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ABSTRACT 
 

Opening access to ‘bottleneck facilities’  and allowing the firm to set the price of 

access confers on it significant monopoly power, hence the need for regulation.  

Access is typically offered on a relatively short term basis, whilst the facilities 

themselves are long-lived irreversible investments.  In such circumstances, 

uncertainty creates option value through the firm ‘waiting to invest’ .  It has recently 

been suggested, although without formal analysis, that the regulator should take 

account of this when setting the maximum price the firm is allowed to charge.  This 

paper undertakes, in a more formal setting, a comparison of competitive, monopoly 

and price capped monopoly solutions to the access pricing problem under uncertainty.   
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1. INTRODUCTION 

‘Bottleneck facilities’  arise in many industries, particularly network industries, such 

as telecoms, railtrack, water, electricity and gas.  Firms that control such facilities 

have typically been required by regulators to provide open access to these facilities.  

Of course, access is offered at a price – and so, given the inherent monopoly power 

associated with access provision, the question arises as to what constitutes a fair or 

efficient price.  The access price is the price that is paid for short term access, whilst 

the facilities themselves are typically long lived and largely irreversible investments.  

It is well known that uncertainty over key variables such as future demand, 

technology, interest rates etc. can give rise to option value which impacts on the 

firm’s incentive to invest in such facilities - and that the impact can be substantial.  

Clearly, regulators need to take some account of this type of impact when considering 

the level at which to set the access price.  The suggestion in recent academic work 

(and often repeated in confidential reports commissioned by both regulators and 

regulatees) is that the access price should be capped at the level that would arise if 

access provision was provided competitively.  Whilst this is a plausible argument, to 

date there has been no formal analysis of the consequences of imposing such an 

intertemporal price cap.  This motivates the present work, which compares monopoly 

and competitive market solutions to the hire/lease/access pricing problem under 

uncertainty and then analyses the impact of intertemporal price caps.  The key 

findings are that (i) in a competitive market, uncertainty does not seem to have such a 

significant impact on access price as previously argued, but that (ii) monopoly power 

generally leads to substantial under-investment, and  (iii) intertemporal price caps are 

helpful in controlling this, but, unlike in simple certainty settings, under uncertainty, 

and even if optimally chosen, intertemporal price caps are inefficient.  Under 

uncertainty, price capped monopolists will tend to wait too long to invest, will under-

invest and will tend to impose quantity rationing on their customers.  

 

Since there has been a fair amount of work on access pricing and on the impact of 

option value on the incentive to invest, the rest of this introduction gives a brief 

review to better delineate the contribution of the present work.   

 

The problem of access provision, and at what price, was originally conceived 

primarily as an atemporal problem (see for example Armstrong, Doyle and Vickers 
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[1996], Armstrong [1998], Baumol and Sidak [1994], Laffont, Rey and Tirole 

[1998a,b]).  The focus in this literature has tended to be on the efficient recovery of 

access deficits arising from fixed costs/economies of scale and scope, along with the 

promotion of efficient downstream entry or bypass.  More recently, it has also come 

to be recognised that there are important intertemporal issues associated with how the 

cost of long lived capacity should be ‘unpacked’ into period lease/hire access prices 

(Salinger [1998], Sidak and Spulber [1997]).  Finally, the importance of uncertainty to 

this calculation, and the extent to which it gives rise to ‘option value’  has been raised 

(Hausman [1996, 1997, 1999]).   

 

This paper focuses on a simple setting for the intertemporal access pricing problem in 

which any amount of long lived capacity can be purchased at a constant unit price at 

any given point in time.  The capacity unit price may, however, trend and fluctuate 

over time, and the demand for access itself may also trend and fluctuate.   Under 

certainty, in a competitive market, the hire price is given as the unit capacity cost 

multiplied by the sum of the interest rate, the depreciation rate, and the rate at which 

of technical progress reduces the price of new capacity, at least when these rates are 

assumed to be constant over time (see Salinger [1998], Sidak and Spulber [1997], and 

Laffont and Tirole [2000,  p.151]). 

 

Uncertainty changes things of course.  There is now a fair body of work on the option 

value that arises out of the firm being able to defer the date at which irreversible 

capacity investment is made, along with that which arises out of being able to 

abandon or to temporarily mothball production (Dixit and Pindyck [1994]).  Much of 

this work focuses on the case of the monopoly firm (McDonald and Siegel [1986], 

Pindyck [1988]) although the competitive case has also been addressed (Lucas and 

Prescott [1971], Dixit [1989]) and the similarity between the monopolist’ s problem 

and the competitive solution has also been noted (Dixit and Pindyck [1994, p. 256]).   

 

Hausman [1996, 1997, 1999] has utilised this work on option value to argue that, in 

the presence of uncertainty, the price that should be set for access should be increased 

above the competitive certainty price by a factor to reflect option value associated 

with irreversible investment, and the general thrust of his argument has been widely 

accepted (see Laffont and Tirole [2000]).  Clearly, if regulated firms are not granted a 
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premium in the access price to account for option value, the incentive to invest will be 

adversely affected.  The option value ‘multiplier’ , at a generic level, is often 

substantial and a factor of around two is fairly typical (MacDonald and Siegel [1986],  

Dixit and Pindyck [1994, p. 153]).  For Telecoms, Hausman [1997] provides some 

evidence that the multiplier may well be above three.   

 

The first contribution of the present paper is to suggest that, whilst the above analysis 

properly calculates the uncertainty entry trigger price, a correct comparison with the 

certainty price reveals that the overall impact of uncertainty is likely raise the entry 

trigger price by a significantly smaller factor (by perhaps 10-50%).  A new form of 

option value multiplier is also derived, appropriate for multiplying the certainty price 

estimate.     

 

The similarity of the entry trigger price for the monopolist and the competitive 

industry, noted above, arises only in the case where the monopoly firm has a single 

‘all-or-nothing’  or ‘ fixed size’  project and where the choice of investment timing is 

the only variable under the firm’s control.  When the monopoly firm can choose both 

the level and timing for its investment, its choices will generally significantly diverge 

from those manifest in a competitive industry.  For network industries such as 

telecoms, electricity, gas etc., the assumption that the firm can control the level of 

investment as well as its timing is fairly realistic; capacity can be incrementally 

expanded subsequent to the initial investment being made.1   This paper continues by 

examining this case and comparing the timing and levels of investment under 

competition with those under monopoly.  The suggestion that a firm in control of a 

bottleneck facility should be allowed to set the same price as would occur if the 

industry was competitive seems to be fairly well accepted (see Hausman [1997, 

1999], Laffont and Tirole [2000]).2  However, the response of a monopolist to the 

imposition of such a price cap has not been formally addressed.  The final objective of 

the present work is to analyse this problem in some detail.   

                                                        
1 Obviously there is some level of indivisibility regarding the consequences of such incremental 
investment in capacity, and investments may also tend to lead to increases in capacity in specific local 
areas.  However,  treating capacity as a continuous variable is probably a better assumption than 
assuming it is ‘all-or-nothing’. 
 
2 The argument can also be found in a myriad of confidential consultancy reports commissioned by 
regulators and those they regulate. 
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2. THE COMPETITIVE MODEL 

Basic assumptions are that capacity is long lived but subject to physical depreciation, 

technical progress reduces the unit cost of capacity provision, and both technological 

progress and industry demand are uncertain.  Operating (variable) costs associated 

with the use of capacity are taken to be zero.3  In this section, the industry is assumed 

to be perfectly competitive.  Firms, in contemplating investing in the industry need to 

make forecasts of the future prices they are likely to get for hiring out installed 

capacity.  Naturally, the prices they expect depend in part on how demand evolves 

over time, and in part upon their own capacity investment decisions.  It is possible to 

close the model in different ways.  In common with much recent literature, this paper 

adopts the rational expectations assumption - that, given stable distributions for both 

demand and technology, the distribution for actual prices will be the same as that for 

each firm’s anticipated prices.4   

 

The demand function is taken to be constant elasticity, with the ‘strength’  of demand 

uncertain.  The assumption of constant elasticity of demand is useful in two ways.  

Firstly, as a convenient parameterisation facilitating the exploration of alternative 

assumptions regarding this elasticity.  Secondly, in that it permits the derivation of 

closed form solutions which are easy to interpret and debate - this is regarded as an 

important ‘policy relevance’ consideration.5  This competitive model is outlined in 

some detail despite close similarities with earlier work primarily because it forms the 

foundation analysis for subsequent developments to monopoly and price capped 

monopoly, but also because it provides some new results and perspectives on earlier 

work.  

 

                                                                                                                                                               
 
3 This is a good assumption in many applications.  If there are variable costs, one can think of prices 
here as simply the mark-up on variable cost (see Hausman [1997, p. 32]). 
 
4 See Lucas and Prescott [1971] for a lucid defence of the rational expectations assumption.  
Essentially, the argument is that agents will not make persistent and easy to correct forecast errors - as 
is reasonable, given the assumption that the underlying distributions for demand and technology are in 
fact stable over time (as is assumed here). 
 
5 There is considerable demand from policy makers for models which are relatively easy to interpret 
and use.  
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The demand for capacity at time t is given as 

d
t t tQ A pγ= ,        (1) 

where tp  is the price per unit of capacity and 0γ <  is the elasticity of demand.  The 

demand function can be inverted to write 

( )d
t t tp Q A

η η−=  where 1/η γ= <0    (2) 

Uncertainty enters through the level of demand variable, tA , and also through 

technological progress, which is assumed to affect the unit cost of capacity, denoted 

tK .  In both cases, these are assumed to be geometric Brownian motions (GBM), as 

follows:6 

/

/

A
t t AA AK t

K
t t KA KK t

dA A d
dt

dK K d

σ σα ϖ
σ σδ ϖ

���� � � ����
= + ���� � � ����

−
��	
� 	� 	 ��	 .    (3) 

Here α  is the trend rate of growth in demand (which could be positive or negative).  

Individual firms purchase units of capacity at a unit cost at time t of amount tK  and 

technological progress reduces the price of capacity at a trend rate δ >0.  Thus A
tdϖ  

and K
tdϖ  denote two independent Wiener processes and the volatilities for tA , tK , 

are captured in the matrix AA AK

KA KK

σ σ
σ σ

� �
 �� � .  This formulation allows that cost reducing 

technological progress and demand may be correlated.  Intuitively, one might expect 

that a higher than expected growth in demand might induce more effort and 

expenditure on R&D etc. and hence an increase in the rate at which the unit cost of 

capacity falls.  In this case, one might expect that, whilst perhaps 0AKσ ≈ , it may be 

that 0KAσ < .  This point is returned to in section 6, where the impact of parameters on 

the entry hire price is examined through sensitivity analysis. 

 

As there are no variable costs associated with the use of capacity, it follows that 

capacity, once installed, will be utilised so long as it can be leased or hired at a non-

negative price.  It is, in effect, an irreversible investment; so long as hire/lease prices 

                                                                                                                                                               
 
6 GBM is a common assumption in the literature.  For a discussion of its pros and cons, see McDonald 
and Siegel [1986] and  Dixit and Pindyck [1994].  
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are non-negative, there is no incentive to retire capacity.7  An individual unit of 

capacity once installed is assumed to depreciate at a fixed rate θ .8  Equivalently, in 

terms of the ensuing mathematical analysis, one could assume that each individual 

unit of capacity was subject to a stochastic ‘death process’ in which the probability of 

the plant ceasing to be operational is a constant per unit time (i.e. is tθ∆  on a small 

time interval t∆ ).  As a consequence, at the aggregate level, the stock of capacity tQ  

also depreciates at a fixed rate θ  at points in time where there is no purchase of new 

capacity.  That is, on time intervals where there are no additions to capacity, 

 t tQ Qθ= −
�

        (4) 

Capacity leasing in this section is a competitive activity.  Individuals can lease/hire 

capacity at time t for a short duration t∆  at a price tp t∆ .  The instantaneous price at 

each point in time t is assumed to be a market clearing price.  Thus, for a given level 

of aggregate capacity, tQ  available at time t, the price tp  adjusts to bring this into 

line with demand.  Hence (2) defines the relationship between the price at time t and 

the amount of capacity available at that time. This competitive market will clearly 

experience at most two types of behaviour;   

Regime 1:  Intervals on which there is no investment at all 

Regime 2:  Intervals on which there is positive entry/investment in capacity 

 

Consider the investment problem faced by any firm thinking about installing capacity 

at some arbitrary time τ .  Given technology and demand are stochastic, so too is the 

equilibrium price - and it is assumed that the individual firm has rational expectations 

regarding the distribution of price at any given time t in the future.  The value Vτ  of 

the profit flow derived from ownership of one unit at time τ  as thus viewed as being 

                                                        
7 Most capital investments involve sunk costs to some degree and are at least partially irreversible.  
This is particularly so in the case of firm specific investments (advertising etc.).  However, in a 
competitive industry, at first glance it might appear that investment must be reversible.  The key point 
to note however, is that there is never any incentive for an individual firm to sell capacity since the 
market price for it always reflects the discounted value of expected future profits to be got from it – and 
with zero variable costs, so long as price remains positive, there is no incentive to scrap or shut down. 
 
8 Whilst it is conventional to assume that θ >0, so that the quantity of capacity ‘erodes’  over time, it is 
also worth noting that in some situations, it is possible for θ <0; this would be the case, for example 
where technical progress meant that capacity, having been installed, can be utilised more fully as time 
passes.  In telecoms, network capacity has occasionally increased through changes in the way messages 
are sent - without any physical change in large parts of the installed system.  
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the expected present value of future revenues accruing from hiring out capacity over 

its future life; 

( )( )( )r t
tv E p e dtθ τ

τ τ τ

∞ − + −=
�

.      (5) 

Here r denotes an appropriate (risky) discount rate9 and Eτ  denotes the expectations 

operator, where expectations are formed at time τ .  Note that the present value at 

time τ  of the instantaneous profit flow, at some time t τ> , from hiring out one unit 

of capacity is ( )r t
tp e τ− − ; however, if a unit of capacity is installed at time τ , 

depreciation then affects its availability - only an amount ( )te θ τ− −  is left at time t.  

Hence the integrand in (5).10  If it can be shown that tp  is a GBM process, then the 

value function in (5) can be written as ( ),v v p Kτ τ τ≡ .11  This is established below.   

 

The net present value, at time τ  of investing in a unit of capacity at this time is given 

as 

 PV v Kτ τ τ≡ − .       (6) 

In a competitive market, there will be no investment (regime 1) whenever firms’ 

anticipation of future prices is such that 0PVτ < , whilst there is entry/investment 

whenever 0PVτ ≥  (regime 2).12  Entry is instantaneous and this prevents the expected 

present value from rising above zero.  Suppose there is continuous entry on some time 

interval ( )1 2,τ τ .  Then it follows that  

 0v Kτ τ− = ,  for  ( )1 2,τ τ τ∈ ,    (7) 

                                                        
9 Empirically, solutions are not especially sensitive to the choice of discount rate.  It is also possible to 
take r as the riskless rate of interest, so long as expectations are calaculted in a suitably ‘weighted’ 
form.  See Campbell, Lo and MacKinlay [1997, ch.9] for a general discussion. 
10 Merton [1976] notes the result that, if physical depreciation is modelled as a Poisson death process, 
this feeds through into an effective increase in the discount rate (here, by the amount θ ). 
 
11 and fixed parameters such as ,rθ , of course.  These are suppressed. 
 
12 In contrast to the case of the monopoly firm, where it is possible to defer investment.  Deferring 
investment to take advantage of possible favourable movements in underlying economic conditions 
(interest rates, prices etc.) makes sense only if there are no others who can jump in and steal the 
project.  In a competitive market, firms will enter/invest as soon as present value becomes non-
negative. 
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and hence, since Kτ  is GBM, so is Vτ  on this interval.  On intervals where 

0v Kτ τ− < , there is no investment and price is given by (2).  Applying Itô’s lemma, 

and defining  

 ( )( )2 21
2 ( 1)p AA AKµ η α θ η σ σ≡ − + − + + ,    (8) 

the price process can be written as 

A K
t p t AA t t AK t tdp p dt p d p dµ ησ ϖ ησ ϖ= − −     (9) 

(see appendix, A1).  Thus price is also a GBM  on the intervals where there is no 

investment.   

 

The above analysis establishes that pτ  is  GBM  on [0, )∞ , so the value function in 

(5) can be written in the form ( ),v v p Kτ τ τ≡ .  As a corollary, it also follows that 

present value can also be written as a function ( ),PV PV p Kτ τ τ≡ .  The functions 

( ) ( ), , ,PV p K v p Kτ τ τ τ  are specified in terms of absolute prices, ,p Kτ τ , and are 

homogenous of degree 1 in these prices; that is 

 ( ) ( ), ,v p K v p Kτ τ τ τα α α=       (10) 

Thus, writing 1/ Kτα = , and defining the function ( ) ( )/ / ,1p K v p Kτ τ τ τψ ≡ , (10) can 

be written as 

 ( ) ( ) ( ), / ,1v p K v p K K x Kτ τ τ τ τ τ τψ= = ,    (11) 

where the relative price xτ  is defined by /x p Kτ τ τ≡ .   

 

The analysis of the competitive solution involves identifying the solution for ( )xτψ  

on intervals on which there is no investment, followed by an analysis of smooth 

pasting conditions at the boundary at which investment commences.  These are taken 

in turn.   

 

Value on intervals of zero Investment. 

Consider the process at some time τ  where 0PVτ < .  In what follows, for notational 

convenience, function arguments and time subscripts are omitted; thus  v denotes the 
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value function ( ),v p Kτ τ  and ψ  stands for ( )xτψ  etc.  The arbitrage equation (see 

Dixit [1993, p. 15]) which determines the evolution of v   is given as 

 ( ) ( )r vdt pdt E dvθ + = + .      (12) 

Applying Itô’s lemma and simplifying, this equation gives the fundamental 

differential equation for this problem as (see appendix A2) 

( ) ( )2 21
2 0px x r xσ ψ µ δ ψ θ δ ψ′′ ′+ + − + + + =    (13) 

where the variable 2σ  is defined as  

2 22
AA AK KA KKσ ησ σ ησ σ
� ��� �

≡ + + +� ��� � .    (14) 

The general solution to (13) involves the standard procedure of finding a particular 

solution and also finding the general solution to the homogenous part.  It can be 

shown that the solution takes the form (see appendix A3) 

 1 2
0 0 1 2( )x A x A x A xλ λψ = + + ,      (15) 

where 

( ) ( )( )0 2 21
2

1 1

( 1)p AA AK

A
r rθ µ θ η α θ η σ σ

= =
+ − + + + − + +

,  (16) 

and the roots are defined as  

( ) 2
1 1 2 /R Rλ σ= − +         (17) 

( ) 2
2 1 2 /R Rλ σ= − − ,       (18) 

where 

 ( )21
1 2pR µ δ σ≡ + − .       (19) 

 ( ) ( )( )1 222 21
2 2 2pR rµ δ σ σ θ δ≡ + − + + +     (20) 

Notice that ( )22 rσ θ δ+ + >0 if 2 0σ > , so the roots are real and of opposite sign 

when uncertainty is present.  The constant 0A  has already been determined.  The 

other two arbitrary constants are determined by boundary conditions.  As 0x → , if 

value is to be finite, it must be that 2 0A =  or the solution explodes (Dixit [1993] 

discusses this sort of boundary condition in more detail).  The other constant is 

determined by smooth pasting conditions at the positive investment boundary (see 

below).     
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Positive Investment Boundary. 

At any hitting time t�  at which there is a transition between no-investment and 

positive investment, since smooth pasting involves value matching and first order 

conditions (Dixit [1993], Dumas[1991]).  If the price rises sufficiently, investment is 

triggered.  At the transition boundary, smooth pasting conditions apply.  The ‘value 

matching’  condition  requires  0tPV =� .  Hence   

( ) ( ), 0 1t t tPV p K xψ= � =��� �        (21) 

The ‘ first order’  smooth pasting condition requires that 

( ) ( ) ( )/ 0 0t t t td PV dx x K xψ ψ′ ′= = � =� ��� � .    (22) 

Thus, from (15), 

 1

0 1( ) 1t t tx A x A xλψ = + =� �	� ,      (23) 

and  

( ) 1 11
0 1 1 1 0 10 /t t t tx A A x A x A xλ λψ λ λ−′ = + = 
 = −� � � � .   (24) 

Thus, from (23) and (24), 

( ) 1

1

1
0 1 0 (1 ) 1t t t tx A x A x A xλ

λψ = + = − =� �� � ,    (25) 

so tx �  is a constant.  Denote this as cξ , the relative price (relative, that is, to the unit 

price of capacity) which triggers investment in the competitive case.  Then, 

rearranging (25), and using (16), 

( )( )2 21 1 1
2

1 1

( 1)
( 1) ( 1)c p AA AKr r

λ λξ θ µ θ η α θ η σ σ
λ λ

� �� �
= + − = + + + − + +� � � �

− −
. (26) 

This is the relative entry trigger price (entry price relative to unit capacity cost).  

Denoting the entry price that would induce entry at some arbitrary time t as ( )c
ep t , 

this is given as 

 ( )c
e c tp t Kξ= .        (27) 

That is, entry occurs whenever price reaches the level c tKξ .  Under uncertainty, 

depending on the evolution of capacity unit cost and demand, the solution is 

characterised by an initial pulse of investment, and thereafter, intervals on which 

( )c
t e c tp p t Kξ= =  (on which there is positive investment) interspersed with intervals 

on which ( )c
t ep p t<  (on which there is zero investment).  
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3. CHARACTERISTICS OF THE COMPETITIVE SOLUTION 

The first point to note about the competitive industry solution (27) is its similarity 

with that for the ‘single project’  monopoly case (Dixit and Pindyck [1994]).  The 

principal difference between the model in section 2 and that described in Dixit and 

Pindyck [1994] (and used in Hausman [1997, 1999]) lies in the fact that the model 

here involves explicit modelling of the underlying processes which generate the trend 

and uncertainty in price, pµ .  This is useful because it makes clear that the trend in 

price, pµ , is itself affected by uncertainty and hence that uncertainty affects the 

trigger price not simply through the standard option multiplier 1 1( 1)λ λ − ; that is, this 

multiplier does not in itself measure the extent to which uncertainty pushes up the 

entry trigger price. 

 

It is shown below, although only under some assumptions regarding parameter values, 

that the competitive entry trigger price under certainty, denoted ( )cert
ep t  can be written 

as  

( )cert
e cert tp t Kξ=   .       (28) 

where 

[ ]cert rξ θ δ= + +        (29) 

Here, certξ  denotes the relative entry trigger price under certainty.  This sort of 

certainty price has been noted in earlier work (see Salinger [1998], Sidak and Spulber 

[1997], Laffont and Tirole [2000,  p.151]).   

 

Take the ratio of the uncertainty and certainty trigger prices, 

  ( ) ( ) 1

1 1
pc cert

e e

r
p t p t

r

θ µλ
λ θ δ

+ −
��� � �

= � � � �
− + +
� ����     (30) 

where the trend pµ  in the hire/lease price tp  is given by (8).  With no uncertainty,  

from  (26), the term ( )pµ η α θ− = − + , and this term can be larger or smaller than δ , 

depending on parameter values.  For example, it is likely to be significantly smaller if 

there is a downward trend in prices; that is if 0α < .  The overall effect of uncertainty 

on the relative price in (30) is thus rather less than might be expected if the standard 
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option multiplier is applied to the certainty price (see section 6 for numerical 

estimates).   

 

This implies no criticism of earlier work on the entry trigger price under uncertainty 

(e.g. Dixit and Pindyck [1994], Hausman [1997, 1999]) per se since an equation of 

type (26) is used in this literature.  However, it should be clear from the above 

analysis that it is inappropriate to use p tr Kθ µ
� �

+ −� �  as the benchmark for the 

certainty price in the competitive industry - and so when it is suggested that 

uncertainty increases the entry price by a factor of 2, or 3, or more, this is not really a 

‘ fair’  comparison.  In fact the actual overall impact of uncertainty is likely to be much 

less than this (see below and also section 6 for numerical estimates and comparisons).    

 

It is worth considering in more detail whether the entry price (26) converges on the 

certainty price (28), as it is not immediately obvious that this will in fact be the case.  

Thus, from (26), note that 

( )( )
( )

0 0

2 21
0 0 2

lim lim

lim lim ( 1)

AA AK

AA AK

p

AA AK

r

r

r

σ σ

σ σ

θ µ

θ η α θ η σ σ

θ η α θ

→ →

→ →

� �
+ −� �

� �
= + + + − + +� �

� �
= + + +� �

 (31) 

so this begs the question “what happened to the term rθ δ+ + ?”  For brevity, define   

0 0 0 0lim lim lim lim
KK AA AK KA

Lim σ σ σ σ→ → → →≡ .    (32) 

Then it is straightforward, though tedious, to establish that, taking limits, 

 

( )( )
[ ]

2 21 1
2

1

( 1)
( 1)

, ( )

AA AKLim r

Max r r

λ θ η α θ η σ σ
λ

θ δ θ η α θ

� 	
+ + + − + +
 �

−
= + + + + +     (33) 

(see appendix A4).  Thus the formally correct entry trigger price under certainty is 

given by (28) but where  

[ ], ( )cert Max r rξ θ δ θ η α θ= + + + + + .    (34) 

The rationale for this turns out to be reasonably straightforward; the solution 

converges on one which is essentially driven by the trend in demand or, one which is 

driven by the rate of technical progress.  At time 0, clearly there has to be an 

instantaneous influx of investment in capacity.  Thereafter, under certainty, it can be 
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proved13 that there is either continuous investment in capacity and the hire price is 

always that given in (28) – or there is no further investment in capacity.  Essentially, 

there is no further investment in capacity if erosion in the level of demand is 

sufficiently fast whilst physical depreciation is sufficiently slow.  This occurs when  

  ( )r rθ δ θ η α θ+ + < + + + ,      (35) 

which requires that 

  ( ) /α θ γ δ+ >   or equivalently, as α γδ θ< −    (36) 

Since the elasticity of demand 0γ <  and depreciation 0θ ≥  (usually), this can only 

occur if demand is falling sufficiently fast (α  sufficiently negative).  When this 

occurs, the demand effect depresses prices at a faster rate than is indicated in (28), and 

hence the initial hire price has to be higher to compensate for the ensuing faster 

decline in the price profile (to motivate the initial investment, firms must expect 

future hire prices to be such that the investment is at least a zero NPV transaction).  If 

the inequalities in (35), (36) are reversed, then there is an initial pulse of investment, 

followed by positive levels of investment thereafter.  Under certainty, price in this 

case tracks the trigger price function; that is, (28) holds everywhere on [0, )∞ .  This is 

really the ‘normal’  limiting case – demand has to fall at a fairly high trend rate to 

overturn it.  Thus, in the rest of the paper, it is convenient to assume that α γδ θ> −  

so that (29) does indeed describe the entry trigger price under certainty. 

 

Whilst the root 2λ  plays no role in the solution in equation (15) (because 2 0A = ), an 

interesting and somewhat remarkable result is that   

[ ]1 2

1 2

1

1 pr r
λ λθ µ θ δ

λ λ

��� ���
−� �

+ − = + +
� � � �� 	

−

�� 
�� .    (37) 

(Proof: appendix A5).  Thus it turns out that it is after all possible to write the 

competitive entry price as an ‘option value’ mark-up on the certainty price; that is, 

(26) can be rewritten as 

[ ]2

2

1
c r

λξ θ δ
λ

��
−= + +
� �
��� ,      (38) 

                                                        
13 The proof that there are only two possible solutions in the certainty case is rather tedious and is 
omitted. 
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although the ‘option multiplier’  ( )2 21λ λ−  is not one which seems to have been 

noted in previous work.  For plausible parameter values, this multiplier takes a 

smaller value than ( )1 1 1λ λ − .  Section 6 establishes that the overall impact of 

uncertainty will raise the trigger entry price by a factor of around 10-60% of the 

certainty price.14   

 

4. THE MONOPOLY FIRM 

This section analyses the case where a single firm controls the level of capacity in the 

industry.  The broad characteristics of the solution parallel that described in the 

competitive case, so the analysis is abbreviated where possible.  Demand is assumed 

elastic ( 1γ < − ); with a constant elasticity demand curve, there is clearly no solution if 

demand is inelastic.15  This implies revenue increases with quantity sold so, for any 

given level of installed capacity, the firm will choose to fully utilise this capacity (by 

setting price appropriately). 

 

As before, there may be intervals on which the firm does not invest (regime 1), and 

intervals on which it chooses a positive level of investment (regime 2).  The strategy 

parallels that for the competitive case; first the evolution of value in the non-

investment regime is established, followed by an analysis of smooth pasting 

conditions at the boundary at which investment commences.    

 

The price process, on time intervals on which there is no entry/investment is given by  

(9).  The firm is assumed to maximise expected present value; at some time τ  during 

an interval of non-investment, this is  

 ( ) ( ) ( ) ( ){ }, , , ,
t r tr t

t t t t tV p K Q E p Q e dt V p K Q e ττ
τ τ τ τ τ τ

− −− −= +
��� �

����� . (39) 

                                                        
14 Notice that it would be a mistake to use the trend rate in the cost of capacity in place of the trend rate 
in hire prices, and it would also be a mistake to multiply a previously estimated certainty access price 
(that takes account of interest rates, depreciation and technological progress) by a factor equal to the 

‘option multiplier’   1 1( 1)λ λ −  since this would generally give a significant overestimate of the 
access price.  
 
15 For the usual reason that revenue goes to +∞  as quantity is cut to zero.  Thus the firm, whatever its 
installed capacity would increase its profit by making less of that capacity available to the market; 
clearly this is not a plausible description of the limiting behaviour of demand price. 
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Here r denotes an appropriate discount rate16 and Eτ  denotes the expectations 

operator, where expectations are formed at time τ .  The time t�  denotes the end of the 

period of non-investment, a point in time at which new investment adds to capacity.   

 

The value function Vτ  is homogenous in prices and also linear in Qτ , and so can be 

written as 

 ( )t t t tV x K Qψ≡     where /t t tx p K=    (40) 

denotes the relative price.  It is also useful to define the ‘per unit capacity’  value 

function (as in section 2) as 

 ( , ) ( , , ) ( )t t t t t t t t tv x K V x K Q x Kψ= = .     (41) 

Thus, 

( ) ( )
( ) ( ) ( ){ }

( ) ( ) ( ){ }( )( )

, ,

t r tr t
t t t t

t r tr t
t

V p K Q x K Q

E p Q e dt x K Q e

E p Q e dt x K Q e

τ τ τ τ τ τ τ

ττ
τ ττ

θ τθ τ
τ τ τ τ ττ

ψ

ψ

ψ

− −− −

− + −− + −

=

= +

= +

�

�

� �
���

� �
 

and so  

( ) ( ) ( ) ( ){ }( )( )t r tr t
tx K E p e dt x K e θ τθ τ

τ τ τ τ ττ
ψ ψ − + −− + −= +

��� �
  (42)

 

So, in terms of the per unit capacity value function, 

 { }( )( ) ( )( )( , ) ( , )
t

r t r t
t t t tv x K E p e dt v x K eθ τ θ τ

τ τ τ τ τ
− + − − + −= +

�	� ��
��� .  (43) 

To reduce notational clutter, time subscripts and function arguments are dropped in 

what follows (where this results in no loss of intelligibility).  From (43), the arbitrage 

equation (Dixit [1993, p. 15]) is  

 ( ) ( )r vdt pdt E dvθ+ = + .      (44)  

Then applying Itô’s lemma and simplifying, this yields the following fundamental 

differential equation (appendix A3):  

( ) ( )2 21
2 0px x r xσ ψ µ δ ψ θ δ ψ′′ ′+ + − + + + = .   (45) 

                                                        
16 Empirically, solutions are not especially sensitive to the choice of discount rate.  It is also possible to 
take r as the riskless rate of interest, so long as expectations are calculated in a suitably ‘weighted’ 
form.  See Campbell, Lo and MacKinlay [1997, ch.9] for a general discussion. 
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This equation is identical to (13), for the competitive case.  The general solution is 

thus given by (15) where as before, 1λ  is given by (17) and 2 0A =  for the same 

reasons as in the competitive case.  Thus  

 1

0 0 1( )x A x A xλψ = +        (46) 

where the constant 0A  is given by (16). 

Boundary Conditions:   

Under monopoly, it pays to restrain investment in capacity (in order to enjoy higher 

subsequent hire prices).  It is useful to define a ‘net value’  function for the monopoly 

case as 

 ( )t t t t t tx K Q K Qπ ψ= −�����������       (47) 

where t t tQ A pγ=����� .    Initially, there is a major investment in capacity (when 0t =
	

) and 

this represents the overall net value of the initial investment.  The optimal initial 

choice of  tp 
 ,  and so ( / )t t tx p K=���� ,  at t
�

=0 (equivalently, choice of capacity 0Q )  is 

one which maximises this function.  At any subsequent time t
�

 at which the firm 

wishes to add further to capacity, (47) also measures the rate at which net value 

changes with the choice of trigger price tp 
 .  At such boundaries, smooth pasting 

conditions apply;  in this case the requirement is that17 / 0t tpπ∂ ∂ =���  and 

22 / 0t tpπ∂ ∂ =��� .  Thus  

[ ]/ 0 ( ) 1 ( ) 0t t t t tp x x xπ γ ψ ψ ′∂ ∂ = � − + =��� � ���  ,   (48) 

( )[ ] ( )
{ }

22

2

/ 0

1 ( ) 1 1 ( )

(1 ) ( ) ( ) 0

t t

t t t

t t t t

p

x x x

x x x x

π
γ γ ψ γ ψ

γ ψ ψ

∂ ∂ = �
′− − + −

′ ′′+ + + =

���

� ���

������� .   (49) 

After some rather tedious manipulations (see appendix, A8), it can be shown that (46), 

(48), (49) can be simplified to obtain the appealing simple condition that   

( ) ( )1

11 ( 1) ptx r
γ λ θ µ

γ λ
= + −

+ −
�      (50) 

Thus the hitting value tx �  is a constant as in the competitive case.  Denoting this as 

Mξ , this gives a nice comparison for pricing and output choices under monopoly vis a 

                                                        
17 Since the problem involves a free choice for the trigger price, in this case the smooth pasting 
conditions require setting the first and second derivatives (with respect to this price) of the net value 
function to zero  (Dixit [1993], Dumas [1991]). 
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vis those under competition.  That is, in view of (16) and (26), the relative entry 

trigger price under monopoly is given as 

 ( )11M c γξ ξ= + .       (51) 

Dixit, Pindyck, and Sodal [1999], in dealing with an ‘all-or-nothing’  monopoly 

investment problem, interpret the option multiplier ( )1 1/ 1λ λ −  as an elasticity mark-

up.  Here, it can be seen in (50) that, when the firm controls both timing and level of 

investment, there is an additional (and ‘genuine’) demand elasticity mark-up.  The 

associated monopoly entry price ( )M
ep t  at which the firm is induced to add to 

capacity is given as 

 ( )1( ) ( ) 1M c
e M t ep t K p t γξ= = +      (52) 

Thus in this model, the entry trigger price at which a monopolist starts to invest is 

given as the competitive entry trigger price (under uncertainty) plus the standard 

monopoly mark-up.18  Hence, since  M cξ ξ> , the monopolist only adds to capacity 

when price reaches a higher value than would be the case under competition.  Thus, 

prices will generally be higher under monopoly than under competition, whilst, 

concomitantly, installed capacity will be less.  It is possible to compare the levels of 

investment; since the entry trigger price is higher in monopoly by the factor 

( )1/ 1 1M c γξ ξ = + , then from (1), the initial level of installed capacity is lower than in 

the competitive case, this being captured by the ratio ( )/M c

γξ ξ .  These points are 

explored numerically in section 6. 

 

5. MONOPOLY SUBJECT TO PRICE CAP 

 
Given a firm which controls the market will tend to delay investment and will under-

invest, a natural question to pose is whether some form of regulation might be 

beneficial.  Hausman [1997], having established the competitive entry price, suggests 

this is the price the monopoly provider of capacity should be allowed to set if it is 

required to offer access.  In practice, this would take the form of a price cap, an upper 

                                                                                                                                                               
 
18 In the single period Monopoly pricing problem under certainty, profit maximisation requires setting  

a price ( )1 1/Mp MC γ= +  (where MC denotes marginal cost which would also correspond to the 

competitive price cp  in a competitive market).  That is, ( )1 1/M cp p γ= + .   
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bound to the price that the monopolist is allowed to set.  However, whilst such a 

regulatory price rule appears plausible, the question of a how a monopolist will 

respond to such a price cap has not been formally addressed.  This section shows that, 

if a price cap is imposed, the best choice of cap is indeed the competitive price – but 

that even when the price cap is optimally chosen, outcomes may diverge significantly 

from those that would occur in a competitive market.   

 

The price the firm is allowed to set at time t, denoted s
tp , is restricted by a price cap 

constraint of the form  

s
t tp p≤  where t tp Kξ=      (53) 

and ξ  is a constant chosen by the regulator.  In what follows, it is shown that the 

general consequence of imposing a constraint, if it binds at all, is that the firm will 

tend to under-invest.  It will also, when the price cap binds, tend to wish to impose 

quantity rationing.  However, it is also shown that, if a price cap of this form is set, 

then choosing cξ ξ= , the competitive industry value, realises the best, albeit 

imperfect, response from the firm.   

 

In contrast to the cases analysed in sections 2-4, in this section there are three possible 

regimes.  When current installed capacity is too ‘ large’ , price will be below the price 

cap – and the firm will wait (regime 1).  As demand and technology evolve over time, 

the price at which capacity is utilised may hit the level imposed by the intertemporal 

price cap.  At this point, the firm is price constrained.  If the only constraint on the 

firm is the price cap, then it may choose to defer investment yet further.  That is, it 

may choose to impose quantity rationing on customers (regime 2).  However, if 

demand increases sufficiently, it can be expected that the firm will eventually wish to 

add to capacity (regime 3). 

 

Let tp  stand for the demand price, the price which would reduce the level of demand 

to the currently available capacity, such that (2) gives the relationship between this 

demand price and capacity.  However, the firm is required to set a price which 
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satisfies the price cap (53).  Denote the price the firm sets as s
tp ; then clearly, the set 

price must satisfy,  

 [ , ] [ , ]s
t t t t tp Min p p Min p Kξ= = .     (54) 

where ξ  is a constant chosen by the regulator.  If and when the demand price tp  is 

allowed by the firm to rise above the price cap tp , this entails quantity rationing; that 

is, from (1) demand is d
t t tQ A pγ=  whilst installed capacity is related to the demand 

price by t t tQ A pγ= .  Thus, given 0γ < , when t tp p> , clearly d
t tQ Q> ; there is 

excess demand.    

 

Let 0ψ  (as before) denote the solution when there is no investment and no price 

constraint whilst  cψ  denotes the solution when the price constraint applies but there 

is no investment.  As before, the solution process involves characterising the process 

in each of the two non-investment regimes, followed by a study boundary conditions.   

 

Regime 1:  Unconstrained price, no investment. 

The solution here is naturally identical to that already established for the 

unconstrained monopoly firm.  The fundamental equation is thus given by (45) and 

the solution is again 

 1 2

0 1 2( )x A x A x A xλ λψ = + +       (55) 

where 0A  is given by (16).  As before, note that, as 0x → , if value is to be finite, it 

must be that 2 0A =  or the solution explodes.  Hence  

 1

0 1( )x A x A xλψ = +        (56) 

The constant 1A  is determined later via an analysis of the boundary conditions to the 

overall problem. 

Regime 2:  Price constrained, no investment 

In this region, t tp Kξ= ; the arbitrage equation becomes 

( ) ( )r vdt Kdt E dVθ ξ+ = +       (57) 

The analysis parallels that for (44); it yields (compare with (45)):  

( ) ( )2 21
2 0px x rσ ψ µ δ ψ θ δ ψ ξ′′ ′+ + − + + + = ,   (58) 

as the fundamental equation.  The general solution is thus  
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 ( ) 1 2
1 2( ) ( )c x r C x C xλ λψ ξ δ θ= + + + +     (59) 

where the arbitrary constants 1 2,C C  are determined by a consideration of boundary 

conditions. 

Analysis of transition boundary conditions: 

Let 1t
�

 denote a hitting time at which there is a transition between the regimes 1 and 2 

whilst 2t
�

 denotes a hitting time at which new investment commences.   

Regime 1/2 boundary:   

Here the price cap binds, and the level here of the price cap is exogenously fixed by 

the regulator.   Thus, 
1t

x ξ=� and smooth pasting involves matching value and first 

derivatives (with respect to x ) for the solutions as they meet at the boundary (Dumas 

[1991]).  Since ( ) ( )t t tv x x Kψ= , this entails19  

( ) ( )cψ ξ ψ ξ= ,        (60) 

( ) ( )cψ ξ ψ ξ′ ′=         (61) 

No investment/Positive Investment Boundary - Optimal Stopping:   

It is convenient to write 
2t

x ξ=�  (which, as will be seen, is a constant if the smooth 

pasting conditions are to be satisfied).  That is, ξ  denotes the relative trigger market 

clearing price at which the firm would choose to start to invest when the firm is 

subject to a price cap.  That is, whilst being required to set the price s
t tp Kξ≤ , for its 

given level of capacity, the market clearing price tp  is the price the firm would 

choose to set if it was unconstrained.  Whenever this market clearing price  

t tp Kξ→ , the firm will start to add to capacity (in what follows it is shown that in 

general, ξ ξ> ).  Since the choice of ξ  is free,  the smooth pasting conditions at 2t
�

 

require the first and second derivatives of the value function in regime 2 to satisfy 

equivalent conditions to those specified above in the unconstrained monopoly case.  

That is,  

[ ]
2 2
/ 0 ( ) 1 ( ) 0t tpπ γ ψ ξ ξψ ξ′∂ ∂ = � − + =���    (62) 

                                                        
19 where, from the definitions of , cψ ψ , these are calculated as 1

0 1( ) A A λψ ξ ξ ξ= + , 

1 1
0 1 1( ) A A λψ ξ λ ξ −′ = + , ( ) 1 2

1 2( ) /( )c r B Bλ λψ ξ ξ θ δ ξ ξ= + + + +  and 

1 21 1
1 1 2 2( )c B Bλ λψ ξ λ ξ λ ξ− −′ = +

. 
. 
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( )[ ] ( )
{ }

2 2

22

2

/ 0

1 ( ) 1 1 ( )

(1 ) ( ) ( ) 0

t tpπ

γ γ ψ ξ γ ξψ ξ

γ ξψ ξ ξ ψ ξ

∂ ∂ = �
′− − + −

′ ′′+ + + =

���

   (63) 

Analysis of smooth pasting conditions: 

It is possible to solve the equations (60)-(63) to determine the arbitrary constants 

1 1 2, ,A B B  and the value of ξ  as a function of ξ  and the other parameters in the 

problem.  

 

It is possible to solve the equations (56),(59),(62),(63)  (see appendix A10) to obtain 

the value of ξ  as a function of ξ  and the other parameters in the problem.  After 

extensive manipulation, this can be written as20 

2
2

1/
1

21
cert c

c cert

λλξ ξ ξ ξξ
ξ ξ ηλ

−
� �� ��� �

−= � �� � � �� �− +
� 	� 	� 	       (64) 

where as previously established, cert rξ δ θ= + +  is the certainty competitive entry 

trigger relative price, and ( )( )2

2

1
c rλ

λξ δ θ−= + +  is the uncertainty competitive entry 

trigger relative price whilst ( )/ 1M cξ ξ η= +  is the uncertainty unconstrained 

monopoly entry trigger relative price.21  Equation (64) gives the relative demand 

price; it is also useful to define the associated demand price at which the price capped 

monopolist would choose to start investing as 

 ( )MPC
e tp t Kξ=         (65) 

where ξ  is defined in (64).  Recall that this demand price ( )MPC
ep t  at which entry is 

triggered is not that which is observed in the market place (because the price cap is 

binding); the monopolist holds back investment in capacity until a time arrives when 

demand is such that, if the monopolist was allowed to set price freely, it could hire out 

all its currently installed capacity at this price.  The difference between the market 

clearing demand price in (65) and the price cap gives an index of the extent to which 

the firm is under-investing.  An alternative measure is to consider the level of capacity 

each would install.  Imagine a time at which, given current installed capacity levels,  

                                                        
20 Naturally, for a given specification of ξ , it is also possible to determine the arbitrary constants 

1 1 2, ,A B B  although this is not pursued here. 
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both a monopolist and a competitive industry would choose to invest.  From (1) and 

(65), the monopolist would add capacity to the point where ( )( )MPC
e t tQ t A K

γξ= ; by 

contrast, the competitive industry would add capacity until ( )( )c
e t c tQ t A K

γξ= .  Hence 

the level of under-investment by the monopolist can be measured as 

 ( )( ) / ( ) /MPC c
e e cQ t Q t

γξ ξ= .      (66) 

 

In section 6, in the sensitivity analysis, the behaviour of ξ  as a function of ξ  is 

explored numerically.  However, the following three general properties can be 

usefully established for the function ( )ξ ξ .  Firstly, since 2 0λ < , fairly clearly, as the 

price cap ξ  is varied,  

( )lim
certξ ξ ξ ξ↓ = +∞ .       (67) 

This makes sense.  At the certainty price, the firm gets zero net present value from 

investing only if it is guaranteed to be able to hire out its capacity at the certainty 

price for ever (recall, the certainty price is falling over time at the rate δ ).  Given 

uncertainty, there is the possibility it will not get this price if demand shifts adversely.  

Thus as the price cap is tightened to this level, the firm needs a higher and higher 

demand price to induce it to add capacity.  In the limit, as certξ ξ→ , so ξ → +∞ ; the 

firm will not install any capacity at all.  

 
Secondly, and intuitively, is that 

( )lim
M Mξ ξ ξ ξ ξ↑ = .       (68) 

This merely states that the price cap ceases to have an impact as it is relaxed to the 

level the unconstrained monopolist would choose.  Thirdly, and more interestingly, it 

turns out that   

( )
cert Mc argminξ ξ ξξ ξ ξ≤ ≤=       (69) 

(Proof: appendix A11).  That is, if the object is to get as close to the competitive 

solution as possible, setting the price cap equal to the competitive industry entry 

trigger price is the best one can do.  If one does set cξ ξ= , then (64) simplifies to give 

 ( ) 21
2(1 )c c

λξ ξ ηλ ξ−= + .      (70) 

                                                                                                                                                               
21 Relative to capacity unit price, that is. 
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Given uncertainty ( ,AA KAσ σ  and/or 0AAσ > ), then since 2, 0η λ < , it follows that 

2(1 ) 1ηλ+ >  and so 

 ( )c cξ ξ ξ> .        (71) 

However, fairly clearly, from (70), using the definition (32), since c certLim ξ ξ=  and 

21
2(1 )Lim ληλ −+ =1 it is also true that  

 ( )c certLim ξ ξ ξ=         (72) 

(Proof:  appendix A11). Thus (72) establishes that, under certainty, setting the 

intertemporal price at the competitive entry level does indeed induce the monopolist 

to emulate the competitive market, whilst (71) establishes that, in the presence of 

uncertainty, the price capped monopolist will tend to under-invest and wait too long to 

invest.  In regime 3, in the absence of investment and with the firm not adding to 

capacity, demand is quantity rationed.  This follows from (1); when price capped, 

quantity demanded is d
t t tQ A pγ=  whilst installed capacity is related to the demand 

price by t t tQ A pγ= .  Thus when demand price exceeds the price cap ( )t tp p> , given 

0γ < ,  so demand exceeds installed capacity; d
t tQ Q> . 

 

The essential reason why the firm may choose to ‘under-invest’  (relative to the 

competitive benchmark) is that, given demand uncertainty,  it will take into account 

the possibility of future adverse market movements when choosing how much 

capacity to add.  Restraining investment in periods where the price cap is binding 

allows it to enjoy higher prices if demand falls at a later date.  The possible numerical 

magnitude of this type of effect is examined in some detail in section 6.  As indicated 

there, the level of under-investment can be substantial. 

 

6. SENSITIVITY ANALYSIS 

This section examines the empirical significance of the above results by conducting a 

sensitivity analysis focused on ballpark figures commonly used in the Telecom 

industry.  These are given in table 1.   

Insert Table 1 here 

One (rather crude) way to tackle demand uncertainty lies in focusing on the revenue 

process, since it is straightforward to gather sales revenue data for any given firm.  
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The revenue process in unconstrained regions parallels the price process and is given 

as  

( )A K
t R t t AA t AK tdR R dt R d dµ η σ ϖ σ ϖ= − +     (73) 

where 

( )2 21
2( 1) ( 1)R AA AKµ ηα η θ η η σ σ= − − + + + + ,    (74) 

so the variance is22 

 ( )2 2 2
R AA AKv η σ σ= + .       (75) 

Notice that the variance of this process is the same as for the price process; compare 

(73) with (9).  The variance for capacity unit cost is, from (3),   

2 2
K KA KKv σ σ= + .       (76) 

Define ( )1/ 2

K Kvσ =  and ( )1/ 2

R Rvσ =  as the instantaneous standard deviations and the 

correlation between the revenue and capacity cost processes as 

 
[ ]

( )
1/ 2

( / , / )

( / ) ( / )

AA KA AK KK

K R

COV dK K dR R

Var dR R Var dK K

η σ σ σ σ
ρ

σ σ
− +

= = .  (77) 

As discussed in section 2, let 0AKσ =  whilst allowing that KAσ   may be non-zero.  

That is, technological progress may be affected by demand side factors but not vice 

versa.  Then it is straightforward to parameterise the model in terms of the parameters 

, , , , , , ,K Rr α δ θ γ ρ σ σ , since using (75)-(77), it follows that 21KK Kσ σ ρ= − ,  

/AA Rσ σ η= −  and KA Kσ ρσ=  (see appendix A12).  Given values for these 

parameters, and a value for capacity cost at the time entry takes place (standardised at 

0K =  £100),  it is straightforward to first compute , ,AA KK KAσ σ σ  and then values for 

, ,cert c Mξ ξ ξ , the relative entry trigger prices.  These hold for all 0t ≥ ; however, 

multiplying these by the initial benchmark figure 0 100K =  also gives the initial entry 

trigger prices as cert
ep , c

ep , M
ep .  Given any specification for ξ  the value for ( )ξ ξ , 

the relative demand price at which the price constrained monopolist would choose to 

enter, can be obtained from (64), and hence the value for the demand price MPC
ep .   

                                                        
22 The derivation parallels that for price.  The linkage is very approximate since, within the model, 
volatility will be differ on intervals of zero investment from intervals on which there is positive 
investment.  It is possible to pursue this calculation, but since the general thrust is merely to obtain ball 
park figures, this is not pursued.  The calculation is also crude in that it is based on aggregate sales 
data. 
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The benchmark (risky) discount rate is taken as 10%, although a range up to 30% is 

reported; the value for θ  is 10% with a range from 0-50% is considered (infinite life 

down to 2 years expected life); the value for elasticity is –2, with a range from -1 to –

8.  The trend is demand, α , is set to zero, with a range from –30 to +30%.  The 

benchmark for δ  used in Table 1 as suggested in Hausman [1997] for the Telecom 

industry, at 8%, with a range from 0-12%.  Looking at sales data for the FTSE100 

companies for example, the average across all companies for Rσ  was about 15% 

(with most lying between 5% and 30%) over the last 15 years.  Financial regulation 

has an impact of course, and many of the European Telecom companies have quite 

low values (4% for British Telecom, Telecom Italia, 6% for Deutsche Telecom etc.).  

The volatility of share prices (or price indexes) is often referred to as giving some 

idea for volatility.  For example, Dixit and Pindyck [1994] use 20% as an estimate 

(based on the volatility of the S&P index).  In Table 1, the benchmark value used for 

both revenue and capital unit cost is 20%; this is arguably a little on the high side, 

especially for the latter.  However, since it is argued in this paper that uncertainty has 

a rather smaller impact than appears to be the case for the ‘all-or-nothing’  monopolist, 

it seems reasonable to take such a value, and to use sensitivity analysis to look at a 

range from 0% to 40%.  Finally, an arbitrary value of £100 is used for unit capacity 

cost. 

Table 2 here 

Table 2 uses the benchmark values of Table 1, and reports the impact of unilaterally 

varying each parameter in turn.  It shows that the rate of growth in demand α , the 

elasticity of demand γ , the correlation between technological progress and demand 

ρ , the rate of depreciation θ , and the discount rate r,  over their plausible ranges, 

have an effect, but sensitivity is really quite limited,  and even with quite wide 

parameter variations, the relative trigger price cξ  ( /c cert
e ep p= ) hardly gets above 50% 

(note the ranges reported in tables 2 and 5 feature a rather wider range for parameter 

values than might be construed as a 95% confidence interval).  Uncertainty per se has 

an impact, but only when volatility is fairly high.  When K Rσ σ=  = 30% or less, the 

mark-up is less than 60%.  Panel (b) of table 2 illustrates the fact that the impact on 

the initial level of installed capacity demand is not much affected by r or ρ  but is 

relatively sensitive to the other parameters, especially demand elasticity (as one would 
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expect).  Uncertainty enters through Rσ  and Kσ ; whilst it is possible to vary each 

independently, for brevity, the right hand column in both panels merely reports the 

impact for the case where they are set equal and then varied.  The price ratio naturally 

increases with volatility; for example the entry trigger price is only 1.08 times the 

certainty price when ( )R pσ σ= =10% but is 1.28 times it when  ( )R pσ σ= =20%.  

However, to get a relative price of twice or more requires really quite high volatility 

(40% or so).23  

 

As suggested in previous work,  the ‘option value’  multiplier ( )1 1/ 1λ λ −  for 

Telecoms can easily be of the order of magnitude 2-4.  However, as explained above, 

the option multiplier that multiplies the certainty price is ( )2 21 /λ λ−  and this takes a 

generally significantly smaller value.  This is illustrated in Table 3 below. 

Table 3 here 

Notice that the multiplier ( )1 1/ 1λ λ −  lies above, and converges on the value 1.866�  as 

predicted by the limit analysis in section 3 and appendix A4 (see equation (A.60)), 

where it is shown that  ( ) ( ) [ ]( )1 1/ 1 /Lim r rλ λ θ δ θ η α θ− = + + + + +  (=1.866�  at 

Table 1 benchmark values).  Note that column 2 gives the implied value for the 

volatility measure σ  defined in (14), for reference purposes. 

Table 4  and Figures 1, 2 here 

Table 4 gives the response of the price capped monopolist to variations in the 

tightness of the price cap whilst Figure 1 illustrates the relative demand price effect, 

and Figure 2, the impact on relative level of investment (relative to the competitive 

uncertainty case).  Notice, in Figure 1, that choosing the competitive level for the 

price cap gives the best response, as in (69), whilst the limit behaviour indicated by 

(67) and  (68) is also manifest.  At the Table 1 benchmark values, the imperfect nature 

of the firm’s response is clear.  Thus the certainty competitive entry price is £28, 

under uncertainty, it is £35.94 but even with the best choice for the price cap, setting 

0.3594cξ ξ= = , the initial demand price at which the price capped firm enters is 

                                                        
23 Of course, the sensitivity analysis only considers moving each parameter value unilaterally.  If all 
parameters are moved to levels which tend to increase the mark-up, a larger figure can be produced.  

For example, pushing 0.1, 3,α γ→ − → −  , 0θ δ →  and 0.05r → , then / 2.16c cert
e ep p = .  

However, these are all rather extreme values. 
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£47.945 and, if the firm was commencing at time zero, it would install only just over 

56.2% of the capacity the competitive industry would supply.  This illustrates the 

general argument presented above that the price cap cannot be used to realise the 

competitive outcome in the presence of uncertainty.   

Table 5 here 

Table 5  explores the consequences of varying each parameter from the Table 1 

values, whilst maintaining an optimal price cap ( cξ ξ= ), on the relative demand price 

that would induce the price capped monopolist to start to invest, ξ , where ξ  is given 

by (64).  That is, the price cap is optimally reset for each variation from the 

benchmark case.  This gives some idea of the conditions under which the optimally 

set price cap is most effective.  The first panel in Table 5 reports the relative entry 

price / /MPC c
e e cp p ξ ξ= .  In the benchmark case this takes the value 1.334 (demand 

price at which entry occurs is 33.4% higher than that for the competitive case).  As 

can be seen, for all variations, the price cap performs fairly poorly - except for the 

case where uncertainty is small.  Of course, in the limit, under certainty, the price cap 

works perfectly well, in view of (72); this is illustrated in the last column in both 

panels of table 5.  

 

7. CONCLUDING COMMENTS 

This paper suggests that uncertainty does have an impact on the price at which firms 

choose to invest in capacity, but that, in the competitive industry case, relative to the 

standard certainty estimate for the access price, uncertainty probably adds less than a 

60% mark-up (and perhaps significantly less).  It also shows that Monopoly per se 

may be a problem; if the incumbent (e.g. network operator) is free to set prices and 

choose the capacity of the network, as in the certainty case, it will tend to invest too 

little and wait too long, and for too high an entry price, before choosing to invest.  The 

extent to which it does so depends on estimates of the various parameters involved, 

but most notably, on the estimate of the demand elasticity; as in the single period 

monopoly problem, unless demand is really quite elastic, the mark-up is likely to be 

substantial.  The regulated firm will also have an incentive to try to claim that the 

access price should in fact be higher than is indicated in the competitive case (in this 

model, by the elasticity mark-up /(1 )γ γ+ ) and so will have an incentive to try to 
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massage estimates of capital costs (and other parameters) to try to achieve a higher 

allowed level for the access price.  

 

Under certainty, it was shown that subjecting the firm to a well chosen intertemporal 

price cap would resolve this problem by forcing the monopoly firm to emulate the 

competitive ideal (assuming the trend in demand is not too negative).  However, 

under uncertainty, it has been shown that an intertemporal price cap may be 

beneficial, but cannot be used to fully realise the competitive solution.  The essential 

problem is that when the price cap is set at a level below the monopoly entry trigger 

price, the firm does not start investing as soon as the price cap is hit.  It delays 

investment, and sheds demand through quantity rationing, until a point is reached 

where demand is sufficiently strong to motivate it to invest.  The rationale for not 

expanding capacity when price capped is that the firm is taking account of the future 

possibility that demand may fall sufficiently for the price cap no longer to bind.  

Having less installed capacity allows it to enjoy higher prices later on when the price 

cap does not bind.  Thus, as in the unconstrained case, the firm subject to a price cap 

also realises option value through  ‘waiting to invest’ .  

 

To sum up, although in this model the best choice of price cap appears to be that 

where the firm is allowed to charge prices not higher than would arise in a 

competitive industry, it has been shown that a price capped firm will have a general 

incentive to both under-invest and to quantity ration.  This would be manifest in 

service industries by the firm allowing the quality of service to degrade.  For example, 

particularly in periods where there is a significant upswing in demand such that the 

price cap binds, the firm has a clear incentive to drag its feet on investment, an 

incentive to find excuses for why it cannot keep up with such ‘unexpected’ upswings 

in demand etc.24  Although there are important factors (such as brand loyalty and 

reputation), which are not explicitly modelled here, that would tend to reduce this 

incentive, it does suggest that some care must be given to the design of price cap 

regulation.  One would predict that quantity rationing and under-investment are likely 

to be more prevalent in industries where brand loyalty or quality of service are 

                                                        
24 In Telecoms, quantity rationing would manifest itself through falls in the quality of service. 
Interestingly, this kind of problem is beginning to manifest itself in the UK - although, perhaps, for 
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regarded as less important factors, and also perhaps in industries where quantity 

rationing is harder to monitor.  In such industries, if price cap regulation is introduced, 

there may be a need to also consider how quality/service standards are monitored and 

enforced.  

 

                                                                                                                                                               
rather different reasons since the recent burgeoning of internet traffic also calls into question the 
intertemporal structure of retail tariffs (which time periods are peak and off peak etc.). 
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