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ABSTRACT 
 

Replacement investment is essentially a regenerative optimal stopping problem;  that 

is, the key decision concerns when to terminate the life of existing plant – and hence 

when to start over again.  This paper examines this optimisation problem within a 

continuous time framework and studies the qualitative and quantitative impact of 

uncertainty on the timing of new investment (and the criteria that should be used for 

terminating the life of existing plant).  
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1. INTRODUCTION 

A large part of all investment activity is in fact replacement investment; indeed in a 

non-growing,  stationary state, economy, effectively all investment is replacement 

investment.  The key decision concerning such replacement investment is that of 

timing – of deciding how long to keep existing plant and machinery.  As an 

optimisation problem, the decision of when to renew capacity naturally depends on 

expectations regarding how existing and new plant operating costs change over time, 

and of course, on expectations regarding future capital costs and resale/salvage 

values.  A standard approach is to envisage a replacement chain for investment in 

which the economic life of the first plant is determined by a trade off between 

expected benefits and costs associated with extending the economic life of existing 

plant.  Keeping plant for an additional period involves incurring additional operating 

costs and suffering possible loss of second hand or salvage value, but reduces the 

present value costs associated with the chain of investments that subsequently follow.  

The analysis of replacement investment in this framework has been around for a 

considerable time and is well understood (for early examples, see e.g. Hotelling 

[1925], Terborgh [1949], McDowell [1960], Smith [1961], Merrett and Sykes 

[1965]).   

 

Replacement investment under uncertainty has also been examined, notably in the 

Operational Research literature (for reviews, see Pierskalla and Voelker [1976],  

Sherif and Smith [1981]).  This literature primarily focuses on uncertainty over the 

physical life of individual components, with the problem being viewed as one of 

determining a replacement policy, where such a policy will typically involve 
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replacing at least some units before the end of their physical life.1  Optimal economic 

life may also depend on second hand (or salvage) values, and so a natural extension to 

the study of investment policy is to look at replacement investment within the context 

of equilibrium in the associated second hand markets (Rust [1985]).  More recent 

work has tended to focus on other aspects of the replacement problem, notably how 

asymmetric information affects equilibrium values in second hand markets (following 

the seminal work of Akerlof [1960], see Kim [1985], Genesove [1995]).  

 

The above literature has generally modelled the replacement investment decision 

within a discrete time framework;  by contrast, the present paper begins by modelling 

the optimisation problem in a continuous time framework (and focusing on the 

‘option value’  characteristics of the solution).  Following this, the paper examines in 

some detail the qualitative and quantitative impact of uncertainty (and other 

parameters) on the replacement decision and on the average economic life of plant.  

Previous work does not seem to have examined this type of comparative statics 

analysis of the investment decision; broadly speaking, the OR literature has tended to 

feature rather case specific models, with the focus on establishing the existence of a 

‘solution’ , whilst the economics literature has tended to focus on the issue of 

characterising ‘equilibria’  in second hand markets without pursuing the further 

question of how such equilibria are perturbed by variation in the underlying parameter 

values.  The equations that characterise the solution to the replacement investment 

decision are used in this paper as the basis for undertaking sensitivity analysis and the 

study of alternative ‘scenarios’ .   

                                                        
1 Rust [1987] is perhaps one of the best examples of this type of analysis – that paper examined the 
optimal replacement policy for replacing/rebuilding Bus engines, given the probability that such 
engines break down is a function of mileage.      
 



 3   
 
 

 

In the context of the replacement chain investment, uncertainty creates option value.  

If the objective is to minimise expected present value costs, the decision to terminate 

the life of existing plant should take account of the possibility that operating and 

maintenance costs can go down as well as up.  Dixit [1989] has shown that 

competitive firms, when faced with uncertainty over market price, do not exit the 

industry immediately price falls below average variable cost;  price has to fall 

somewhat further;  the same type of effect can be expected in the present context, 

namely that uncertainty can be expected to extend the economic life of plant (and 

within the context of the present model, it is possible to prove this result).   

 

The present paper assumes there is a fixed and time invariant salvage value.  The 

assumption regarding second-hand markets is either that (a) they do not exist, such 

that the decision is always one of replacing the old plant with new, or (b) that there is 

no information asymmetry and no transactions costs, such that the market price of 

second hand equipment represents a fair and competitive value.  This latter 

assumption is often reasonable in quite a range of applications; asymmetric 

information may be of importance in used car markets, but such severe forms of 

asymmetric information are far from endemic. 

 

If there is no second-hand market, clearly the firm must take the decision on when to 

replace existing with new plant.  By contrast, with competitive second-hand markets, 

whilst the economic life of the plant remains the same as in the case where there is no 

second hand market, the decision of the individual firm (as to what age of plant to 

buy, and of when to sell) becomes a matter of indifference (it makes no difference 
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how old the plant bought is, or indeed when it is sold, so long as it is not kept beyond 

the time at which it would have been better to scrap it).  In this latter case, it is also of 

interest to study the time profile for second-hand values. 

 

The structure of the paper is as follows:  Section 2 first establishes the basic model.  

Following this, section 3 focuses on economic life and second hand values whilst 

section 4 discusses alternative measures of economic life.  Section 5 establishes some 

comparative statics results and conducts a (numerical) sensitivity analysis; section 6 

then offers some concluding comments on the relevance of the work and direction for 

further research.  

 

2. REPLACEM ENT CHAINS UNDER UNCERTAINTY 

In what follows, the solution for the deterministic case is outlined as a preliminary 

benchmark, prior to extending the analysis to incorporate uncertainty regarding 

operating costs and resale values.  As explained in section 1, whether or not there are 

competitive second-hand markets, it suffices to analyse the economic life of plant per 

se.  In the case where there are (competitive) second hand markets, equilibrium 

second hand values for plant can then be computed. 

 

The Deterministic Case 

The initial capital outlay is denoted K, operating/maintenance costs at time t are tc  

and are assumed to increase at a constant growth rate θ  whilst salvage value S  is 

assumed constant.  Let V denote the present value of all costs associated with a 

replacement chain, and assume that the first plant is terminated at some time T.  The 

big assumption in replacement chain analysis is that the initial outlay and operating 
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cost profiles for the second and subsequent plant do not change.  Under this 

‘stationarity’  assumption,  it follows that T is the optimal economic life for each and 

every plant in the replacement chain.  Thus, V also represents the present value at time 

T of all future costs from T onward.  Hence 

 ( ) ( )
0

T
rt rT

tV K c e dt V S e− −= + + −
�

,     (1) 

where r denotes the risk free discount rate (assumed constant over time).   The first 

term on the right hand side is the initial capital outlay, the second term represents the 

present value of operating costs for the first plant whilst the third term represents the 

present value of selling the old plant for its salvage value S and then starting the chain 

anew (with present value cost V at that time).  Rearranging (1), the present value of 

costs can be represented as the function   

( )( )0
0

1
( , , , , , ) 1

1
r T rT

rT

c
V T r c K S e K Se

e r
θθ

θ
− −

− � �= − + −
� �

− −
� � .  (2) 

Optimal economic life, certT   is thus given as 

 , 0 0Argmin ( , , , , , )cert T TT V T r c K Sθ>= ,     (3) 

whilst the associated level of operating cost, denoted  certc ,  at which replacement 

investment is triggered is  

0
certT

certc c eθ=         (4) 

(this proves of interest when making comparisons with the uncertainty case).  The 

function (2) is non-linear but the optimisation can easily be conducted using 

numerical methods.2   The quantitative sensitivity of the above certainty solution to 

                                                        
2 It is possible to compute a first order condition associated with (2), but this in turn does not admit an 

explicit solution for certT ; the only gain from computing such a first order condition is that it is then 

possible to conduct a comparative statics exercise.  This is in fact a special case of the more general 
comparative statics exercise presented for the uncertainty case in section 4 below. 
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changes in parameter values is examined at the same time as that for the uncertainty 

case in section 4 below.   

 

Optimal Economic L ife under Uncertainty 

Terborgh [1949] was one of the first to model operating costs (under certainty) as 

increasing by a constant percentage increment; this type of assumption is both 

empirically plausible and also analytically fairly tractable.  The natural extension is to 

assume that uncertainty affects the level of operating costs,  tc  through a geometric 

Brownian motion (GBM) of the form3 

/t t tdc c dt dθ σ ϖ= + .   .    (5) 

Here θ  (>0) is the trend rate of growth in operating cost and σ  (>0) denotes its 

associated volatility.  When σ =0, of course, this is the original ‘Terborghian’  

operating cost process.  The expected present value of operating costs at time τ , if the 

operating cost at this time is cτ , for the case where the plant is never replaced is given 

as 

 ( ){ }( ) r t
tPV c E c e dtτ

τ τ τ τ

∞ − −= � ,      (6) 

where (.)Eτ  denotes the expectations operator for expectation formed at time τ .   

 

When operating costs rise sufficiently, it becomes economic for plant to be replaced.  

Let c  denote the level of cost at which replacement is triggered.  Given the structure 

of the problem and the assumptions regarding the cost process, c  is a fixed 

deterministic value.  The optimisation problem is simply that of finding the value c  

                                                        
3 GBM is a common assumption in the literature.  For a discussion of its pros and cons, see McDonald 
and Siegel [1986] and  Dixit and Pindyck [1994].  
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which minimises expected present value costs for the replacement chain (clearly, c  

will be a deterministic function of the parameters 2
0, , , , ,K S c rθ σ ).  By contrast, since 

the evolution of cost over time is governed by an Itô process, the time at which 

replacement is triggered is a random variable, ( )t c
�

 (to denote its dependence on c ).  

The present value of future costs, for the existing plant, thus depends on the current 

operating cost level, such that, at time τ  during the life of the first plant, the expected 

present value of future operating costs for the chain can be written as 

 ( )( ) ( ) ( ( ) )( ) ( )
t c

r t r t c
tV c E c e dt e W c

τ

τ τ
τ τ

− − − −= +
��� �

,    (7) 

where ( )W c  represents the present value at time ( )t c
�

 of all costs from that time 

onward; that is 

 0( ) ( )W c V c K S= + − .      (8) 

In what follows, for notational compactness, subscripts and arguments are dropped 

wherever this does not affect intelligibility.  The arbitrage condition for this problem 

is that4  

 ( )rVdt cdt E dV= + .       (9)  

The term ( )E dV  is evaluated in the appendix.  It can be written as5  

 2 21
2( )E dV V cdt V c dtθ σ′ ′′= + ,     (10) 

and so (9) simplifies to give (cancelling through by dt) 

 2 21
2 0c V cV rV cσ θ′′ ′+ − + = ,      (11) 

a second order differential equation which governs the evolution of value.  The 

general solution to this equation involves finding a particular solution to it along with 

                                                        
4 See e.g. Dixit and Pindyck [1994] for a clear exposition of stochastic dynamic programming 
optimality conditions. 
 
5 Using the notation 2 2/ , /V dV dc V d V dc′ ′′≡ ≡ . 
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a general solution to the associated homogenous equation.  A particular solution,  

(assuming r θ≠ ) is  /( )V c r θ= −  as can be easily verified.6  The general solution to 

the homogenous equation can be written as 1 2
1 2( )V c Ac A cλ λ= +  (see appendix) and so 

the general solution to (11) can be written as 

 ( )( ) 1 2
1 2( ) /V c c r Ac A cλ λθ= − + + ,     (12) 

where the roots are defined as  

( ) 2
1 1 2 /R Rλ σ= − + ,        (13) 

( ) 2
2 1 2 /R Rλ σ= − − ,       (14) 

and where 

 ( )21
1 2R θ σ≡ − ,       (15) 

 ( )1 22 2
2 1 2R R rσ≡ + .       (16) 

Notice that 22 0rσ >  if 2 0σ > , so 2 10λ λ< < ; the roots are real and of opposite sign 

when uncertainty is present.  The two arbitrary constants 1 2,A A  are determined by 

boundary conditions.  As 0c → , since 2 0λ <  and since value must be finite, this 

implies 2 0A =   (Dixit [1993] discusses this sort of boundary condition in more 

detail).  Thus (12) simplifies to 

( )( ) 1
1( ) /V c c r Acλθ= − + ,      (17) 

where 1A  is determined by an analysis of smooth pasting conditions at the boundary 

where replacement investment takes place; these smooth pasting conditions require 

                                                                                                                                                               
 
6 To see this, note that  if /( )V c r θ= − , then 1/( )V r θ′ = −  and 0V ′′ = ; substitute these into 
(11).   
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equality of value and equality of the first derivatives (with respect to tc ) of the value 

functions from regimes 1 and 2 (Dumas [1991]).  Thus, at a hitting time t� , this entails  

( ) ( )V c W c= ,        (18) 

and 

( ) / ( ) /V c c W c c∂ ∂ = ∂ ∂ .       (19) 

From (17), condition (18) becomes 

( )( ) ( )( )1 1
1 0 0 1 0( ) / ( ) /V c c r Ac V c K c r Ac K Sλ λθ θ= − + = + = − + + − , (20) 

whilst ( )( ) 1 1
1 1( ) / 1/V c c r A cλθ λ −∂ ∂ = − + ,  [ ]0( ) / ( ) / 0W c c V c K S c∂ ∂ = ∂ + − ∂ = , so 

(19) gives 

( )( ) 1 1
1 11/ 0r A cλθ λ −− + = .      (21) 

After some rearrangement, (20) and (21) give the solution 

( ) ( )( ) ( )( )1

1 0 0 11 / 0c c c c K S r
λλ θ λ

� �
− − + + − − =� �

.   (22) 

This non-linear equation defines the level of operating cost c  at which replacement 

investment is triggered.  In view of (13), (15), (16),  the value of c  is a function of 

the parameters 0, , , , ,r c K Sθ σ .  As in the deterministic case, an explicit analytic 

expression for c  cannot be obtained, although it is possible to obtain some qualitative 

comparative statics result for the effects of parameters on the value of c  and on 

expected economic life.  It is also straightforward to solve (22) numerically, and the 

quantitative impact of parameter variations can be studied numerically.  Section 4 

presents these results. However, prior to this, section 3 examines economic life under 

uncertainty. 
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3. ECONOM IC LIFE AND SECOND HAND VALUES 

Under uncertainty, the economic life of a plant ( )t c
�

 is a random variable, and as a 

consequence, economic life may turn out to be longer or shorter than in the 

deterministic case.  In what follows, we focus on the average or expected life of a 

plant, ( )0 ( )E t c
�

.  An analytic expression for this expected life is extremely difficult to 

obtain,7 but it is straightforward to derive a numerical approximation for it by running 

a simple simulation model.  The simulation model repeatedly generates paths for tc ; 

for the thi  run, it is possible to compute the time iT  taken for tc  to reach the trigger 

level c .  An estimator for ( )0 ( )E t c
�

 is thus given as  

1

n

ii
T T n

=
=

�
       (23) 

if the simulation is run n times.  In conducting this simulation, the operating cost 

process can be approximated as a discrete process using the stochastic difference 

equation8 

 ( ) ( ) ( )21
1 2ln lnt t m m m tc c θ σ σ ε−= + − +     (24) 

where ~ (0,1)t Nε .  Here, if σ  represents an annualised value for volatility of the cost 

process, then setting periods to months, such that 2 2 /12mσ σ= , and /12 1m eθθ = − , 

then ,m mσ θ  represent the equivalent monthly rates for the variables ,σ θ . 

 

                                                        
7 Cox and Miller [1965, pp.  220-222] discuss the form of calculation required for a special case 
involving simple Brownian motion.  In the more complex case involved in this paper, a closed form 
explicit solution cannot be obtained  – getting a solution thus requires numerical methods at some 
point.    
 
8 A Fortran program which runs this simulation is available from the author on request.  The average 
economic life was computed for each case reported in the sensitivity analysis in section 4 below using 

10,000N =  runs. 
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An alternative and much simpler to calculate proxy measure for economic life, 

denoted T̂ , involves calculating the time it takes for expected operating cost to reach 

the level c .  Thus, given that 0 0( ) t
tE c c eθ= , this proxy measure is computed by 

setting 

  
ˆ

0 0
ˆ (1/ ) ln( / )Tc e c T c cθ θ= � =     (25) 

This proxy under-estimates average economic life because the distribution for ( )t c
�

 is 

skewed to the left.  For low levels of volatility,  the proxy is quite close to the estimate 

of 0( ( ))E t c
�

 established using simulation but the quality of the approximation 

deteriorates at higher volatilities (see next section). 

 

In the case where there is secondary trading, it is possible to relate the selling price tp  

of used equipment to the current level of operating cost it manifests, tc  using the 

value function (17).  As previously remarked, given the competitive price, there is no 

reason per se for a firm to wish to sell such equipment on such a market (since it is a 

matter of indifference as to whether to sell or not, and for ongoing business, if plant is 

sold, another plant of some age must also be bought).  In a market with zero sunk 

costs and no information asymmetries, the prime source of such equipment would 

presumably be ‘distress’  stock; that is, equipment coming to market because firms 

have ceased trading, or where there has been a fall in demand for their products.  So 

long as there is always some positive demand for replacement investment, second 

hand prices will not be affected by product market fluctuations, and will be 

determined solely by cost characteristics.  From (17), using (21) to replace the 

constant 1A , value can be written as 
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( )( )( )1 1

1( ) 1/ / 1
c

V c c c
r

λλ
θ

−
���

= −
���

−
���      (26) 

and hence second hand market price ( )p c  for used equipment is given, using this, as   

  [ ]0( ) ( ) ( )p c K V c V c= − − .      (27) 

Thus second hand prices are related to their current level of operating cost rather than 

age per se.  From (27), second hand price is clearly K for new equipment, and used 

equipment then declines in value as operating costs increase, to the point when, with 

operating cost c , in view of (18) which implies 0( ) ( )V c V c K S= + − , clearly  

[ ] [ ]0 0 0( ) ( ) ( ) ( ) ( )p c K V c V c K V c K S V c S= − − = − + − − = .   (28) 

That is, when operating cost reaches c , second hand value has fallen to salvage value 

(and the machine is scrapped).  Although second hand price is determined by ‘quality’  

rather than age per se, it is possible to relate the second hand price in (28) to the 

estimated average age of plant with any given level of current operating cost, and 

results for this are reported in the next section).   

 

4. COM PARATIVE STATICS AND SENSITIVITY ANALYSIS 

 
A comparative statics analysis can be conducted on equation (22), bearing in mind the 

fact that 1λ  is itself a function of the various parameters, in view of equations (13),  

(15) and (16).  The results for the level of operating cost at which plant is scrapped are 

as follows (derivations are given in the appendix). 
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Table 1:  Comparative Statics Results 

Parameter                                    ψ  /dc dψ  

Capital Cost K + 

Scrap Value S −  

Initial operating cost 
0c  + 

Volatility σ  + 

Discount rate r ? 

Growth rate in operating cost θ  ? 

 

Increases in capital costs or decreases in scrap value tend to increase c , the level of 

operating cost at which replacement is triggered as one would expect.  Increases in the 

initial operating cost of new plant also tend to increase it.  Volatility has the expected 

effect -  increases in volatility tend to increase c   because of the option value effect.  

That is, relative to the certainty case, it pays to hang on a little longer, and wait for a 

higher level of operating cost before scrapping plant - simply because there is the 

possibility that costs may also fall.  This is the same type of argument as, when 

considering the competitive firm under uncertainty, it is not optimal to shut down 

when price falls to average variable cost; price must fall a bit more before it is optimal 

to shut down (as in Dixit [1989]).  It is not possible to sign the impact of the discount 

rate, nor, more curiously, of the growth rate in operating cost – at least not without 

making further assumptions regarding the relative magnitude of various parameters 

(the relative values of θ  and r are naturally of  some importance here).  However, it is 

fair to say that, for a plausible range of parameter values, an increase in θ  tends to 

increase the operating cost c  at which replacement is triggered – and this is also true 

for an increase in the discount rate r.  These observations are illustrated in the 

numerical results reported in the sensitivity analysis below (Table 2).   
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The effects on expected economic life are less easy to establish.  Notice that changes 

in capital cost, or salvage value, have no impact on the operating cost process.  An 

increase in the value for c  thus necessarily means that on any realisation of the cost 

trajectory, it will take longer to reach this value.  Hence an increase in c  is associated 

with an increase in ( )0 ( )E t c
�

.  Hence from table 1, clearly ( )0 ( ) / 0dE t c dK >
�

 and 

( )0 ( ) / 0dE t c dS <
�

.  Changing the discount rate r also involves no impact on the cost 

process, but the effect on c  was ambiguous in Table 1, and hence so too is the sign 

for ( )0 ( ) /dE t c dr
�

.  Likewise from table 1,  ( )0 ( ) /dE t c dθ
�

 is ambiguous.  An 

increase in initial operating cost, 0c  increases  c  which ceteris paribus would 

increase expected economic life.  However, the change in 0c  also affects the operating 

cost process, and by raising operating cost, tends to lead to earlier hitting times.  

Around the benchmark values used in Table 2, the tendency is for this latter effect to 

more than offset the raising of the threshold, such that the average economic life 

declines when  0c  is increased.   Raising volatility also raises c , so ceteris paribus 

tending to increase economic life; however, again, volatility also affects the operating 

cost process, although in this case the effect tends to be in the same direction.  That is,  

if  c  was kept fixed whilst volatility was increased, this would also tend to increase 

expected economic life.  Overall then, the increase in volatility tends to increase 

average economic life.   

 

Table 2 illustrates the quantitative impact of varying parameter values on the level for 

c , the level of operating cost at which replacement investment is triggered, the 

economic life under certainty certT ,  the proxy for economic life under uncertainty T̂ , 
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and the estimate of average economic life T  (based on the simulation).  The final 

column reports the estimated standard deviation for T  (given that the number of 

simulations on which T  is calculated is 10,000, the confidence interval for T  is 

1.96 Ts± ).  The quantitative results confirm the comparative statics analysis reported 

in table 1, of course.  It is worth noting the significant impact of volatility on average 

economic life, particularly for volatility in excess of 20% .  The first two panels in 

Table 2 illustrate the impact of varying the average rate of growth in cost, θ  and the 

level of volatility, σ .  Panel (c ) then examines the impact of unilaterally varying 

each parameter from its benchmark value by 10%.  These results are used in the 

computation of elasticities for ˆ, , ,certc T T T  which are then reported in Table 3.  Thus 

for example, ( )( )ˆ / / 0.04dT dS S K = − .  In general, all these elasticities are fairly 

inelastic.  Notice also that uncertainty has relatively little impact on these elasticities;  

that is, the elasticities reported for the certainty case (column 3) are fairly close to 

those estimated under uncertainty (columns 4, 5 when σ  is 20%).  Finally, to 

illustrate how uncertainty impacts on depreciation, table 4 shows how value, expected 

economic life and second hand price vary with the current level of operating cost.  

Clearly, as current operating cost rises toward the level at which replacement is 

activated, average life falls to zero, as does the second hand value.  Although the 

determinant of second value is the current level of operating cost, it is of some interest 

to consider the implied relationship between the second hand value and the average 

life expectancy.  Interestingly, the rate of depreciation under uncertainty, for the 

benchmark values, shows a more linear rate of depreciation than would occur if 

depreciation was exponential (a constant rate depreciation curve is included - in 

column 4 of table 4 - for comparison purposes).   
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5. CONCLUDING COM M ENTS 

It was probably George Terborgh [1949] who first advanced the assumption, when 

examining the replacement investment decision, that operating expenses tend to 

increase at a constant rate over time.  This paper extends this type of analysis to the 

case where the evolution of operating cost is uncertain.  The impact of uncertainty has 

been treated before in the literature, but generally in different ways (usually in a 

discrete time framework, and usually featuring components which have a risk of 

catastrophic failure) and there has been relatively little (if any) study of comparative 

statics properties of such models.  This paper extends Terborgh’s ‘exponential model’  

to the uncertainty case, and then conducts a systematic study of both qualitative and 

quantitative properties of the model.  

 

The aim in undertaking this analysis was to provide a model which is relatively easy 

to work with numerically (the basic equation which determines the replacement 

decision can be readily solved using standard spreadsheet functions (such as 

SOLVER in EXCEL).  Furthermore, it was shown that the proxy for average 

economic life (equation (25)) was usually a fairly good approximation,9 and again, this 

was readily computable using a simple spreadsheet.  For applications where the 

underlying assumptions are reasonably plausible, it could be used as a basis for 

assessing the timing of replacement investment.   Naturally, there are many other 

considerations outwith those considered here which might affect such decisions; in 

such circumstances it may be possible to use the model to put an opportunity cost on 

                                                        
9 Table 2 indicates that the proxy only starts to seriously underestimate average economic life when 
there is high volatility and/or very low rates of increase in operating cost. 
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those considerations.   For example, consider  a fleet of  company cars (or a bus 

company);   it is possible to assess not only the trigger points at which replacement 

should be undertaken, but it is also possible to estimate the costs of varying from 

these choices.  For example, if the company does not wish to see its sales force in cars 

older than a certain age, it is possible, using this model, to quantify the cost of 

shortening the age at which such company cars are replaced.   

 

Apart from the intrinsic importance of the decision itself, replacement investment is 

of course important from a macro-economic perspective, in that if might cast some 

light of the relationship between interest rates and levels of investment (how steep the 

marginal efficiency of capital schedule is).  In thinking about such issues, it is useful 

to recognise the importance of uncertainty.  In the above model,  an increase in the 

steady state rate of interest not only affects costs directly; it also has an effect in that 

firms will choose to extend the economic life of the plant and equipment they operate; 

at the benchmark values for example, the elasticity of (average) economic life to 

changes in the rate of interest was in the region of 0.1 under certainty, and in the same 

ball park under uncertainty.  This is not only fairly inelastic, but is also a fairly 

typically value, given plausible values for volatility and the other parameters 

involved.  Thus, the model is also suggestive that changes in the rate of interest do not 

have great impacts on replacement timing.  Such observations are supportive of the 

case that, if there is a relationship at all, the marginal efficiency of capital schedule 

may be fairly steep (and hence so too the IS curve, in an ISLM framework).10   

 

                                                        
10 An increase in interest rates naturally raises financing costs and so there could be longer run output 
consequences which would also need to be considered; the above discussion presumes the ‘quantity’  of 
plant in service at a point in time is unaffected by the change in the level of interest.  In such 
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Table 2: Economic Life as a function of various parameters  

 

Parameter Value c  certT  T̂  T  Ts  

 Bench   35.870 8.197 8.515 10.09 0.048

Panel (a) 
Mark 

      
θ  0.05 29.888 18.326 21.897 37.445 0.411
 0.1 31.382 10.979 11.437 14.723 0.096
 0.15 35.870 8.197 8.515 10.09 0.048
 0.25 42.344 5.688 5.773 6.383 0.022
 0.5 56.713 3.457 3.471 3.665 0.008
 1 80.639 2.085 2.087 2.149 0.003

Panel (b)       
σ  0.000001 34.198 8.197 8.197 8.197 0.000

 0.01 34.202 8.197 8.198 8.199 0.002
 0.1 34.606 8.197 8.276 8.649 0.020
 0.2 35.870 8.197 8.515 10.100 0.049
 0.5 45.781 8.197 10.142 55.753 1.000
       

Panel (c )       
θ  0.165 36.860 7.656 7.906 9.168 0.041
r 0.11 36.454 8.280 8.623 10.112 0.049
K 110 37.782 8.533 8.862 10.417 0.050
S 11 35.676 8.162 8.479 10.054 0.049

0c  11 37.695 7.902 8.211 9.685 0.047
σ  0.22 36.234 8.197 8.583 10.479 0.057

 
Benchmark Parameter values: 00.1, 0.15, 100, 10, 10, 0.2r K S cθ σ= = = = = =  

 
Table 3:  Elasticities at benchmark values 
 

Parameter c  certT  T̂  T   # 

θ  0.28 -0.66 -0.72 -0.91 
r 0.16 0.10 0.13 0.02 
K 0.53 0.41 0.41 0.32 
S -0.05 -0.04 -0.04 -0.04 

0c  0.51 -0.36 -0.36 -0.40 
σ  0.10 0.00 0.08 0.39 

 
#  The elasticities calculated here are subject only to machine error in numerical computations of 

solutions – except for those for T .  Given that T   is estimated by simulation and manifests 
a standard error of around 0.05,  the estimates of elasticity in the final column are 
significantly less robust.
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Table 4:  Example of Depreciation under Uncertainty 
 

0c  T  Average age Second hand Price if 
constant (exponential) 
depreciation 

Theoretical second 
hand price  

( )p c  

10.000 10.230 0.000 100.000 100.000 
12.875 8.084 2.146 61.687 75.928 
15.749 6.567 3.664 43.842 57.278 
18.623 5.289 4.941 32.886 42.776 
21.498 4.215 6.015 25.827 31.602 
24.372 3.242 6.988 20.745 23.180 
27.247 2.428 7.802 17.271 17.095 
30.121 1.557 8.673 14.198 13.027 
32.996 0.896 9.334 12.235 10.728 
35.870 0.000 10.230 10.000 10.000 
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APPENDIX:   
 

1. Derivation of the fundamental equation  

The arbitrage condition , repeated here for convenience,  is 
( ) ( ( ))rV c dt cdt E dV c= + .      (A1.1) 

The next step is to evaluate ( ( ))E dV c , using Itô’s lemma.  Thus 

 21
2( ) ( ) ( )dV c V c dc V c dc′ ′′= + ,     (A1.2) 

whilst  
 dc cdt cdθ σ ϖ= − � 2 2 2 2( )dc cdt cd c dtθ σ ϖ σ= − = ,  (A1.3) 

(setting terms 2 2 2,c dt c cdtdθ θ σ ϖ =0 ).  Thus (abbreviating the notation a little) 

[ ] 2 21
2dV V cdt cd V c dtθ σ ϖ σ′ ′′

� �
= − + � � .    (A1.4) 

Taking expectations, 
2 21

2( )E dV cV dt c V dtθ σ′ ′′= + .      (A1.5) 
Hence the arbitrage equation becomes 

2 21
2rVdt cdt cV dt c V dtθ σ′ ′′= + +      (A1.6) 

Thus  
2 21

2 0c V cV rV cσ θ′′ ′+ − + =       (A1.7) 
which is equation (11) in the paper.  The general solution to the homogenous equation 

2 21
2 0c V V c rVσ ′′ ′+ − =       (A1.8) 

is derived here.  Consider a trial solution of the form 
 ( )V c cλ=         (A1.9) 

Thus, ( ) 1V c cλλ −′ =  and ( ) ( ) 21V c cλλ λ −′′ = − .  Substituting into (A1.8) gives 

 ( )21
2 1 0c c rcλ λ λσ λ λ λθ− + − =      (A1.10) 

which would hold if 

 ( )2 2 21 1
2 2 0rσ λ θ σ λ+ − − =       (A1.11) 

It is convenient to define  

 ( )21
1 2R θ σ≡ −        (A1.12) 

 ( )1 22 2
2 1 2R R rσ≡ +        (A1.13) 

so the roots to the quadratic equation  are   

( ) 2
1 1 2 /R Rλ σ= − +        (A1.14) 

and 
( ) 2

2 1 2 /R Rλ σ= − − .       (A1.15) 

The general solution to (A1.7) is formed as the sum of the solution to the homogenous 
equation and the particular solution given in the paper.  It thus takes the form  
 1 2

1 2( ) /( )V c c r A x A xλ λθ= − + +      (A1.16) 

where 1 2,λ λ  are as defined above.  The arbitrary constants are determined by 
boundary conditions. 
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2. Comparative Statics Analysis 

There are two equations determining c  and 1λ ; the latter is the positive root of the 

fundamental equation (A11).  Defining 2v σ≡  and the function   

( )21 1
2 2( )f v v rλ λ θ λ≡ + − −       (A2.1) 

then 1λ  satisfies 
 1( ) 0f λ =         (A2.2) 

Note that 1λ  is defined as the positive root of the equation (A2.2), such that  

( ) ( )
1 1/ 222 1

1 2

1
2

v
v vr

v v

θ
λ θ

− � �
= − + − +� � .    (A2.3) 

Note also that 1λ  is strictly increasing in r.  If we set r θ= , then (A2.3) simplifies to 
give  

 

( )

( ) ( ) ( ) ( )

1
1/ 22 2 21

1 4

1 1 11/ 222 2 21
2

1
2

1
1

v
v v v

v v
v v v

v
v v v v

θ
λ θ θ θ

θ θ θ
θ

− � �
= − + − + +� �

− − +� �
= − + + = − + =� �

  (A2.4) 

It thus follows that, since 1 / 0rλ∂ ∂ > , that  

 1 1rθ λ> <�
< >         (A2.5) 

The other condition established in the paper is that, defining the function  

( ) [ ]1
0 0( , ) 1 ( )( )g c c c c c K S rλ λλ λ θ λ−= − − + + − −    (A2.6) 

that 

1( , ) 0g c λ =         (A2.7) 

Denote a generic parameter as ψ  (i.e. 0, , , , ,r S K c vψ θ= ).  Then 

1 1 1 1 1 1( ) ( ) ( ) ( )
0

f d f d f f

d d

λ λ λ λ λ λ
ψ λλ ψ ψ ψ

∂ ∂ ∂ ∂+ = 	 = −
∂ ∂∂ ∂

  (A2.8) 

and 

1 1 1 1( , ) ( , ) ( )
0

g c d g c dc g

d c d

λ λ λ λ
λ ψ ψ ψ

∂ ∂ ∂+ + =
∂ ∂ ∂

    (A2.9) 

so the comparative statics derivative is given as 

1 1 1 1( , ) ( ) ( , )dc g c d g g c
d cd

λ λ λ λ
λ ψ ψψ


 �
∂ ∂ ∂= − +

� 

∂ ∂ ∂

� �    (A2.10) 

which, using (A2.8), means that 
 

1 1 1 1 1( ) ( , ) ( ) ( ) ( , )dc g g c f f g c

cd

λ λ λ λ λ
ψ λ ψ λψ

� �� �
∂ ∂ ∂ ∂ ∂= − − ×

� �� �
∂ ∂ ∂ ∂ ∂

� �� �  (A2.11) 

To begin, we need to establish the various partial derivatives (evaluating these at 

1,c λ , as follows:  from (A2.1), 
 

1( ) / 0f Kλ∂ ∂ = ,        (A2.12) 

  1( ) / 0f Sλ∂ ∂ = ,        (A2.13) 

1 0( ) / 0f cλ∂ ∂ = ,       (A2.14) 

1( ) / 1f rλ∂ ∂ = − <0       (A2.15) 
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1 1( ) /f λ θ λ∂ ∂ = >0        (A2.16) 

( )1
1 1 12( ) / 1f vλ λ λ∂ ∂ = −       (A2.17) 

whilst from (A2.6) 

1 1( , ) / ( )g c K rλ θ λ∂ ∂ = − <0      (A2.18) 

1 1( , ) / ( )g c S rλ θ λ∂ ∂ = − − >0      (A2.19) 

( )( )11 1
11 1

1 0 1 0 1 1 0( , ) / 1 /g c c c c c c
λλ λλ λ λ λ −− −∂ ∂ = − + = −   (A2.20) 

1 1( , ) / ( )g c r K Sλ λ∂ ∂ = − >0      (A2.21) 

1 1( , ) / ( )g c K Sλ θ λ∂ ∂ = − − <0      (A2.22) 

1( , ) / 0g c vλ∂ ∂ =        (A2.23) 
Finally, note that from (A2.1), 

( )1
1 1 2( ) /f v vλ λ λ θ∂ ∂ = + − .      (A2.24) 

From (A2.3) (in which the positive square root is taken), clearly this is positive.  From 
(A2.6), 

( ) ( ) ( ) ( )( )11 1
1 1 1 0 1 0( , ) / 1 1 1 1 /g c c c c c c

λλ λλ λ λ λ−∂ ∂ = − − − = − − . (A2.25) 

Given this is the denominator in (A2.11), its sign is crucial for comparative statics 

results.  Since 0 /c c <1 and 1 0λ > ,  clearly ( ) 1

01 /c c
λ− >0, and so from (A2.5),   

1 11 ( , ) / 0r g c cθ λ λ> < >� � ∂ ∂< > <      (A2.26) 

 
The term /g λ∂ ∂  is a little more tricky.  From (A2.6),  

( ) [ ]1
0 0( , ) / ( )( )g c c c c c K S rλ λ

λλ λ θ−∂
∂∂ ∂ = − − + + − −   (A2.27) 

Now, 

( ) ( ) ( )1 1 1
0 0 0c c c c c cλ λ λλ λ λ

λ λ λ
− − −∂ ∂ ∂

∂ ∂ ∂= +     (A2.28) 

and 

( )1 1 lnc c cλ λ
λ

− −∂
∂ = −        (A2.29) 

( )0 0 0lnc c cλ λ
λ
∂

∂ =        (A2.30) 

so 

( ) ( ) [ ]
[ ]

1 1
0 0 0

1 1
0 0 0 0

/ ( )( )

ln ln ( )( )

g c c c c c c K S r

c c c c c c c c K S r

λ λλ λ
λ λ

λ λλ λ

λ θ
θ

− −∂ ∂
∂ ∂

− −

∂ ∂ = − − − + + − −
= − + − + + − −

 (A2.31) 

so evaluating at 1,c λ  and simplifying a little gives 

( ) ( ) [ ]1

1 0 0 0( , ) / / ln / 1 ( )( )g c c c c c c c K S r
λλ λ θ

� �
∂ ∂ = − + + − −� � . (A2.32) 

Now (A2.6) and (A2.7) imply that : 

( ) [ ]1 11
1 1 0 0 1( , ) 1 ( )( ) 0g c c c c c K S rλ λλ λ θ λ−= − − + + − − =   (A2.33) 

and so 

( ) 1 11
1 0

0
1

1
( )( )

c c c
c K S r

λ λλ
θ

λ

−
� �

− −� �

+ − − = − .    (A2.34) 

Using this to replace the term [ ]0 ( )( )c K S r θ+ − −  in  (A2.32) gives  
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( ) ( )
( ) 1 1

1

1
1 0

1 0 0
1

1
( , ) / / ln / 1

c c c
g c c c c c c

λ λ
λ λ

λ λ
λ

−
� �� �

− −� �� � � �
∂ ∂ = − −� � � �

� �
 (A2.35) 

�  

( ) ( )
( )

( ) ( ) ( )( )

1

1

1 1

0

1 0 0
1

1 0 0 0 1
1

1 /
( , ) / / ln / 1 1

/ ln / 1 1 /

c c
g c c c c c c c

c
c c c c c c

λ
λ

λ λ

λ λ
λ

λ λ
λ

� �� �
−	 
� �� �

∂ ∂ = − − −	 
 � �
� �	 


� �
� �
= − − − +	 

	 


 

�  

( ) ( ) ( )( )1 1

1 1 0 0 0
1

( , ) / / ln / 1 /
c

g c c c c c c c
λ λλ λ λ

λ

� �
∂ ∂ = − −� �  

�  

( ) ( )( )1 1

1 0 0
1

( , ) / / 1 ln / 1
c

g c c c c c
λ λλ λ

λ

� �
∂ ∂ = − −� �    (A2.36) 

Write ( ) 1

0 /z c c
λ≡ , so that, with 00 / 1c c< <  and 1 0λ > , clearly 0 1z< < .  The sign 

of above expression then depends on the term 
 [ ]( ) 1 ln 1W z z z≡ − −        (A2.37) 

First note that [ ] [ ]( ) / 1 ln 1/ ln 0dW z dz z z z z= − + − = − >  (since (0,1)z ∈ ) so ( )W z  

is strictly increasing on (0,1).  Also note that (1) 0W = , hence it follows, for all z such 

that 0 1z< < , that ( ) 0W z < .  Given  1/ 0c λ >  this implies 

1( , ) / 0g c λ λ∂ ∂ <        (A2.38) 
This completes the preliminaries necessary for determining the comparative statics 
results, which can now be computed using (A2.11).  
 
Capital cost: 
Here, / 0f K∂ ∂ = , and / ( )g K r θ λ∂ ∂ = −  so (A2.11) becomes 

( )( )
( )( )1

1

/ / / / / /
( ) / 0 / /

( ) /

dc dK g K g f K f g c
r g f g c
r g c

λ λ
θ λ λ λ

θ λ

= − ∂ ∂ − ∂ ∂ ×∂ ∂ ∂ ∂ ∂ ∂
= − − − ∂ ∂ × ∂ ∂ ∂ ∂
= − ∂ ∂

 

Now, 1 0λ >  and 0r rθ θ> >� −< <  and (for all , 0,r rθ θ> ≠ ) from (A2.26)  

1( , ) / 0r g c cθ λ> >� ∂ ∂< <  hence,  it follows that  

(for all , 0,r rθ θ> ≠ ), / 0dc dK >      (A2.39) 
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Salvage Value: 
The analysis parallels that for capital cost.  Here / 0f S∂ ∂ = , and 1/ ( )g S r θ λ∂ ∂ = − −  

so 1/ ( ) /dc dS r g cθ λ= − − ∂ ∂ .  Thus  
(for all , 0,r rθ θ> ≠ ),   / 0dc dS <      (A2.40) 

 
Initial Operating Cost: 

Here 0/ 0f c∂ ∂ = , and ( )( )1 1

0 1 0/ 1 /g c c c
λλ −∂ ∂ = −  so 

( )( )
( )( ) ( )( )

( )( )
1

1

0 0 0
1

1 0

1

1 0

/ / / / / /

1 / / 0 / /

1 / /

dc dc g c g f c f g c

c c g f g c

c c g c

λ

λ

λ λ
λ λ λ

λ

−

−

= − ∂ ∂ − ∂ ∂ × ∂ ∂ ∂ ∂ ∂ ∂

= − − − ∂ ∂ × ∂ ∂ ∂ ∂

= − − ∂ ∂

 

Now, 1 0λ >  and 00 / 1c c< <  and (for all , 0,r rθ θ> ≠ ) from (A2.26)  

1( , ) / 0r g c cθ λ> >� ∂ ∂< < .  Also, ( ) ( )1 11 1

1 0 01 / 1 1 / 0r c c c c
λ λθ λ − −> < > <� � � −< > < > . 

It thus follows that  
(for all , 0,r rθ θ> ≠ ),  0/ 0dc dc >      (A2.41) 

 
Volatility: 
Here 

( )( )/ / / / / /dc dv g v g f v f g cλ λ= − ∂ ∂ − ∂ ∂ × ∂ ∂ ∂ ∂ ∂ ∂  

where , / 0g v∂ ∂ = , / 0g λ∂ ∂ < , and / 0f λ∂ ∂ >  so 

( ) ( )/ / /Sign dc dv Sign f v g c= − ∂ ∂ ∂ ∂  

Now,  ( )1
1 12/ 1f v λ λ∂ ∂ = −  and from (A2.5),  1 1rθ λ> <�

< > , so 

1 1 / 0r f vθ λ> < <� � ∂ ∂< > > . 

However, 1( , ) / 0r g c cθ λ> >� ∂ ∂< <  from (A2.26).  Hence 

(for all , 0,r rθ θ> ≠ ),    / 0dc dσ >     (A2.42) 
 
Interest rate: 
Here,   

( )( )/ / / / / /dc dr g r g f r f g cλ λ= − ∂ ∂ − ∂ ∂ ×∂ ∂ ∂ ∂ ∂ ∂  

where / 1f r∂ ∂ = − <0, 1/ ( )g r K S λ∂ ∂ = − >0, 1( , ) / 0g c λ λ∂ ∂ <  and 

( )1
1 2/f v vλ λ θ∂ ∂ = + − >0.   

Hence, /dc dr  is of ambiguous sign. 
 
Operating cost trend: 
Here 

( )( )/ / / / / /dc d g g f f g cθ θ λ θ λ= − ∂ ∂ − ∂ ∂ ×∂ ∂ ∂ ∂ ∂ ∂  

where 1/f θ λ∂ ∂ = >0, 1/ ( ) 0g K Sθ λ∂ ∂ = − − < , / 0g λ∂ ∂ < , and / 0f λ∂ ∂ > . 
Hence, /dc dθ  is of ambiguous sign. 
 

 


