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ADDITIONAL NOTESAND DERIVATIONS

The published paper omits detailed derivations. These additional notes give full
derivations for al the reported results. The following are very much ‘step by step’
derivations, so each step should be easy and quick to follow.

Al. ThePrice Process
The price process, on time intervals on which there is no entry/investment is given by
the demand function:

p=Q'A” (A.1)
Write

F(A,Q)=Q'A" 0 p=1(AQ) (A.2)
Applying 1t0’s lemma,

dp, = f,dA + f,.dQ +1 fdA” +3 o, dQ? + f,,dAdQ, (A.3)
where

fA (A, Q)=-np/A (A4

fan (AL Q) =n(n+)p, | A’ (A.5)

fo (A Q)=npR/Q (A.6)

faa (A,Q)=n(1-Yp QY (A7)

qu (A’Qt):_ﬂzpt /(QtA) (A.8)
whilst (using the 1t6 rules), we get

dA = aAdt + o Ada, (A.9)

dA = (aAdt+oAdm, ) = o* Aldt (A.10)

dQ =-6Q.dt (A.11)

dQ? =6°Q%dt* =0 (A.12)
and

dAdQ, =0. (A.13)
Hence

dp, = f,.dA + f,.dQ, +1 f,dA” +1 fo,dQ7 + f,,dAdQ,
= (-7p./ A)dA +(7p,/Q)AQ, + 577 +1)( P/ A?) dA?
+1n(n-1)(p/Q2)dQ? +(-7p [(QA)) dAAQ
= (~n1p,/ A) (aAdt+ o Ad@, ) + (7P, 1Q) (-6Qt)

+3n(n+D(p! K)o At
(A.14)
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dp, = -n7p, (adt + odw, ) - Gppdt+17(7 +1) po’dt
—
dp, = -77(a +6-1(7+1)0?) pdt -nopdm,
Writing

py =-n(a+6-1(7+10?)
then this becomes

dp, = p,pdt -0 pda@,
which is equation (5) in the paper.

A2 Derivation of the fundamental differential equation for value:

The arbitrage equation was (reproduced here for convenience):
(6 +r)vdt = pdt + E(dv)
[t6’slemma gives
dv =v,dp +$v,,dp? + v, dK + v, dK? + v dpdK
Now,
V=¢/(X)K where x=p/K
S0
p/ K % p/ K

_w"(p/K)
pp K

= (p/K) =Ky (p/K)-L = (p/K) ¢/ (p/K)

A,
Xl'c

Vi = -t/f'(p/K)%H/f(p/K)%

+¢"(p/K) p° _=y"(p/

7 =(—p/K2)¢/"(p/K)
From (A.18)
dp = 4, pdt —no pdw

2
dp® = (u,pdt —nopdm, ) = po’dt

Notes 2

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)
(A.23)

(A.24)

(A.25)

(A.26)

(A.27)
(A.28)

Since dK = -JKdit it followsthat dK? =0. Hence the term dv isgiven as

dv =v,dt + v dp +4v, dp? +v, dK +$v,, dK? +v , dpdK

=[0]dt +[¢'(p/K)] dp+%{%} dp?

{w(p/K)—t/l (p/K) Io}dK+ 1{(p"(p/K)E_}dKZ

+[(— p/K?)y' (p/ K)]dde
and substituting further (and abbreviating the notation a little)

(A.29)
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" 2
dv :tﬂ'dp+%{w?} dp? {w—w'ﬂdK +%{¢/"%}dw +[(-p/K?)y" |dpa

=y'[ p,pdt -nopda |+ %{lﬂ_} (/72 pzazdt) + {l/l —y E} (-oKdt)

K
—
dv =¢/'[ u,pdt —no pdw |+ %Vﬂ (7?pPodt) + {l/l —w’%} (-Kdt)
) (A.30)
= {%% 2pPo? + ppy — oKy + 5K¢/’£} dt +[-nopy'|dw
Thus taking expectations,
,72 p20.2
E(dv) = {TW + (/.zp + 5) Y - 5K¢/} dt (A.31)
Hence the arbitrage equation becomes
2,22
(6+r)vdt - pat {’7 2|OKU Y+ (,up + 5) Py - 5K¢/} dt=0 (A.32)
—
,72 p20.2
(H+r)lﬂK—p——2K (ﬂ"—(yp+5) py' +OKyw =0 (A.33)
—
%JZXZI//"+X(,LIP+5)¢/'—(9+r+5)¢/+X=0 (A.34)

which is equation (A.2) in the appendix to the paper. The general solution to (A.34)

can be written as the sum of the general solution to the homogeneous equation

%02X2¢/"+X(,up+5)¢/'—(9+r +J)y=0 (A.35)
and a particular solution to (A.34). A particular solution, easily verified, is

¥ =BX (A.36)
where

B=— L = ! (A.37)

WITE (0+r)+n(a+6-1(+D0?)’

and the general solution to the homogenous equation (A.35) can be written as

W(x) =Bx* +B,x". (A.38)
where the roots are defined as

A =(-R+R)In’c’ (A.39)

A =(-R-R)In’c?, (A.40)
and where

Rls(/,/p +5—%/7202). (A.41)
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2
R, E((/,/p +5—%/7202)2 +2/7202(6?+r+5)) . (A.42)
Hence the solution to (A.34) takesthe form
W(X) = Byx+ B x* + B,x". (A.43)
Notice that 27?0 (6 +r +0)>0if 0% >0, so the roots arereal and of opposite sign

when uncertainty is present. The arbitrary constants B,, B, are determined by
boundary conditions. As x - 0, if value isto befinite, it must bethat B, =0 or the

solution explodes (see Dixit, 1993). The other constant is determined by an analysis

of smooth pasting conditions at the boundary (at which new investment is triggered).

A3 Analysis of smooth pasting conditions
Given B, =0, from (A.43), the solution is

W(x) = Byx+ Bx* (A.44)
where B, isgiven by (A.37).

(a) The Competitive case:
In this case it was established that the smooth pasting conditions are

W) =1 (A.45)
and

¥'(&)=0. (A.46)
From these equations we get

W(&,) =B, +BE! =1, (A.47)

Y(E) =B+ ABE T =0 BE =B, /A, (A.48)
and hence

W(E,) =B, (1- %1) =1, (A.49)

—

: :( A j(gﬂ_ﬂ)_ (A.50)

Cla-l P

which is Result 2(i).
(b) The monopoly case
In the monopoly case, investment commences at atime & at which price p: reaches

thelevel p; =¢,,K;, where ¢, isthe relative price at which new capacity is added.

Since ¢,, is afree choice by the firm, smooth pasting involves first and second

derivative conditions (see Dumas, 1991). The first derivative condition isthat, with
respect to the control variable, the rate of change of value should just equal the rate of
change of cost;

oV (pr, Ke, Q) /9p; =0 (K:Q:)/op (A.51)
where V(p;, K:, Q) =¢0(%)K:Q: , Q- =Ap!f and x = p;/K;. Substituting these
into (A.51) gives
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o{ AK [w(p: /1K) -1] pr}op; =0, (A.52)
which gives
YAK: [w(p 1K) =1 pr ™ + AK: pl' (b 1K) (L Ks)

L (A.53)
= Ap e [P 1K) ~1]+ p (P T K} =0
= (%) -1 +x¢' (%) =0 (A.54)
= yw(é&) -] +&w'(&,) =0 (A.55)
The second derivative condition is
oV (pr, K;, Q) /0p° =07 (K:Q )/ op;? (A.56)
which gives
-1) Ap2{yK. /K.) -1 "(p- 1 K-
(y=1) Ap{yKe [w(p 1K) =1+ p' (b K;)} A5

+ AP K (o K@K+ (P Ke) + " (o KA/ K;)} =0
y—1{y[w(x)—l]+xtw'(x[)}+xf{(1+y)w'(xf)+xfw"(xf)}:o (A.58)
y(r=9)[wx) =1 +(y-1) %' (%)

A.59
HWr Py (6) + X9 ()} =0 (A59)

U

y(r=0wE) -1+ (y-0)&¢ &) HA+ &' &) + &w'(6)) =0 (A.60)

=

y(y-1[wE) = +(y-1) &' () + A+ NEW (&) +Eaw" (64) =0

(A.61)

Dfmw ($u) + 26,0 ({M)"'y V- 1 [l//(fM) 1] =0
Now, from (A.44),

W(X) = Bx+Bx" (A.62)
S0

¢'(X) =B, +ABx"* (A.63)

l//"(X) = /]1(/]1 ) le/ll_z (A.64)
S0, using (A.62)-(A.64), equation (A.55) gives

V[l//(fm)‘l] +£Mw'(§t|v|) =0

=y By + B ~1]+ &, (B, +AB&I ) =0

= (1+))Byéy +B&r (A +y)-y=0 (A.65)

5w = V= A+ Y)Béy

= B¢ = (/1 +y) (A.66)
and, from (A.61), again using (A.62)-(A.64),
GaAA-DBE ™+ 218, [ B+ ABE [+ y(y-1) B, +B&, -1]=0 Ao

= A4 _1)B.L£M |:2yBO£M +2y/]181£|v|] ( )|:BO£M + BJ.{M _1]

> B&G{AA-D+2A +y(y-D) +H{2r+y(y-1} BE, =v(y-1)  (A69)
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Substituting for B,& using (A.66), this gives

{V-(1+V)BofM j {Wl ~1)+2)A,
(L+y)  J|+v(r-9)

}”{ZJ’* y(y-)}Bé, =y(y-1)  (A69)

=
(v- @+ NB& A -+ 254, +y(y-1)}

(A.70)
Hay+y(y-DH(A+y)B&, =y(y-1)(A+Y)
—
—(1+ ){/]1(/11_1) } A (A =1) + 2,
Byéy P2+ y(y-0)] L=l +0(r-y) (A71)
+{ 2y + y(y—l)} (A +y) +y(y-1) (A, +y)
—
y(A+y)-AA -] [-A(A-D-24-y(y-1)
() B {-Z%-V(V-l) }_ {%yﬂ/-ﬁl-y } A7
—
y/]1+y2_/11(/11_1) _ _/11(/11_1)—2}//11
(1+5) B,y {-ZV/L-VZW }— {Mly-/t } (A.73)
—
(A +y) (A=) (1+y) By = 1A (A +)) (A.74)
—
(/11_1) (1+y) BOfM :y/11 (A-75)
Substituting for B, using (A.37), this gives
/11
(e

which is Result 2(ii).

A4 Relationship between alternative option value multiplier s (competitive case)
Start with the original result (A.50) that

/11
& :(Al_lj(r+6?—,up) (A.77)

and notethat, from (A.39)-(A.42) that
MZ{—a;%j{—a;%j{%—ﬁj

g g g

:(—2(e+r+5)j

0.2

(A.78)

G+r+9=-0°AA,12 (A.79)
and
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pea="RER TROR 2R
ag

g g

) —2(/Jp +5_%02) (A.80)
= —
—
(4, +0)=30"(1-(A4+1,)) . (A.81)
Write
&= B (rro-p,)=| L |(rrovo-(0+4,)) (A.82)
Al P A -1 P
s, from (A.79) and (A.81)
A
Tl e (r+6+5-(0+u,))
i (A.83)
[ ean o)
—
£ :—iaz( A j(ﬁl—l)(ﬁz—l)
oAt (A.84)
=-10°A,(4,-1)
From (A.79)
-10°4, =(6+r+3)/A, (A.85)
S0
3 2(/1;_1}(6”!‘ +9) (A.86)
That is,
A, -1 A
{u:( T j(6+r+5)—(/11_1j(r+6—,up) (A.87)
which isreported in the paper in equations (22), (23) and result 2(i).
Hence also, from (A.76),
_| VY A -1
&u -(mj(/‘—zj(eﬂ +9). (A.88)

A5 Thelimiting case:
Under certainty, the certainty relative price at which entry takes place is

& =6+r+Max| (n(a+6)),5] or equivalently, that
@if o<n(a+86), & =(6+r+n(a+0)).
(b)if o=n(a+6),then & =0+r+9.
This section showsthat &, — & as 0 - 0. Thatis, writing Lim=Lim , , that

Hme, = Lim(/ll/]il)[e” +(a+6-3(7+)0”)|

=@+r +Max[n(a +6),0]

(A.89)
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Define
A 02)
élo?)= plo (A.90)
( ) (/11(0.2)_1) ( )
where
¢(02)50+r+/7(a+0—%(/7+1)02) (A.91)
Clearly, from (A.91),
Lim ¢(02):0+r+/7(a+0) (A.92)
Case(a) o<n(a+6)
First, examine Lim A, and Lim (/1/11 . From (A.39)-(A.42), substituting for
-
using (A.17):
+0 +0 Y v
192,42 1,42 2
210 210
A= 2 2
no
(0+a)+11(r+1)0?) ([ -n(0+a)+1(r+1) " )
- +a)+1 +1)o - +a)+i +1)o
—(’7 ) 22,7,7 j+ (’7 ) 22,7,7 J +2n*c? (6 +r+0)
+0-3mo +0-3n°o
= ,720.2
(A.93)
—

~(6-n(0+a)+310°)+((5-n(0+a)+1n0°) + 2% (6+1+5))
A=

o’
—(0-n(@+a 1 1 2\2 2 2 V2
= ( ,725‘2 )) _Z+?((5—q(5+a)+%qa) +2n°oc (0+r+5))

(A.94)

Now, if o0 <n(a+6) then

~(6-n(8+a))>0 (A.95)
and, taking the limit in (A.94), as

0% 500 A -+
(whatever happens to the other terms, they are non-negative, and the first term
- +00). Thus, if
1

d-n(6+a)>0 then Lim A =Lim———=1 (A.96)
(A4 -1 1= %)
and hence Lim &, = Lim(/‘/‘i jLim¢: @+r+n(a+0) (A.97)
1

Case(b) 0 >n(a +6)
Then
~(s-n(8+a))<o, (A.98)
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and A, behavesrather differently in the limit. To seethis, define
12
f(o%) = -(5-/7(6’+a)+%/702)+((5—/7(0+a)+%/702)2 + 217707 (8+1 +5))

(A.99)
and
9(c®) =n’c? (A.100)
S0 that
Ao?) = f(o%)19(c?) (A.101)

Now, when (A.98) holds, then f(0) =0 and g(0) =0 so the limit for A(¢?) is not
immediate from (A.101). However, it can be obtained by applying I’ Hopital’ srule;
thus

g'(c*)=n’
and
-1/2
f'(a‘z):—l/7+l( o-n(6+a)+ino? 2+2,7202 6?+r+5) X
sn+3((o-n(ova)rino’) v2ro (64 +o) o2
(2(5—/7(6?+a)+%/702)%/7+2/72(6?+r+5))
so that
Lim g'(c®) =n? (A.103)
and
o-n(6+a))+2n?(0+r+o
(0-n(6+a))
_-3n(3-n(8+a))+i(n(-n(6+a))+27* (8 +r+0))
- (5—/7(6?+a))
_—3n0+3n°(6+a)+3nd-3n*(6+a)+n(6+r+9)
(0-n(6+a))
_m(0+1+9) (A.104)
(0-n(6+a))
Hence, by I’ Hopital’ s rule
f'(o®) Lim f'(o?
le/]l(a.Z):le '(0-2) - Im '(0-2)
g(a) leg(a) (A.105)
i (6+r+d) 1 O+r+0
(0-n(e+a)) 7 5-n(6+a)
Thusgiven Lim /11(02) exigts, it follows that
Lim A .Lim/11
(A,-1) (LimA -1
f+r+90
_ o-n(6+a) _  O+r+d (A.106)

G+r+90 _1_ G+r+n(6+a)
o-n(6+a)
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Hence

. . A .
Lim {u(az) =Lim (/]111) Lim @

_ G+r+0
G+t +n(6+a)
=(6+r+0)
This completes the derivation for (A.89) and hence result 1 in the paper.

x(8+r)+n(0+a) (A.107)

A6.Monopoly firm subject to intertemporal price cap.

Here p, denotesthe demand price (the price which clears the market); that is, such
that

p=Q'A” (A.108)
However, the firm is required to set a price which satisfies the price cap p, = &K, ;
denoting the set priceas p7, then thisrequiresthat p’ < p,. Thus

p: =Min[p,, ] =Minp,.&K,]. (A.109)
where & isaconstant chosen by the regulator. For low values of the relative price
X, , the monopolist utilises existing capacity, whilst the price is unconstrained. Once
X, reaches acertain level, the price cap binds, but investment may still be deferred (so
thereis quantity rationing). Finally, if xincreases sufficiently, it will be optimal for

the firm to add to capacity. There isthus atransition boundary between the 2 no-
investment regimes, and a further boundary at which investment commences, at each
of these boundaries, smooth pasting conditions apply.

Let ¢ denotethe solution when there is no investment and no price constraint and let
, denote the solution when the price constraint applies, but there is no investment.

The first task isto characterise the process in each of the regimes. Following this,
smooth pasting conditions are studied.

Regime 1. Unconstrained price, no investment.
The solution here is identical to that already established for the unconstrained
monopoly firm. That is, from (A.34), repeated for convenience,

10" +(u, +8)x —(3+8+1)Y +x=0 (A.110)
and the solution is
W(X) = Byx+ Bx" +B,x* (A.111)

where B, isgiven by (A.37).

As before, notethat, as x — 0, if value isto be finite, it must bethat B, =0. Dixit

(1993) discusses this sort of boundary condition in more detail. Hence the solution
becomes

W(X) = Byx+Bx" (A.112)
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Regime 2: Unconstrained price, no investment.
The arbitrage condition in this case is, since in thisregime p, =K, , that

(6+r)vdt = &Kdt + E(dv) (A.113)
where! v=y/(p/K)K . Applying Ito’s lemma, taking expectations and simplifying,

10" +(p, +0)xy —(G+0+1)y+& =0 (A.114)
A particular solutionis clearly

Ww=E&/(5+6+r) (A.115)
and so defining

C,=1(@+d+r), (A.116)
the general solution in this regime to takes the form

W,(x) =C,& +Cx* +C,x" (A.117)

where A, A, are asbefore. The arbitrary constants C,,C, are determined by a
consideration of boundary conditions (see below).

Analysis of boundary conditions:

Let f, denote atime at which there is a transition from aregime of unconstrained
prices and no investment to a regime where prices are constrained but thereis still no
investment. Let £, denote atime where there is atransition from price constrained
non-investment to aregime in which there is price-constrained positive investment.

Regime 1/2 boundary:

At thetime t,, smooth pasting conditions must apply. Since the problem isnot onein
which there is a free choice for the level of the boundary (it is set by the regulator),
the smooth pasting conditions involve equality only of value and the first derivative of
the value functions (Dumas, 1991). Also, by definition, the price cap binds, so

x. =& . Thus V(&) =v,(¢) and V(&) =V,(£) must hold, and so

W(&)=y,(&), (A.118)

W'(&) =wy(é) (A.119)
where

W) =B +BE" (A.120)

W E) =B, +ABE (A.121)

wz(g) = Cog"'ClgA1 +C2<?A2 (A.122)

Y, &)= /11C:1<?A1_1 "'/12C:2<?A2_1 (A.123)

The analysis of these conditions is deferred until the other conditions have been
identified.

The positive Investment boundary:
At the hitting time t, , smooth pasting conditions again apply. These are identical

with those for the unconstrained monopoly problem except that they are now
evaluated at the relative price . Thefirst derivative condition is that,

VAG R RIAGEL (A.124)

! The value function can till be written in thisform in the price constrained region, simply because the
price constraint is also homogenous of degree 1 in p,K.



- compare with (A.55) — and the second derivative condition is that.

EW (&) + 21w, (&) +y (v -1)[w,(&) -1 =0
asin(A.61). Here

w,(¢) = Cog + Clyl + CZFZ

Wy (&) =ACE T+ A,C &0

Wi(&) = A(A —DCEN7 + A, (4, ~)C,EH

Analysis of smooth pasting conditions:
From (A.118), using (A.120) and (A.122),

B,{ +B&" =Cé +CEH +C ™
Unknownsare B,,C,,C,.

From (A.119), using (A.121) and (A.123), and multiplying by &,
Bog "'/1181<?A1 = /11C:1<?A1 "'/12C:2<?A2
Unknowns are B,,C,,C, .

From (A.124), using (A.126) and (A.127),
Y[ C& +CE" +C,&% —1]+ [ ACEM T+ A,C,E ] =0

Unknownsare C,,C,,¢ .

From (A.125), using (A.126), (A.127) and (A.128),

E[ WA -DCEM + A, (4, ~1)C,¢"7 |

2 [ ACEM + A,CE" | +y(y-1)[ CE +C&N +C¢" -1]=0
Unknownsare C,,C,,¢ .

Notes 12

(A.125)

(A.126)
(A.127)
(A.128)

(A.129)

(A.130)

(A.131)

(A.132)

Total unknownsare B,,C,,C,,& . However the variable of interest is . To find this,

first eliminate B,. Equation (A.129) implies
BE" =(C,-B,)E +CEH +C,E"
whilst from (A.130)
B&E* = ACE™ +A,CE " — B¢

A
—

per =ACE AL TBE (¢ g )ricftec,Et

/]l

= /11C:13A1 "'/]2C:23A2 - og = Al[(Co B Bo)g"'clgA1 +C2?12]

—

/11C:1<?A1 "'/12C:2<?A2 - og =h (Co - Bo)g "'/11C1<?A1 "'/11C:2<?A2

=
— [ A(Co-By)+B |
s (/]2 _/]1)

(A.133)

(A.134)

(A.135)
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Thisgives C,. It doesnot determine B,,C, but links them because
(Bl _C:l)/h@?A1 = /12C:2<?A2 - Bog

=
) A A(C-B)+B &
(Bl Cl)/‘lf ) (/12 _/11) ¢

=
(Bl_Cl)/]lg/]l =

—

A [/]1 (Co - Bo) + Bo]g_ (/]2 _/]1) Bog
(/]2 _/]1)

—_, | MA(C—By)+AB, |€
(B-C)Aé™ LA (ComB) v A5 )¢ (A.136)
(/]2_/11)
That is, once C, isestablished, sotoois B,. Now use the positive investment
boundary conditions. from (A.124)-(A.128),

y[Cof +CEM +C,8"7 1]+ [ ACE T+ A,C,E+ =0 (A.137)

and
A4 _:I-)C1<Ml + A, (A, _1)C2<MZ

+2y[/11C1<”1 + /12C2<”2 :| + y(y—l) |:CO<? + le/h + sz/lz _1:| =0 (A138)
First find C, from (A.137):
g SEETIHIEE (A.139)

(r+4)
Then use thisin (A.138):
A4 _:I-)le/11 +A,(4, _1)C2<MZ

H2YNCEN +2)1,C,E "
+y(y=-1)Co +y(y-1)Cé" +y(y-1)Cé* -y(y-1)=0
(A -D+2A +y(y-1)]Cé™
+H[ A (h, —D+2p, +y(y-1) |C,¢* (A.140)
+y(y-1)[C,& -1]=0
Substituting for C,é” using (A.139),

[/11(/11 -1+ 2}//11 +y(y_1)}{

y(l_Cog)_(y-"/‘z)CzCMz}
(v+4)

+[/12(/12 -1+ 2}//12 +y(y_1)} sz/]z

+y(y-1)[C,& -1]=0

(A=) +2, +y(y-1) { ya-C&) - (y+4,) C,¢"}
Hy+A)[ AL, =D +20, +y(y-1)]C,E"
+(r-1)(y+A)[Ck -1]=0
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=
y(l_Cog) [/11(/11 _1) + 2}//11 + y(y_l):| - (y+/12)C2<r/]2 [/11(/11 _1) + 2}//11 +y(y_1)}
+Hy+ ) [ A, ~D+21, +y(y-1)]C,E"

+y(y-1)(y+A) CE -1|=0

(r+A)[ A =D+20,+y(y-1)] |
C,&*
_(y+/12)[/11(/11_1)+2y/11+y(y_1)}

=y(y-1)(y+A)[1-C€ |-yA-CE[ A -D+2, +y(y-1)]

e V=G H(r=1)(r+A) - A -0 -2~y (y-1)

A.141
c (y+/11)|:/12(/12 -1)+2)4, +y(y_1)} ( )
T A A D + 2+ (y-1)]
Now, from (A.135),
_[A(C,-B,)+B,|&
= e (A.142)
o)
£ = y(l—Cof)(Az —Al){(y—l)(y"'/‘l) —AA =) -2 _y(y_l)} (A.143)
. (v +A) [ A0 =D + 2, + y(y-1)]
T |:/11(CO - Bo)"' Bo}
~(y+A)[ A=) +2m,+y(y-1)]
where from (A.116),
C,=1/(0+5+r) (A.144)
and, from (A.37),
B, =1/(r +6-u,) (A.145)
Simplifying (A.143),
. 1-C) A

ontey am (111 A A =D +27+y(y-1)]
E2[Cl +By (1 Al)}{_(y+,]2)[/]l(/]l—1)+2y/11+y(y—1)}}

—
o= -y(1-C ) (A= A) A +y)

) (y+ ) A =D =(r+ 1) A -1
& [Co/‘l +B, (1_/11)} 2, (y+4) +y(y-1) (A - 4,)

_(y+/12)2y/11
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~y(1-Cof) (A = A) A(A +y)

& =
(}//122 - }//12 +/]1/122 _/]1/]2)
<?1—/12 |:Co/11 + Bo (1_/11):| (}//11 y/11 +/]2/]1 /]1/12)
(22, + 2, )+ y(y-1) (A - 4,)
- (2}//11}/ + 2}//11/12)
—
o ~¥(1-Cof ) (A = A) A4+ 1)
y/]zz -, "'/]1/]22 —AA,
F[Coh, + B, (1-4) {7V A A,
+2y2/12 + 2, +y2/]1 _yz/]z ~ W+,
_2y/]ly_ 2}//]1/]2
—
£ - ¥(1-Cod ) (A = A) AtA +)
2_ a2 2 _ 2
gl—Az |:CO/11 + Bo (1_ Al)}{wz }//11 +/11/12 /12/11 }
+y2/12 _y2/11
—
o = ~y(1-Co&) (A = A) A(A +)
E7 (h = 1) Colu+ By (1= A) { (12 + Ak + (Ao + A1) )}
—
k= AU (LG (A.146)
E7 [Coh +By (1-4) { (2 + Ak, +y (4, + 1))}
The aim now isto simplify thisto obtain the formulain result 3.
Denote
& =(0+6+r) (A.147)
as the certainty competitive entry trigger relative price,
& = (*;2-1)(5+e+ r)= (%)(eﬂ )= (ﬂ;j)gc (A.148)
as the uncertainty competitive entry trigger relative price and
g, :(#)5} (A.149)

as the uncertainty unconstrained monopoly entry trigger relative price, then theaimis
to show that the price cap monopoly relative entry market clearing price can be
written asin result 3; that is, as

(£ ez A.150

¢ HEM _EJEME } ( )
So, returning to (A.146), and dividing by C, gives
-, (A 1/C,)-¢&

N A +p)((1/C,) =€) A5

CE (B C) (=) { (P Ak + v (A + )}
Dividing by (4, -1) and substituting for B,,C, then gives
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/11 T\ h-1
yﬁ(/‘l-'-y)({u _f)f

&= (1=4) (A.152)
A | (@+0+r)
[(Al—l) ((r+e—up)ﬂ{(”2+”l”2+y(”2”1))}
—
Ve (e -2)E
&= S ! (A.153)
gl om)-@raun (A e, A)
Using (A.147) and (A.148), this gives
. (£-¢&)&&""
{ _({ _{){y2+/11/12+y(/12+/11)j (A154)
L YA +y)
—
P L (A.155)
(e _5)(y(/11+y)+/12(/11+y)j '
e V(A +Y)
SO
P G L7
(gu _60)(14-’7/12)
(where n=1/y). Writing 1+71)¢, =&, , then
L (E-&)arpe, & (E-¢)&,87
(@& -&) ) (&
'y 1+ (1+n4,)
I A L A (€-4)6,E""
_ & NS, _SA, A -1
(fM 1+/7+1+/7 1+/7j & +,7/12{ A, jfc_{cqﬁz
M 1+np 1+n 1+n
_ (£-&)& ™" _(E-&)ad
£ ¢ +(/12_1)’7£C_<rc’7/12 (fM _50)
M 1+ 1+7 1+7
Hence
£-g)ad "
g:{( 6 )—{) } (A.156)

which is Result 3.
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A7 Proof for Result 4.
From the formulafor (&) in Result 3 was

& :{(3 =&,)&E" (& —fc)}mz (A.157)
Differentiating with respect to & gives

(W 1,)4
dé _ ¢ —¢, M1 éu d A1
a% =(1/4, ){L;M fcijf } (ﬁj—g((f fc)f ) (A.158)

Where using the deflnltion for &,

9z ((f $e )f ) iF ({Az ngAz—l) - (/123@—1 -(A, _1)£C<?A2—2)

=NE%?(E-¢,) (A.159)
SO
(1/4,)

dé - f Ap— fM Th2(T

— = 2 oM (| Fh2(F A.160

i {{ {mef } [{M_{J%(f &) (A.160)

(+) (+)

hence

dé >

aF 220 as&Z¢,. (A.161)

This completes the proof for result 4(i). As & | &, inequation (A.157), the termin
brackets{ } - 0;since 1/1, <0, it followsthat & — +co, which is result 4(ii).

Letting & — &, in(A.157), dlearly é(&) — &, , which is result 4(iii). Setting
& =¢&,, from (A.157),

& ={(&-&)&e (6 - &)} (A.162)
Now, £(&,)2¢&, as (&)= S, (since A, <0). Using (A.162) thisimplies
£(8)26, 8 (&,-&)6ué /(& - &)54."
= (&,-€)6u 56, (& —&) =6 —4,30
Infact &, —&,>0and hence &(&,) > &, , which is Result 4 (iv).

To establish Result 4 (v), first substitute in (A.162) using result 2, for
& =(A-DE A, and &, = (A, -1DE, /A, (L+n) toget £(&,) =(1+n,) " " &,. From
the definition for A,, notethat Lim, A, =-c, and SO Lim, 0(”22) 1. Hence from

result 3, Lim, , & =¢,. Also Lim 0(1+,7/])1//12:le/] (1_'_,7/1)1//12_1.

Hence Lim, ,&(&,)=Lim, ,(1+n4,)"" Lim, , & =4, (A.163)
which is Result 4 (v).



