rules; Section 4 describes the bootstrap methodology; Section 5 gives 

empirical results obtained from bootstrap simulations, and Section 6 concludes by 

summarising the main findings.  

 

2.  DATA AND TECHNICAL TRADING RULES 

The Amman Stock Market Index: 

The data series used is the daily General index of Amman stock market from 1/1/1992 

to 30/7/2001.  The period of the study commences at 1/1/1992 because this is the date 

at which the Amman Stock Exchange (ASE) changed the way of calculation for the 

Price Index (from unweighted to market capitalization weighted). A base value of 100 

points on December 31st, 1991 was stipulated for the new Weighted Price Index4. 

 

The ASE indices are calculated using the latest closing prices and published on a daily 

basis. It is composed of 60 companies listed on the ‘Regular Market’ , the selection of 

these companies being based on the following five criteria which represent the 

companies' size and liquidity: (i) market capitalization (ii) days traded, (iii) turnover 

                                                
4 An anonymous referee raised the question of whether the results were similar if, instead of using the 
ASE index, the ‘S&P’  Jordanian Index (as can be obtained from Datastream for example) was used.  
The ASE index was preferred in this study since this series is longer and more complete (for example, 
daily data for the S&P Jordanian index before 1995 is not available).  However, it is possible to make a 
comparison by selecting a common set of data points for the two series and running the analysis in 
parallel for each index.  The results were indistinguishable (in terms of parameter estimates, t-statistics 
etc. and hence conclusions).  In what follows, only the results for the longer ASE series are reported. 
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ratio, (iv) value traded and (v) the number of shares traded.  The number of companies 

included in the index sample was increased to 70 companies at the beginning of 

August, 2001, hence the choice of end date for the analysis. Within the period, the 

ASE index has been adjusted to maintain its continuity and to safeguard it from 

exceptional events. 5  

The Moving Average Trading Rule 

The moving average rule is one of the most widely used in technical analysis (see for 

example de Jong and Penzer(1998), Gencay and Sangos(1997), Liu and Mole(1998), 

Gencay(1998), Neely and Weller(1999), Ojah and Karemera(1999), Ratner and 

Leal(1999), Szakmary, Davodson and Schwarz(1999), Couts and Cheung(2000), and 

Goodacre and Kohn-Speyer(2001)). The standard moving average rule, which utilizes 

the price line and the moving average of price, generates buy/sell signals is well 

explained in Gartley (1935) as follows: 

“In an uptrend, long commitments are retained as long as the price 
trend remains above the moving averages. Thus, when the price trend 
reaches a top, and turns downward, the downside penetration of the 
moving average is regarded as a sell signal…. Similarly, in a 
downtrend, short   positions are held as long as the price trend remains 

                                                                                                                                       
 
5 The index is calculated using the Paasche method.  The general formula for the index (t ) is: 

Index (t) = (Mt/Bt)*100 
Bt = Bt-1* (Mt/Mad) 
Mad =  Mt - It - Nt++  Qt-1 

where, 
Index (t) : Index at time t 
Bt  : base value of Index 
Mt  : market capitalization of constituents at time t ( the sum of the market capitalization 

of all stocks included in the index) 
Mad  : adjusted market capitalization at time t. The adjustments are done for new issues of 

shares,   and the addition or deletion of constituents 
I t   : market capitalization of new shares issued by a company included in the index and 

listed at time t 
Nt  : market capitalization of the company added to the index at time t 
Qt-1  : market capitalization of the company at time (t-1) which deleted of the index at 

time t 
The base value Bt is an adjusted base (market capitalization) which is not the real market capitalization 
at the base period.  At 1/1/1992 the Index = 100 and the market capitalization = base value of the index 
No adjustment is made, however, in case of a stock split, bonus shares (stock dividend) and a decrease 
in paid-in capital, since such corporate actions do not affect the current market capitalization. Thus, 
adjustments are done for any changes in index constituents or any corporate action affecting the market 
capitalization on index stocks. This can be achieved by using the adjustment factor Mad. Without any 
adjustments, such changes would cause sudden and sharp movements of the index value which would 
not reflect the market's actual behavior. Non-periodic adjustments are made for stocks whose trading is 
halted for a long time or permanently. 
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below the moving average. Thus, when the price trend reaches a 
bottom, and turns upward, the upside penetration of the moving 
average is regarded as a buy signal”   
 

There are numerous variations and modifications that can be applied to this rule. In 

this study, two moving averages are used to generate trading signals. Buy and sell 

signals are generated by crossovers of a long moving average (calculated over L days) 

by a short moving average (S days, where S L< ).  That is, the buying signal is 

generated when the short-period moving average moves higher than the long-period 

moving average: 

1
1 1

S L

t s t l
s

P P
Buyat time t

S L

− λ
λ

− − −
= => �

� �

   (1) 

where Pt is the price at time t.  Sell signals are generated when the inequality is 

reversed: that is, 

1
1 1

S L

t s t l
s

P P
Sell at time t

S L

− λ
λ

− − −
= =< �

� �

 

The empirical work examines a range of moving averages for the short and long 

periods ( 1,5S =  whilst 2,5,10,25,50,100,150,200L = days). This range covers all the 

moving average rules typically used in practice; perhaps the most popular of these 

rules is the 1-200 rule ( 1, 200S L= = ), where the short period is one day and the long 

period is 200 days (Brock, Lakonishok and Lebaron (1992)). The shorter the period 

covered by the moving average, the closer it follows the market and the longer the 

period of the moving average, the more it smooths market fluctuations.  Thus for 

example the rule with 1S =  is very responsive, in that whenever the actual return 

rises above (below) the moving average, the signal is to buy (sell). 

 

3. EMPIRICAL RESULTS: TRADITIONAL TESTS 

Summary Statistics 

Summary statistics for the ASE index are presented in Table 1, and for comparison 

purposes, parallel results for the S&P500. The return is calculated as log differences 

of the index level and thus excludes dividend yields. Non-normality in returns is 

manifest, as expected. Whilst the average return on the ASE over the time period 
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1992-2001 is about one third that of the S&P, its variance is somewhat less.  This is 

an interesting observation in its own right; most emerging markets manifest higher 

volatility than established markets. Kurtosis is comparable, but skewness lies in the 

opposite direction to that commonly manifest by stock markets. Perhaps the most 

significant feature is that, in contrast to the S&P500, in the ASE, there is significant 

first order autocorrelation (the partial autocorrelation coefficient value of 0.26648 is 

massively significant).  This indicates that stock prices in the ASE are to an extent 

predictable on the basis of past price history.  The fall away in the partial 

autocorrelation coefficients after lag 1 is also suggestive that the underlying 

generating process for the ASE might be characterised as AR1 (this is studied in 

section 3 below).    

Table 1 here 

 

The moving average rules: 

Table 2 shows results for fourteen alternative rules. The rules differ in the length set 

for the short and long period averages. For example, (5,150) denotes that the short 

average is 5 days and the long average is 150 days. The entire sample is divided into 

buy and sell periods, depending on the relative position of the moving averages. This 

rule imitates a trading strategy where the trader buys when the short moving average 

penetrates the long from below and stays in the market until the short moving average 

penetrates the long moving average from above, after which the trader moves out of 

the market or sells short. 

 

The number of buy and sell signals reported during the sample showed in Table 2 as 

N (Buy) and N (Sell). The daily mean of buy and sell periods are reported in columns 

4 and 5 along with the corresponding t_statistic. The latter examines the difference 

between the unconditional mean (0.000154 as shown in Table 1) and the conditional 

mean for buy and sell periods in order to investigate any predictability for the trading 

rules. The t_statistic for buys calculated as  
2/122 )//( b

b

NN σσ
µµ

+
−

 , where µb  and Nb 

are the mean return and number of signals for the buys, and µ and N are the 
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unconditional mean and number of observations.6 The estimated variance for the 

entire sample is denoted as �
2. The t_statistic for sells is calculated similarly by using 

µs  and Ns  as the mean return and number of signals for the sells instead of µb  and Nb. 

 

In columns 6 and 7, the fraction of buy and sell returns greater than zero are reported. 

The last column lists the differences between the mean daily buy and sell returns with 

corresponding t_statistic, calculated as
2/122 )//( sb

sb

NN σσ
µµ

+
−

.  These three  t-

statistics can be used to test the null hypotheses that a trading strategy based on (a) 

buy signals is no different from the unconditional mean, (b) for sell signals, it is no 

different from the unconditional mean, and (c) for buys-sells, it is no different from 

the unconditional mean.   The point is that, if technical analysis does not have any 

power to forecast price movements, then the returns on days when the rules emit buy 

signals should not differ appreciably from returns on days when the rules emit sell 

signals, and this should show up in insignificant t-statistics.   

 

Of course, the t-statistics reported in Table 1 are only ‘ indicative’  of statistical 

significance; the actual distribution of the reported “ t-statistics”  is actually unknown, 

given the manifest non-normality of the return distribution for the ASE index.7  A 

bootstrap methodology can be used to derive empirical distributions for these test 

statistics. This in itself is not a complete solution of course, since to apply the 

bootstrap requires assumptions regarding the underlying generating process.  In the 

next section, the relative performance of a range of popular generating processes is 

examined.   

 

Table 2 here 

 

Table 2 gives results when transaction costs are ignored.  As shown in Table 2 the 

number of buy and sell signals generated are fairly similar for all trading rules. In 

columns 4 and 5, the buy returns are all positive with an average one-day return of 

                                                
5.  � 2 is the estimated variance for the entire sample. 
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0.0006 compared with an unconditional mean of 0.000154. Based on the associated t-

statistics, four of the fourteen tests reject the null hypothesis that the average buy 

return equals the unconditional average return at the 1 percent significance level using 

a two-tailed test. The results are systematic, the shorter the moving average, the more 

significant the result.  In the case of the sell return, all are negative with an average 

one-day return of -0.0003 (that is, getting out of the market or selling short gives a 

positive return relative to staying in). 

 

Also four of the fourteen tests reject the null hypothesis that the sell returns are equal 

the unconditional return. The fraction of buys and sells greater than zero shown in 

Table 2 represent material differences between buys and sells. Under the null 

hypothesis, the fraction of positive returns should be the same for both buys and sells. 

The last column in Table 2 shows that the buy-sell differences are positive and the t-

test for seven of the fourteen tests are highly significant, which rejects the null 

hypothesis of equality of zero. Regarding "Buy>0" and "Sell>0" statistics, the buy 

fraction is consistently greater than 50 percent, while that for all sells it is consistently 

less. 

 

Having introduced the results for the case where zero transactions costs are assumed, 

tables 3-5 below examine how the results are affected by introducing transactions 

costs.  Table 3 deals with ‘Buy’  returns, Table 4 with ‘Sell’  returns and Table 5 with 

‘Buy-Sell’  returns.  By way of sensitivity analysis, results are reported for the average 

transaction cost level and the upper and lower limits according to ASE regulations, as 

well as the zero transaction cost case.  In each case, as one would expect, the higher 

the level of transactions cost assumed, the lower the (absolute) values of the t-

statistics’  and hence the less statistically significant the results appear to be.  There is 

still some indication that ‘buy’  returns are statistically significant for short moving 

average rules – for the (1,5) rule for example, where at average transaction cost level 

t=2.4 and at the upper transaction cost level, t=2.01.  Sell returns are rather less 

‘significant’  but taken together, the ‘buy-sell’  returns are statistically significant for 

the (1,5)-(1,25) rules even at the upper transaction cost limit.   

                                                                                                                                       
7 In this respect the ASE is no different from most stock market indices; returns feature leptokurtosis 
and time varying heteroskedasticity. 
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What conclusions can be drawn from this?  Clearly, most of the trading rules do not 

work, but some of the shorter rules do appear to be profitable, even after taking 

account of transactions costs (notably the (1,5) rule). It would thus appear that trading 

rules can be used not only to predict market movements, but to also to effect  ‘profit 

improving’  trading strategies.  However, there are several caveats to weigh against 

this.  Firstly it is worth emphasizing that the results are only ‘suggestive’  given the ‘ t-

statistics’  do not have a t-distribution.  Secondly, note that a significant range of 

moving average rules has been examined, so the possibility of ‘data mining’  has to be 

considered.  Thirdly, there is the question of to what extent one could actually effect 

the trading schemes implied under tables 3-5.  There are always difficulties associated 

with trading the ‘ index’  portfolio in practice.  Given these observations, it is stil l 

possible that the first order autocorrelation observed in Table 1 may not be 

inconsistent with market efficiency when transaction costs are taken into account. 

Section 3 below sheds further light on this by examining the trading rules under 

alternative assumptions regarding the return generating process, using a bootstrap 

methodology.  

Tables 3, 4, 5 here 

 

4. A PARAMETRIC BOOTSTRAP METHODOLOGY 

The second objective of the paper is to explore, using the bootstrap methodology, the 

extent to which the above trading results are consistent with alternative specifications 

of the underlying price generating process (random walk RW, AR1, and GARCH-M 

are considered).  For stock returns, there are several well-known deviations from 

normality, stationarity and time-independence, such as leptokurtosis, autocorrelation, 

and conditional heteroskedasticity (see Table 1).  Whilst the ‘ t-statistics’  calculated 

and reported in Tables 2-5 give some indication of statistical significance, the 

theoretical distribution of the ‘ t-statistic’  in these contexts is unknown.  The bootstrap 

is a method for estimating the distribution of an estimator or test statistic by re-

sampling the data or a model estimated from the data. It can provide approximations 

to distributions of statistics, coverage probabilities of confidence intervals, and 

rejection probabilities of hypothesis tests that are more accurate than the 

approximations of first-order asymptotic distribution theory. However, whilst  the 
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parametric bootstrap provides a useful approach to hypothesis testing in situations 

where the distribution of standard test statistics is unknown, it is worth mentioning 

that it is an embedded approach, conditional on  the specific functional forms used for 

modelling the volatility process in this study (that is, in this study RW, AR1 or  

GARCH-M). 

 

The bootstrap methodology allows the development of tests of significance for the 

trading rules – and this is the focus in what follows. Thus, the basic idea is to compare 

the time series properties of a simulated data from a given model with those from the 

actual data. First the postulated models are estimated and then bootstrap samples are 

generated. Next the trading rule profits are computed for each of the bootstrap 

samples and compared with the trading rule profits derived in Section 2 from the 

actual data. Using this methodology, it is also possible to examine the standard 

deviations of returns during the buy and sell periods, thus giving an indication of the 

riskiness of the various strategies.    

 

The bootstrap methodology, which was introduced by Efron (Efron (1979)), requires 

that the information in the sample is “recycled”  according to a specific data-

generation process to get the sampling distributions of the statistics of interest. It 

works as follow: Let (y1,y2,….,yn) be the given sample and let θ  be some statistic of 

interest (e.g. standard deviation, kurtosis, a percentile or whatever). Draw a sample of 

size n from this sample with replacement and denote the thj  bootstrap sample as Bj= 

(y1
*, y2

*,…., yn
*) where each yi

* is a random pick from (y1,y2,….,yn). This step is 

repeated for j=1,2,….,m and ˆ
jθ  is computed for each of the bootstrap samples  Bj. The 

distribution of ˆ
jθ  is the estimated bootstrap distribution for the estimator 

�
.  Clearly, 

the number of bootstraps m is likely to likely to affect the ‘ tightness’ with which the 

distribution is estimated.  Although asymptotic properties are unknown for this, it is 

possible to get a crude assessment of the extent of convergence by repeating the 

bootstrap process for different values for m.  In what follows,  results are reported for 

m=500 and m=2000. These generally indicate that the choice of m=2000 is ‘ large 

enough’.  
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The focus in what follows is on the extent to which the returns generated by trading 

rules are above or below those generated for the original series.  The bootstrap 

generates a simulated distribution for the performance measure under the assumed 

process, and it is then possible to calculate an associated p-value, where this is defined 

as the fraction of simulations on which the return from a given trading rule was 

greater than that gained on the original historical  series. Thus the p-value indicates 

the extent to which the historical realization is likely to have been generated from this 

particular distribution or not. A small or large p-value (less than 5 percent, greater 

than 95%) indicates that the historical performance lies in one of the tails of the 

distribution, and that the assumed data generating process is unlikely to have given 

rise to that series. By contrast, p-values closer to 0.5 suggest the assumed generating 

process cannot be rejected as a description of the underlying generating process. As 

explained in section 1 above, three popular generating processes are examined in what 

follows. 

 

Random Walk Model: 

Using the random walk with drift, bootstrap series are generated  by simply 

scrambling the actual returns (log price difference) of the index. Scrambling 

procedures generate a new time series of returns by randomly drawing from the actual 

series with replacement. The scrambled series will have the same unconditional 

distribution, same average drift in prices, and the same volatility. The returns of the 

scrambled series are independent and identically distributed. With the simulated 

return series exponentiated back to a simulated price series (the first observation of 

the actual price is used as a first observation of simulated price),  the trading rules are 

applied to the simulated price series. 

 

AR(1) Model: 

The autoregressive model is the second model for the simulation: 

 

trt rbr ερ ++= −1      (2) 
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where rt is the return on day t and � t is independent, identically distributed.  The 

parameters and the residuals are estimated using actual returns of the index. The 

residuals are then resampled with replacement and used with estimated parameters to 

generate simulated AR(1) series. Given the observed serial correlation in returns (see 

table 1), it is of interest to see if  an autoregressive process might satisfactorily 

‘explain’   the  returns observed under the trading strategy(as shown in Panel A in 

Table 6, there is a significant first order autocorrelation for the index returns series; 

ρ =  0.266). 

 

GARCH-M Model:  

The GARCH-M model with MA term is:  

tttt bhr εεγα +++= −1      (3) 

11
2

10 −− ++= ttt heh βαα      (4) 

ttt zh 2/1=ε         zt ~ N(0,1)     (5) 

where the residual ( � t) is conditionally normally distributed with zero mean and 

conditional variance (ht) and its standardized residuals (zt) is i.i.d. N(0,1). In this 

model the conditional return is a linear function of the conditional variance, ht, and 

past disturbance 1tε − . The conditional variance is a linear function of the square of the 

last period’s error and of the last period’s conditional variance. Hence, the expected 

returns are a function of volatility and past returns, and volatility can change over 

time. The parameters and the standardized residuals are estimated using actual returns 

of the index. The standardized residuals are then re-sampled with replacement and 

used with estimated parameters to generate simulated GARCH-M series. Since only 

the standardized residuals are re-sampled with replacement, the heteroskedastic 

structure captured in the GARCH-M model is maintained in simulations.  Table (3) 

presents the results of estimated models, which will be used for comparison with the 

actual index series. 

Table 6 here 

Panel B of Table 6 presents the results for the GARCH-M model. It shows that the 

conditional variance of stock returns is time varying and is autocorrelated (both 1α  

and β  highly significant). There is no significant relation  between the conditional 
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variance and conditional mean but  as in the AR(1) model, there is significant positive 

first order autocorrelation in the series (b highly significant). 

 

5. BOOTSTRAP RESULTS 

The results of the three model simulations (Random Walk, AR(1) process, GARCH-

M process) are displayed in tables 7, 8, and 9.  Panel A in these tables presents the 

results for each trading rule. All the numbers presented are the proportion of the 

simulated results which are larger than the results for the index series.  Buy, Sell and 

Buy-Sell columns present results for returns, whilst SD Buy and SD Sell columns 

present the result for standard deviations. Panel B of tables 7-9 give some average 

results.  The first row of Panel B (Fraction>Actual) follows the same format as the 

results presented in Panel A. The second row (Mean) presents the returns and standard 

deviations for the Buys, Sells and Buy-Sells, averaged over the 500 and 2000 

simulation result in panel A. The third row (Actual) presents the same statistic for the 

original index series.  The p-values in panel B of the tables can be viewed as a joint 

test of the significance of the set of rules as a whole.  

Tables 7-9 about here 

Random Walk Process: 

The number in Table 7 under Buy column in the first row, for rule (1,2) is 1.000; this 

shows that all of the simulated random walks generated a mean buy return larger than 

the mean buy return from the original index series. This number can be considered as 

a simulated “p-value”. The number 0.000 under the Sell column for rule (1,2) shows 

that none of the simulated random walks generated mean sell returns larger than the 

mean sell return from the original index series. The number in the Buy-Sell column 

(1.000) reports that all of the simulated random walks generated mean buy-sell 

differences larger than the mean differences for the original series.  In the column SD-

Buy the reported number is (1.000), showing that all of the standard deviations for the 

simulated random walks are greater than the standard deviation for the original index 

series, and the number (1.000) under the SD-Sell column shows that all of the 

standard deviations for the simulated random walks are greater than the standard 

deviation for the original index series. It is noticeable that the results for the (1,2) rule 

are rather different from the following rule results; none of the simulated random walk 

series for the following three rules generated mean buy returns higher than the mean 



 16 

buy returns from the original index series, and all of the simulated random walk series 

for the following three rules generated mean sell returns higher than the mean sell 

returns from the original index series.  

 

In general, the results for the Random Walk process give many p-values (fraction of 

results greater than actual) well into the tails of the distribution for the trading rules 

under investigation (for buys, sells, and buy-sells) particularly for the (1,X) rule for 

[1,100]X ∈ . This implies that the random walk process can be rejected as a potential 

generating process. This is hardly surprising, given the observed first order serial 

correlation (see table 1) in the historical series.8  

 

AR(1) Process: 

Table 8 repeats the previous results for a simulated AR(1) process utilizing the 

estimated residuals from the original series. The aim of this test is to detect if the 

observed positive first order autocorrelation (Table 1) explains the results from the 

trading rules. Table 7 shows  results that generally support the AR(1) as a generating 

process. Panel B shows that the average Buy return from the simulated AR (1) is 

0.05% (simple average across all rules), and the average Sell return is (-) 0.02%. 

These results are not significantly different from the unconditional return of 0.0154 % 

for the entire sample. The same observation holds in Panel B for the mean of Buy-Sell 

return for the simulated series which at 0.00070 is only slightly less than the actual 

Buy-Sell return (0.00098). In panel A, the p-values for all rules – except the (1,2) rule 

-  are all higher than 10% (and less than 90%). On the basis of these rules one would 

not reject the null hypothesis that the AR(1) process is consistent with the data 

generating process of stock index return. However, the (1,2) rule has a significant p-

value, so this casts some doubt over the validity of process.  Naturally, the p-values 

for the simulated AR(1) process are in general less significant  than those for the 

simulated RW process, suggesting that ‘AR(1) type’ effects do play a role  in the 

process generating the original results.   

 

                                                
8  In Panel B of Table 7, the first row shows insignificant differences in the average p-values (averages 
taken across all the rules).  However, this masks the fact that whilst the (5,X) rules are generally not 
significant (p-values greater than 5%), the (1,X) rules generally are.   
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GARCH-M Process: 

Table 9 repeats the previous results for a simulated GARCH-M process utilizing the 

estimated standardized residuals from the original series. Both conditional means and 

variances are allowed to change over time in this model. A changing conditional mean 

can potentially explain some of the differences between Buy and Sell returns. As 

shown in panel B, GARCH-M generates no significant differences.  For example, 

around 20% of the simulations generated Buy-Sell returns larger than Buys-Sells 

generated by original data. For volatility results, given that the focal point of GARCH 

models is to predict volatility, Panel B shows the GARCH-M average standard 

deviation for Buys to be 0.55% which should be compared with 0.52% for the original 

data with an associated p-value of 56% showing the lack of significance. The average 

standard deviation for Sells for the replications is 0.46% and for the original data is 

0.44% which again are close, with a p-value of 58%.  In panel A, none of the p-values 

show significance with the exception of (1,2) and (1,5) rules for Sells (an again, only 

just at 5% for a one tailed test, or at 10% for a two tailed test).  Overall then, the 

GARCH-M model is performing rather better than the other models, with only the 

short rules and furthermore, only for Sells, showing some ‘discrepancy’.  The model 

also works well across all rules in terms of predicting volatility . 

 

6  CONCLUSIONS 

The first object of the paper was to study, in this emerging market, the extent to which 

alternative moving average trading rules help to forecast market movements and the 

extent to which these might be profitable. The results of this part of the study suggest 

that technical analysis does help to predict stock price changes in the ASE. This 

evidence regarding predictive power agrees fairly well with results from other studies 

conducted in developed and emerging markets.  For example,  Brock et al.(1992) 

examined  a moving average trading rule for the daily Industrial Average  Dow Jones, 

and found that the buy (sell) signals generate returns which are higher (or lower) than 

normal returns. Hudson et al. (1996) also adopted the same technical trading rules as 

Brock et al.(1992)  to UK stock prices, and likewise found predictive ability for 

technical trading rules. Furthermore, the results agree with studies performed in other 
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emerging markets; for example, Bessembinder and Chan (1995), Ratner and Leal 

[1999] both found  that simple trading rules can have forecast ability. 

 

In common with previous studies, it was found that the returns during buy periods are 

larger than returns during sell periods.  Under the assumption of zero transactions 

costs, moving average rules (1,2), (1,5), (1,10), (1,25), (1,50), (5,10), and (5,25) all 

appeared to have significant predictive power.  However, after account of transactions 

costs was taken, despite predictive power, the ability to earn a significant trading 

profit was considerably lessened.  There was still some evidence that some short run 

rules (such as the 1-5 rule) might yield net profit even after allowing for trading costs.  

Fairly clearly however, the trading rules examined, on the average, do not (most of the 

rules do not yield significant trading profits). It was suggested that the finding that 

some (short) rules seem to be profitable net of transactions costs was an indication of 

potential market inefficiency, but there are some caveats to such a conclusion – firstly 

because the test statistics cannot be relied upon to have the standard t-distribution 

(because of non-normality of the index return), secondly, because of data mining 

considerations, and thirdly because, for the trading strategy based on a moving 

average rule to be profitable, is does require that the index portfolio needs to be 

traded, and there may be practical difficulties associated with doing this (which will 

depend on market micro-structure).  Given these considerations, the results can be 

viewed as fairly consistent with those found in the recent literature (namely that 

moving average rules do help to predict market movements, but that it may be hard to 

profitably exploit the trading strategy in practice).  

 

The second objective of the paper was to study the performance of the moving 

average trading rules under alternative specifications for the underlying generating 

process (namely, random walk, AR1, GARCH-M). In each case, the model was fitted 

to the original data and the residuals from that model used as the basis for a bootstrap 

study. The bootstrap technique was used to generate trading rule returns for each 

given model for the underlying generating process. The comparison between returns 

generated by the bootstrap and those for the actual series reveals that actual trading 

profits are not consistent  with those that could be generated by the random walk or 

AR(1) processes.  There was more evidence in favour of a GARCH-M process, 
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although still some evidence of inconsistent performance for short moving average 

rules for Sells (but not for Buys). Overall, increasing ‘ flexibility’  in moving from RW 

to AR(1) to GARCH-M increases substantially the consistency (in terms of p-values) 

of actual historical returns with estimated return distributions.     
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Table 1 
Summary Statistic for Daily Returns 

 
Returns are measured as log differences of the level of the index. AC is the estimated autocorrelation 
and PAC is the estimated partial autocorrelation at lags 1,2,3,4and 5.Q-Stat is the Ljung-Box Q-statistic 
 

 
ASE  

Index 
S&P 

Index 
 

  
ASE 
Index   

     AC PAC Q-Stat Prob 
Mean 0.000154 0.000427  1 0.266418 0.266418 166.6577 3.97E-38 
Standard Deviation 0.006831 0.009639  2 0.012861 -0.06256 167.0463 5.33E-37 
Sample Variance 0.000047 0.000093  3 -0.02 -0.00754 167.9863 3.46E-36 
Kurtosis 5.796881 5.294313  4 -0.02805 -0.02119 169.8358 1.13E-35 
Skewness 0.422431 -0.272796  5 -0.01864 -0.0068 170.653 5.29E-35 

Range 0.090551 0.121014  
  

S&P 
Index   

Minimum -0.043102 -0.071127   AC PAC Q-Stat Prob 
Maximum 0.047449 0.049887  1 -0.005 -0.005 0.0717 0.789 
Observations 2345 2345  2 -0.03 -0.03 2.35 0.309 
    3 -0.053 -0.053 9.2809 0.026 
    4 -0.007 -0.008 9.3969 0.052 
    5 -0.019 -0.023 10.334 0.066 
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Table 2 

Test Results for the Trading Rules in the Absence of Transactions Costs 
 

Results for daily prices from 1992-2000. Rules are identified as (short, long) where short is the short 
moving average and long is the long moving average. N(Buy) and N(Sell) are the number of buy and 
sell signals reported during the sample. Bold numbers are standard t-ratios testing the difference of the 
mean buy and mean sell from the unconditional mean, and buy-sell from zero. Buy >0 and Sell >0 are 
the fraction of buy and sell returns greater than zero. The last row reports the averages across all 14 
rules. 
 

Rule N(Buy) N(Sell) Buy Sell Buy>0 Sell>0 Buy-Sell 
        
(1, 2) 1102 1239 0.0018 -0.0013 0.6758 0.3388 0.0032 
 t-statistic   (6.74)** (-6.19)**   (11.20)** 
(1, 5) 1093 1248 0.0014 -0.0009 0.6349 0.3874 0.0023 
 t-statistic   (4.93)** (-4.59)**   (8.25)** 
(1, 10) 1079 1257 0.0010 -0.0006 0.5994 0.4276 0.0016 
 t-statistic   (3.45)** (-3.20)**   (5.76)** 
(1, 25) 1165 1156 0.0007 -0.0005 0.5739 0.4475 0.0012 
 t-statistic   (2.39)** (-2.47)**   (4.21)** 
(1, 50) 1152 1144 0.0006 -0.0003 0.5597 0.4672 0.0009 
 t-statistic   (1.76) (-1.80)   (3.08)** 
(1, 100) 1141 1105 0.0004 -0.0001 0.5407 0.4848 0.0005 
 t-statistic   (0.99) (-1.14)   (1.84) 
(1, 150) 1185 1011 0.0004 -0.0002 0.5389 0.4826 0.0005 
 t-statistic   (0.95) (-1.18)   (1.83) 
(1, 200) 1150 996 0.0004 -0.0002 0.5356 0.4773 0.0006 
 t-statistic   (0.82) (-1.35)   (1.86) 
        
        
(5, 10) 1078 1257 0.0006 -0.0002 0.5585 0.4715 0.0008 
 t-statistic   (1.74) (-1.66)   (2.95)** 
(5, 25) 1153 1168 0.0005 -0.0002 0.5514 0.4772 0.0007 
 t-statistic   (1.40) (-1.46)   (2.48)** 
(5, 50) 1153 1143 0.0004 -0.0001 0.5387 0.4918 0.0004 
 t-statistic   (0.88) (-0.92)   (1.56) 
(5, 100) 1131 1115 0.0003 0.0000 0.5291 0.4991 0.0003 
 t-statistic   (0.52) (-0.65)   (1.01) 
(5, 150) 1185 1011 0.0003 0.0000 0.5274 0.4987 0.0003 
 t-statistic   (0.46) (-0.64)   (0.95) 
(5, 200) 1151 995 0.0003 -0.0001 0.5258 0.4911 0.0003 
 t-statistic   (0.40) (-0.89)   (1.12) 
Average   0.0006 -0.0003   0.0010 

* denotes p<0.05,  ** denotes p < 0.01. 
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Table 3: The Buy Return before and after deducting  transaction costs. Three percentages of 
transaction costs are used. The lower limit, the average and the upper limit (lower and upper 

limits defined by ASE regulations). 
 

    Buy Return     
Buy and 

Hold 
      Return 
Transaction 
Cost: Zero TC Lower limit 

Average 
limit Upper limit  

  0 0.0054 0.0064 0.0074  

Rule      
(1, 2) 0.00184 0.00077 0.00057 0.00038 0.00015 
t-statistic (6.75)** (2.48)* (1.68) (0.89)  
       
(1, 5) 0.00139 0.00085 0.00076 0.00066 0.00015 
t-statistic (4.94)** (2.80)** (2.40)* (2.01)*  
       
(1, 10) 0.00102 0.00065 0.00059 0.00052 0.00015 
t-statistic (3.46)** (1.99)* (1.72) (1.45)  
       
(1, 25) 0.00074 0.00054 0.00050 0.00047 0.00015 
t-statistic (2.40)* (1.58) (1.43) (1.27)  
       
(1, 50) 0.00059 0.00046 0.00043 0.00041 0.00015 
t-statistic (1.76) (1.23) (1.13) (1.03)  
       
(1, 100) 0.00040 0.00031 0.00029 0.00027 0.00015 
t-statistic (1.00) (0.63) (0.56) (0.49)  
       
(1, 150) 0.00039 0.00031 0.00030 0.00028 0.00015 
t-statistic (0.96) (0.64) (0.59) (0.53)  
       
(1, 200) 0.00036 0.00030 0.00029 0.00028 0.00015 
t-statistic (0.82) (0.60) (0.55) (0.51)  
       
(5, 10) 0.00059 0.00032 0.00027 0.00022 0.00015 
t-statistic (1.75) (0.66) (0.45) (0.25)  
       
(5, 25) 0.00050 0.00037 0.00035 0.00033 0.00015 
t-statistic (1.41) (0.89) (0.80) (0.70)  
       
(5, 50) 0.00037 0.00029 0.00028 0.00026 0.00015 
t-statistic (0.89) (0.56) (0.50) (0.43)  
       
(5, 100) 0.00028 0.00023 0.00022 0.00021 0.00015 
t-statistic (0.52) (0.31) (0.27) (0.23)  
       
(5, 150) 0.00027 0.00022 0.00022 0.00021 0.00015 
t-statistic (0.46) (0.28) (0.25) (0.22)  
       
(5, 200) 0.00025 0.00022 0.00022 0.00021 0.00015 
t-statistic (0.41) (0.28) (0.25) (0.23)  
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Table 4: The Sell Return before and after deducting the transaction costs. Three percentages 
of transaction costs are used. The lower limit (according to ASE regulations), the average and the 

upper limit. 
 

    Sell Return     
Buy and 

Hold 
      Return 
Transaction 
Cost: Zero TC Lower limit 

Average 
limit Upper limit  

  0 0.0054 0.0064 0.0074  

Rule      
(1, 2) -0.00133 -0.00027 -0.00007 0.00013 0.00015 
t-statistic (-6.20)** (-1.75) (-0.93) (-0.11)  
       
(1, 5) -0.00095 -0.00041 -0.00031 -0.00021 0.00015 
t-statistic (-4.66)** (-2.36)* (-1.95) (-1.54)  
       
(1, 10) -0.00061 -0.00024 -0.00018 -0.00011 0.00015 
t-statistic (-3.21)** (-1.66) (-1.38) (-1.09)  
       
(1, 25) -0.00045 -0.00025 -0.00022 -0.00018 0.00015 
t-statistic (-2.47)* (-1.66) (-1.51) (-1.36)  
       
(1, 50) -0.00029 -0.00016 -0.00014 -0.00011 0.00015 
t-statistic (-1.81) (-1.27) (-1.18) (-1.08)  
       
(1, 100) -0.00013 -0.00004 -0.00002 -0.00001 0.00015 
t-statistic (-1.15) (-0.78) (-0.71) (-0.64)  
       
(1, 150) -0.00015 -0.00008 -0.00006 -0.00005 0.00015 
t-statistic (-1.19) (-0.89) (-0.84) (-0.78)  
       
(1, 200) -0.00020 -0.00014 -0.00013 -0.00012 0.00015 
t-statistic (-1.35) (-1.14) (-1.10) (-1.06)  
       
(5, 10) -0.00024 0.00003 0.00008 0.00013 0.00015 
t-statistic (-1.67) (-0.52) (-0.31) (-0.10)  
       
(5, 25) -0.00020 -0.00008 -0.00005 -0.00003 0.00015 
t-statistic (-1.46) (-0.94) (-0.85) (-0.75)  
       
(5, 50) -0.00007 0.00001 0.00002 0.00004 0.00015 
t-statistic (-0.93) (-0.66) (-0.54) (-0.48)  
       
(5, 100) -0.00001 0.00004 0.00005 0.00006 0.00015 
t-statistic (-0.65) (-0.44) (-0.40) (-0.36)  
       
(5, 150) -0.00001 0.00003 0.00004 0.00005 0.00015 
t-statistic (-0.64) (-0.47) (-0.44) (-0.41)  
       
(5, 200) -0.00008 -0.00005 -0.00004 -0.00003 0.00015 
t-statistic (-0.90) (-0.78) (-0.75) (-0.73)  
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Table 5: The Buy –Sell Return before and after deducting the transaction costs. Three 
percentages of transaction costs are used. The lower limit (according to ASE regulations), the 

average and the upper limit. 
 

    
Buy-Sell 
Return     

Buy and 
Hold 

      Return 
Transaction 
Cost: Zero TC Lower limit 

Average 
limit Upper limit  

  0 0.0054 0.0064 0.0074  

Rule      
(1, 2) 0.00317 0.00104 0.00064 0.00025 0.00015 
t-statistic (11.21)** (3.67)** (2.27)* (0.88)  
       
(1, 5) 0.00233 0.00127 0.00107 0.00087 0.00015 
t-statistic (8.25)** (4.47)** (3.78)** (3.08)**  
       
(1, 10) 0.00163 0.00090 0.00076 0.00062 0.00015 
t-statistic (5.76)** (3.16)** (2.68)** (2.20)*  
       
(1, 25) 0.00119 0.00079 0.00072 0.00064 0.00015 
t-statistic (4.21)** (2.80)** (2.54)* (2.27)*  
       
(1, 50) 0.00088 0.00062 0.00057 0.00052 0.00015 
t-statistic (3.08)** (2.16)* (1.99)* (1.82)  
       
(1, 100) 0.00053 0.00035 0.00031 0.00028 0.00015 
t-statistic (1.85) (1.21) (1.09) (0.97)  
       
(1, 150) 0.00054 0.00039 0.00036 0.00033 0.00015 
t-statistic (1.84) (1.32) (1.22) (1.13)  
       
(1, 200) 0.00055 0.00044 0.00042 0.00040 0.00015 
t-statistic (1.87) (1.49) (1.42) (1.35)  
       
(5, 10) 0.00084 0.00029 0.00019 0.00009 0.00015 
t-statistic (2.95)** (1.02) (0.66) (0.30)  
       
(5, 25) 0.00070 0.00045 0.00040 0.00036 0.00015 
t-statistic (2.48)* (1.59) (1.42) (1.26)  
       
(5, 50) 0.00045 0.00028 0.00026 0.00023 0.00015 
t-statistic (1.56) (1.00) (0.89) (0.79)  
       
(5, 100) 0.00029 0.00018 0.00017 0.00015 0.00015 
t-statistic (1.01) (0.64) (0.57) (0.51)  
       
(5, 150) 0.00028 0.00019 0.00017 0.00016 0.00015 
t-statistic (0.95) (0.65) (0.60) (0.54)  
       
(5, 200) 0.00033 0.00027 0.00026 0.00024 0.00015 
t-statistic (1.12) (0.91) (0.87) (0.83)  
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Table 6 

Parameter estimates for AR(1), and GARCH Models 

                
PanelA:AR(1) Parameter Estimates      
           

1t t tr b rρ ε−= + +          
           
  b ρρρρ          
Estimate: 0.00011 0.26642       
t-statistic: (0.8220) (13.3769)**       
Prob.  : 0.411 0       
                

          
Panel B:GARCH-M Parameter Estimates      
          

  

 
 
 
        

          

          

  zt ~ N(0,1)       
          

   � 0 αααα1 
�

 �    �  b   
 Estimate: 3.44E-06 0.21851 0.711161 -4E-04 8.933 0.25744   
t-statistic: (10.4004)** (12.5907)** (41.6014)** (-1.915) (1.556) (11.1528)**   
Prob. :  8.50E-25 3.20E-35 1.27E-283 0.0557 0.12 3.50E-28   
                

 

 

 

 

tttt bhr εεγα +++= −1

11
2

10 −− ++= ttt heh βαα
ttt zh 2/1=ε
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Table 7 
Simulation Tests from Random Walk Bootstrap for 500 and 2000 Replications 

 
 
    Panel A         
   Results (Fraction>Actual) 

Rule  Buy SD Buy Sell SD Sell Buy-Sell 
       

(1, 2) 500bootstrap 1 1 0 1 1 
 2000bootstrap 1 1 0 1 1 

(1, 5) 500bootstrap 0 0.212 1 0.924 0 
 2000bootstrap 0 0.179 1 0.91 0 

(1, 10) 500bootstrap 0 0.384 1 0.662 0 
 2000bootstrap 0 0.3775 1 0.6755 0 

(1, 25) 500bootstrap 0 0.35 1 0.618 0 
 2000bootstrap 0.0015 0.349 0.9995 0.6305 0 

(1, 50) 500bootstrap 0.006 0.49 0.986 0.426 0 
 2000bootstrap 0.006 0.4945 0.991 0.4275 0.0005 

(1, 100) 500bootstrap 0.058 0.384 0.924 0.62 0.022 
 2000bootstrap 0.068 0.395 0.935 0.6265 0.0195 

(1, 150) 500bootstrap 0.068 0.268 0.944 0.692 0.02 
 2000bootstrap 0.0815 0.265 0.947 0.708 0.0225 

(1, 200) 500bootstrap 0.106 0.3 0.962 0.63 0.016 
 2000bootstrap 0.119 0.3075 0.9585 0.632 0.0225 
       
       

(5, 10) 500bootstrap 0.014 0.474 0.978 0.504 0.002 
 2000bootstrap 0.01 0.463 0.9825 0.54 0.0005 

(5, 25) 500bootstrap 0.034 0.588 0.974 0.378 0.004 
 2000bootstrap 0.0345 0.553 0.968 0.399 0.006 

(5, 50) 500bootstrap 0.1 0.592 0.882 0.322 0.05 
 2000bootstrap 0.1205 0.5605 0.879 0.3465 0.044 

(5, 100) 500bootstrap 0.212 0.402 0.828 0.608 0.116 
 2000bootstrap 0.237 0.394 0.7835 0.605 0.1325 

(5, 150) 500bootstrap 0.238 0.32 0.802 0.612 0.116 
 2000bootstrap 0.254 0.336 0.792 0.6065 0.134 

(5, 200) 500bootstrap 0.258 0.348 0.894 0.584 0.082 
 2000bootstrap 0.2835 0.355 0.874 0.576 0.0955 
       
    Panel B         
       

p-value 500bootstrap 0.149571 0.436571 0.869571 0.612857 0.102 
p-value 2000bootstrap 0.15825 0.430643 0.865 0.620214 0.105536 

Mean Return 500bootstrap 0.000504 0.005182 -0.00013 0.00465 0.000629 
Mean Return 2000bootstrap 0.000503 0.005174 -0.00013 0.004658 0.00063 
Actual Mean 

Return  0.001436 0.005228 -0.0011 0.004282 0.002538 
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Table 8 
Simulation Tests from AR(1) Bootstrap for 500 and 2000 Replications 

 
 
    Panel A         
   Results (Fraction>Actual)  

Rule  Buy SD Buy Sell SD Sell Buy-Sell 
         

(1, 2) 500bootstrap 0.0300 0.0760 0.9100 0.9380 0.0100 
  2000bootstrap 0.0405 0.1205 0.8795 0.9575 0.0165 

(1, 5) 500bootstrap 0.1560 0.2240 0.6740 0.8520 0.1460 
  2000bootstrap 0.1430 0.2255 0.6795 0.8255 0.1380 

(1, 10) 500bootstrap 0.2580 0.3660 0.4520 0.6020 0.3500 
  2000bootstrap 0.2890 0.3925 0.4915 0.6125 0.3425 

(1, 25) 500bootstrap 0.2780 0.2980 0.6640 0.7000 0.2100 
  2000bootstrap 0.2980 0.3405 0.6600 0.6500 0.2450 

(1, 50) 500bootstrap 0.2680 0.4180 0.5980 0.5100 0.2660 
  2000bootstrap 0.3030 0.4405 0.6175 0.4955 0.2760 

(1, 100) 500bootstrap 0.4160 0.3040 0.4980 0.7140 0.4460 
  2000bootstrap 0.4465 0.3360 0.5265 0.6870 0.4130 

(1, 150) 500bootstrap 0.3360 0.1940 0.6100 0.7920 0.2660 
  2000bootstrap 0.3930 0.2025 0.6560 0.7645 0.2775 

(1, 200) 500bootstrap 0.3440 0.2180 0.7440 0.7260 0.1900 
  2000bootstrap 0.3945 0.2375 0.7680 0.7105 0.2105 
         
         

(5, 10) 500bootstrap 0.2100 0.4660 0.7480 0.5000 0.1500 
  2000bootstrap 0.2010 0.4525 0.7410 0.5300 0.1365 

(5, 25) 500bootstrap 0.2200 0.4960 0.7880 0.4460 0.1200 
  2000bootstrap 0.1865 0.5135 0.8005 0.4455 0.1100 

(5, 50) 500bootstrap 0.3180 0.4940 0.7000 0.4240 0.2240 
  2000bootstrap 0.2995 0.4935 0.6720 0.4285 0.2250 

(5, 100) 500bootstrap 0.4040 0.3380 0.6220 0.6680 0.3140 
  2000bootstrap 0.3765 0.3365 0.6455 0.6865 0.2925 

(5, 150) 500bootstrap 0.3980 0.2680 0.6500 0.6660 0.2840 
  2000bootstrap 0.3765 0.2730 0.6630 0.6935 0.2690 

(5, 200) 500bootstrap 0.4080 0.2900 0.7680 0.6320 0.2260 
  2000bootstrap 0.3850 0.2885 0.7560 0.6525 0.1965 
         
    Panel B         
         

p-value 500bootstrap 0.2889 0.3179 0.6733 0.6550 0.2287 
p-value 2000bootstrap 0.2952 0.3324 0.6826 0.6528 0.2249 

Mean Return 500bootstrap 0.0005 0.0050 -0.0002 0.0046 0.0007 
Mean Return 2000bootstrap 0.0005 0.0050 -0.0002 0.0046 0.0007 
Actual Mean 

Return   0.0014 0.0052 -0.0011 0.0043 0.0025 
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Table 9 
Simulation Tests from GARCH-M Bootstrap for 500 and 2000 Replications 

 
 

    Panel A         
   Results (Fraction>Actual) 

Rule  Buy SD Buy Sell SD Sell Buy-Sell 
         

(1, 2) 500bootstrap 0.096 0.536 0.974 0.81 0.022 
  2000bootstrap 0.0895 0.506 0.97 0.787 0.0265 

(1, 5) 500bootstrap 0.098 0.63 0.96 0.628 0.026 
  2000bootstrap 0.0955 0.608 0.9505 0.594 0.035 

(1, 10) 500bootstrap 0.202 0.69 0.86 0.442 0.102 
  2000bootstrap 0.1915 0.6665 0.8325 0.433 0.11 

(1, 25) 500bootstrap 0.27 0.634 0.864 0.488 0.148 
  2000bootstrap 0.2805 0.6185 0.8475 0.464 0.1535 

(1, 50) 500bootstrap 0.318 0.646 0.742 0.442 0.222 
  2000bootstrap 0.315 0.618 0.723 0.408 0.2315 

(1, 100) 500bootstrap 0.442 0.55 0.568 0.642 0.406 
  2000bootstrap 0.4235 0.5305 0.5665 0.6435 0.396 

(1, 150) 500bootstrap 0.39 0.448 0.68 0.78 0.276 
  2000bootstrap 0.3885 0.4365 0.6775 0.7535 0.317 

(1, 200) 500bootstrap 0.368 0.44 0.794 0.75 0.2 
  2000bootstrap 0.3855 0.433 0.782 0.7185 0.2365 
         
         

(5, 10) 500bootstrap 0.184 0.662 0.846 0.428 0.084 
  2000bootstrap 0.1995 0.6695 0.8535 0.4315 0.104 

(5, 25) 500bootstrap 0.258 0.642 0.848 0.396 0.138 
  2000bootstrap 0.2625 0.673 0.8435 0.379 0.1485 

(5, 50) 500bootstrap 0.324 0.606 0.704 0.424 0.222 
  2000bootstrap 0.3595 0.63 0.6865 0.4015 0.2835 

(5, 100) 500bootstrap 0.372 0.486 0.622 0.676 0.32 
  2000bootstrap 0.423 0.505 0.6205 0.667 0.349 

(5, 150) 500bootstrap 0.356 0.436 0.636 0.736 0.294 
  2000bootstrap 0.4255 0.4515 0.64 0.7145 0.339 

(5, 200) 500bootstrap 0.39 0.42 0.768 0.708 0.238 
  2000bootstrap 0.426 0.4465 0.7475 0.6985 0.2715 
         
    Panel B         
         

p-value 500bootstrap 0.290571 0.559 0.776143 0.596429 0.192714 
p-value 2000bootstrap 0.304679 0.556607 0.767214 0.578107 0.214393 

Mean Return 500bootstrap 0.000494 0.005582 -0.00016 0.004653 0.00065 
Mean Return 2000bootstrap 0.000503 0.005544 -0.00016 0.004634 0.000664 
Actual Mean 

Return   0.001436 0.005228 -0.0011 0.004282 0.002538 

 
 
 


