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ABSTRACT 
 
 
 
Recent work on the ‘size effect’  suggests that size-related regularities in asset prices 
(such as size, leverage, book to market equity etc.) should not be regarded as 
anomalies.  This paper first clarifies the argument (by showing why the OLS cross 
section regression incorporating size related variables is necessarily misspecified) and 
follows this by assessing the likely quantitative magnitude of this type of bias in a 
simulation study calibrated on US data.  
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1.   INTRODUCTION 

 

What determines expected stock returns?  Simple unconditional capital asset pricing  

models (Sharpe [1964], Lintner [1965], Black [1972] etc.) suggest that it is market 

beta, whilst the empirical evidence suggests beta is at best a minor determinant, and 

that size or size related1 variables have a significant role to play2  (although there is still 

empirical dispute over which variables can be regarded as ‘ independent determinants’  

of expected stock returns).  In a recent and influential paper,  Jonathan Berk [1995] 

has argued that the size effect (and by implication, possibly all the above size-related 

regularities) in asset prices should not be regarded as anomalies.  In particular, he 

argues  

“  (1) that size-related regularities should be observed in the economy, and 

(2)  [that] size will in general explain the part of the cross-section of expected 

returns left unexplained by an incorrectly specified asset pricing model.”  

(Berk [1995, p. 275])  

The object of the present paper is to first clarify Berk’s proposition that “size related 

regularities should be observed in the economy”; in our view, the correct interpretation 

of his analysis is that  “a misspecified econometric model may make it appear that 

there are size related regularities even when none exist.”   This reinterpretation, if 

correct, matters since it suggests that, if the object is to determine whether there is a 

‘ real’  size effect, then either one should 

(i)  re-specify the econometric model, or  

(ii)  explore the extent to which the misspecification matters (as with beta 

measurement error, if the impact is found to be small, it can be ignored).  

Section 2 follows Berk’s analysis in using a simple example to clarify why it is that 

incorporating size related variables on the right hand side of a cross section regression 

necessarily implies a violation of the assumption that the error term should be 

uncorrelated with the explanatory variables.3  Section 3 then extends the model to a 

more ‘ real world’   case where there is noise in the estimates of both the portfolio betas 
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and expected returns.  Finally, section 4 presents a simulation study, calibrated using 

the data set from a recent study by Jagannathan and Wang [1995].  The object of this 

study is to explore the extent to which size related misspecification is likely to show 

through in practice.   

 

 

2.  A SIM PLE BIVARIATE CASE 

 

To establish the argument more formally, and for comparison purposes, the framework 

used in Berk [1995] is adopted.  A brief outline is as follows.  The ‘economy’ 

comprises a set of assets, I, which generate end-of-period random cash flow ~pit ,  

i I∈ .  The assets are traded at time zero in a spot market, at prices p i Ii 0, ∈ .  The 

continuously compounded return on the time interval [ , ]0 t  is given by ~ ln( ~ / )r p pi it i= 0  

and the expected return is denoted R E ri i= 0
~� �

.4  Each asset is parameterised by the 

expected value of (log) cash flow, which is denoted C E pi it= 0 ln ~� �
. Given there is a 

cross sectional distribution of assets in this economy, the values R Ci i,  i I∈  can be 

regarded as realisations of (cross-section) random variables R, C. 5   Berk’s argument 

is presented in its simplest form in the context of a bivariate regression of expected 

return against (logarithm of) size: 

 R Pi i i= + +γ γ ε0 1 0 ,       (1) 

where P pi i0 0= ln( ) .  If this regression is “run”  in the whole population, he 

demonstrates that, if the one period CAPM holds,  there is, logically, a size effect.  The 

argument is based on the assumption that, in the population, cov( , ) var( )C R R< , and 

the fact that this can be shown to imply that the value of the (population) regression 

coefficient on size is negative.  He thus argues “that size-related regularities should be 

observed in the economy” (Berk [1995, p. 275]).  

 

In what follows,  a particular interpretation of this result is emphasised, namely that 

‘market value merely appears to explain expected return’ .  The point is that the 
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classical assumptions which underpin OLS regression do not hold for the cross section 

regression in (1) since the error term is correlated with the explanatory variable.  As a 

consequence, the OLS estimator of γ 1  in equation (1) is biased and inconsistent; such 

a regression may show a ‘size effect’  even if there is none in the underlying data 

generation process.  To see this, take (1) as the true generating process and focus on 

the ‘population’  estimator  

 � cov( , ) / var( )γ 1 0 0= R P P .      (2) 

Using  (1),  

 
� cov( , )

var( )

cov( , )

var( )

cov( , )

var( )
α γ γ ε γ ε

1
0

0

0 1 0 0

0
1

0

0

= = + + = +R P

P

P P

P

P

P
.  (3) 

The usual assumption in OLS regression is that the error term is independent of the 

exogenous variables (that is, cov( , )ε P0 =0).  Here this is not the case because by 

definition 

 R C P= − 0 .        (4) 

The key point is that whilst C is an exogenous variable, P0  is not; indeed it is P0  that is 

the real dependent variable, as can be seen by substituting (4) into (1).  This gives 

 P C0 1

1

01= + − −−γ γ εb g b g .      (5) 

Assuming (as in Berk [1995]) that the error term ε  is independent of the exogenous 

random variable, C, so that cov( , )C ε = 0, it then follows that 

 cov , cov , varε ε γ γ ε γ εP C0 1

1

0 1

1
1 1

� � � � � �� � � � � �
= + − − = − +− −

. (6) 

Hence �γ 1  is biased: 

 � var( )

var( )
γ γ γ ε

1 1 1

1

0

1= − + −
b g

P
.      (7) 

Now suppose that the true return generating process is such that expected returns are 

actually independent of size.  That is, in (1),  γ 1 0= .  Then the OLS estimate of γ 1  is 

simply 

 � var( ) / var( )γ ε1 0 0= − <P       (8) 

The above analysis makes it clear that, although there is no real size effect, a spurious 

‘size effect’  naturally arises out of bias in estimation.  Furthermore, if there is a real 
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(negative) size effect,  the induced bias  will tend to make the effect appear larger than 

it really is.6   

 

 

3.  SIZE AND BETA IN CROSS SECTION REGRESSION 

 

Section 2 established that bias in estimation could give rise to the appearance of a 

spurious size (or size related) effect even though none existed in the underlying 

generating process.  This section shows that this observation applies to any cross 

section regression which involves a measure for expected return regressed on 

explanatory variables some of which are size related  (size , leverage, dividend yield, 

earnings per share etc.), if there are other determinants of expected return which are 

omitted from the model specification.  It also shows that if, by contrast, expected 

returns are generated by a single factor (beta) process, then there is no bias, so long as 

the cross section regression includes beta as a right hand side explanatory variable.   

 

Suppose that, on the interval [0,t], the true relationship between expected returns, size 

and beta is as follows:  

 R Pi i i i= + + +α α β α ε0 1 2 0
*       (9) 

where β i
*  denotes the i th  asset’s ‘ true’  equity beta and as before, P pi i0 0= ln( )  is the 

associated size variable.  It is assumed that there is no size effect (so α 2 0= ; size is 

included in the equation only because the object is to consider what happens if a 

regression of this type is run with the object of obtaining an estimate for α 2 ).  Now, if 

the CAPM holds,  not only must α 2 0=  but it must also be the case that ε i = 0 for all 

i I∈ .  The error term ε i  can only deviate from zero if there are factors (other than 

beta) which influence expected return.  In what follows, it is shown inter alia that, 

with beta as the sole factor generating expected returns, there is no ‘spurious size 

effect’  arising out of adding size as a right hand variable. 
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However, it can be argued that the point behind cross section testing of the CAPM is 

not so much to test whether the CAPM is ‘ true’  (after all, there are many other 

predictions of the CAPM which are clearly and palpably false) as to simply test 

whether beta is a significant explanator of asset returns (and whether it does more or 

less work than other potential explanatory variables).  The point of (our 

reinterpretation of) Berk’s analysis is that, admitting there may be unspecified (non-

size) determinants of expected return not included in the estimation model, the 

inclusion of a size variable on the right hand side causes a breakdown in the OLS 

assumption that the error is uncorrelated with this. 

 

To move toward a more realistic model, the fact that beta is typically only estimated 

with error, and that actual rather than expected return is observed, are now 

incorporated.  That the coefficients in a regression of type (9) will generally be biased 

because of ‘errors in variables’  (the fact that the equity betas are only estimated, and 

hence are best interpreted as being measured with error) has been known for some 

time (see e.g. Levi [1973], Fama and MacBeth [1973]) along with the fact that this will 

generate a spurious ‘size effect’  (see e.g. Shanken [1985],  Chan and Chen [1988],  

Kothari, Shanken and Sloan [1995]) although the effect is, empirically, fairly small 

when, as is customary, the cross section analysis is conducted using portfolios rather 

than individual assets.  The analysis in section 2 indicates that the size variable can 

create an additional and potentially much more substantial source of bias.   

 

The rest of this section is devoted to obtaining expressions for the extent of bias in the 

‘population regression’  OLS estimators of α α1 2, .  The observed beta is given as 

 β β ψi i i= +*         (10) 

where ψ i  denotes random measurement error.  Finally, the observed return can be 

written as  

 r Ri i i= +ν         (11) 
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where ν i  simply reflects the fact that the end of period price may deviate from its time 

zero expectation. 

 

Thus (9) can be rewritten as 

 r Pi i i i= + + +α α β α η0 1 2 0       (12) 

where 

 η ε α ψ νi i i i= − +1 .       (13) 

The OLS estimator for α 2  in (12) is thus 

 � cov( , ) var( ) cov( , ) cov( , )

var( ) var( ) cov( , )
α β β β

β β2
0 0

0 0
2

= −
−

P r r P

P P
.   (14) 

(where the covariances etc. are evaluated across the assets i I∈ ).  As already 

discussed in section 2, the real dependent variable in the system (10)-(13) is P0 , whilst 

the variables β* , ( )C E Pt≡ 0

� �
 are exogenous.  In particular, from (4) and (11), 

 r R C P= + = − +ν ν0        (15) 

The appropriate assumptions regarding the error terms include  

 cov( , ),cov( , ),cov( , ),cov( , ),cov( , )* *β ε β ψ ε ψ ψ εC C = 0.   

 cov( , ),cov( , ),cov( , ),cov( , )*β ν ν ν ψ ν εC = 0 

Given this, it is straightforward to show that (see appendix) 

 �
var( ) cov( , ) var( ) var( )

var( ) var( ) cov( , )
α α

α ψ β α ξ β
β β2 2

1 0 2

1

0 0
2

1
− =

− +
−

−
P

P P

b g
.  (16) 

where 

 var var var varξ ε α ψ ε α ψ
� � � � � � � �

= − = +1 1
2     (17) 

Thus, under the null hypothesis that there is no real size effect, such that α 2 0= , then 

 � var( )cov( , ) var( )var( )

var( ) var( ) cov( , )

( ) ( ) ( ) ( ) ( )

( )

α α ψ β ξ β
β β2

1 0

0 0
2

= −
−

+ + − + +

+

�	��
����
� �� ��
�� ��
��

� ��	���	� � ����	�	���

P

P P
.    (18) 

The equivalent calculation for �α 1  (again setting α 2 0= ) gives 

 � var( )var( ) var( )cov( , )

var( ) var( ) cov( , )

( ) ( ) ( ) ( ) ( )

( )

α α α ψ ξ β
β β1 1

1 0 0

0 0
2

− = − −
−

+ + + + −

+

�������� ��� �!�"� ���# �#

$ %#	#	#�# # &#	#�#	##

P P

P P
.   (19) 
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Clearly, var( ),var( ),var( )ψ ε ξ > 0, and it is usually argued that, empirically, size and 

beta are negatively correlated, so cov( , )β P0 0< .  Finally, the assumption that 

investors are risk averse implies α 1 0> .   The denominator of the ratio in (18)  is 

positive, so, with the numerator negative, this implies the ‘ illusion’  of a size effect even 

when there isn’ t one: 

 α 2 0= �  
�
α 2 0< .      (20) 

The effect of ‘errors in variables’  was already known to give a spurious negative ‘size 

effect’  and the extent of this bias is increased further by the ‘correlated error’  effect.  

Turning now to 
�
α 1 , both effects again operate in the same direction, giving  

 
�
α α1 1< .        (21) 

It follows that empirical analysis which includes a size variable increases the likelihood 

that beta will appear not to be a significant factor.   

 

The ‘spurious size effect’  is thus manifest if either   

 (i)  betas are measured with error, and/or 

 (ii) there are other (non-size) related determinants of expected returns. 

However, clearly, if there is no beta measurement error and the CAPM holds (only 

beta determines expected return), then there is no bias.  In this case, var( )ψ = 0, 

var( )ε = 0  and hence var( ) var( )ξ ε α ψ= − =1 0.  Hence 
�
α α1 1=  and  

�
α α2 2 0= = . 

 

The above analysis suggests that, with a multi-factor generating process, the 

observation of size effects could be merely an artefact of a misspecified statistical 

model.  The inclusion of size variables on the right hand side in such circumstances 

also increases the probability that beta will not appear as a significant factor.  A natural 

question to pose then is whether such effects are likely to be significant in empirical 

applications.  This question is addressed in the simulation study in section 4 below.   
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4.  ASSESSING THE EXTENT OF BIAS: A SIM ULATION STUDY 

 

This section explores the potential quantitative impact of the above form of 

specification error.  The simulation is ‘calibrated’  using a US data set comprising 100 

portfolios constructed from NYSE and NASDAQ stocks as used in recent work on 

capital asset pricing models by Jagannathan and Wang [1995] (JW hereafter).  This 

data set gives an initial ball park for portfolio characteristics (beta, size, unsystematic 

risk etc.) typical for cross section studies of this type.  Where appropriate, the study 

uses sensitivity analysis to consider variations from these characteristics (for example, 

in portfolio total risk, or for measurement error in beta  etc.).  

 

The JW data set comprises returns on 100 NYSE and NASDAQ stock portfolios 

constructed using the Fama and French [1992] sorting procedure (for construction 

details, see JW [1995, pages 18-19]  7).  The sorting procedure generates portfolios 

which differ markedly according to size and beta.  For each portfolio, the monthly 

returns from July 1963-December 1990 give a time series comprising 330 

observations.  The beta coefficients reported below were computed by regressing each 

portfolio return against the return (denoted Rmt ) on the CRSP value weighted index 

for the corresponding months.  That is, 

 R Rit i i mt it= + +α β η   (t=1,..,330) (i=1,..,100)  (22) 
The average monthly returns on these portfolios are reported in table 1.  Table 2 

reports the estimates  
�

β i , i=1,..,100 for the portfolios, whilst table 3 gives the portfolio 

size variable.  Also recovered from this set of regressions are estimates for the standard 

error for beta, s
i

�

β
 (table 4)  and unsystematic risk, s

iη  (table 5).8  

Tables 1-6 about here 

A typical cross section regression using this type of data set involves calculating the 

average return for each portfolio and regressing this against the portfolio beta and 
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other cross sectional explanatory variables.  Table 6 reports the results obtained9  for 

the simple regressions of (a) return on beta and (b) return against beta and size.  The 

evidence here is that, in regression (a), the coefficient on beta is not significantly 

different from zero, whilst in (b), introducing size, both beta and size are significantly 

negative.  This result is consistent with the effect of correlated error bias as examined 

in section 3. 

 
The simulation model is specified as follows.  The estimated betas, standard errors, 

unsystematic risks etc. from the times series regressions in (22) are used to ‘calibrate’  

the data generation process.  That is, set β βi i*
�

= ,  var( ) �ψ
βi s

i
= 2 ,  var( )η ηi s

i
= 2  and 

use the size variable reported in JW (table 3 here) to characterise the exogenous 

variable E Pt0( ) .  Clearly the time series estimate s
i

�

β
2  is likely to be an over-estimate 

for var( )ψ i , whilst in different studies using different portfolios may feature different 

general levels of unsystematic risk.  This is taken into account by conducting a 

sensitivity analysis in which the impact of variations in both var( )ψ i  and var( )ηi   are 

examined (a general conclusion, as one might expect, is that even quite large variations 

invar( )ψ i  have little impact on the level of bias in the beta and size parameters). 

 

The simulation involves generating n nreps= 1,.. (=5,000) simulated data sets.  Each data 

set is generated as follows.  Observed betas are generated according to the process 

 β β ψi i in nb g b g= +*  ψ ψi in Nb g ~ ( ,var( ))0  (i=1,..,100) (23) 
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Thus the estimated betas are used as values for β i *  and their standard errors used to 

generate ‘observed’  betas, denoted β i nb g .  Expected portfolio returns are then 

generated using 

 R n ni i i( ) *= + +α α β ε0 1 b g  ε εi in Nb g ~ ( ,var( ))0  (i=1,..,100) (24) 

after which observed returns are generated by 

 r n R n ni i i( ) ( ) ( )= +ν   ν νi in Nb g ~ ( ,var( ))0   (i=1,..,100) (25) 

Unfortunately, on the basis of the empirical data, it is not possible to completely 

disentangle the variances for ε ψ ν, , .  What we do know is that, since 

η ε α ψ νi i i i= − +1  and since ε ψ ν, ,  are independent random variables, it follows that 

 var( ) var( ) var( ) var( )ε ν η α ψi i i i+ = − 1
2 ,  (i=1,..,100) (26) 

and we do have estimates for the right hand side variances.  A useful way to proceed is 

through sensitivity analysis.  Accordingly, the model is parameterised as follows.  We 

set  

 var( )η ηi k s
i

= 1
2       (i=1,..,100) (27) 

 var( ) �ψ
βi k s

i
= 2

2      (i=1,..,100) (28) 

 var( ) [var( ) var( )]ε η α ψi i ik= −3 1
2    (i=1,..,100) (29) 

 var( ) ( )[var( ) var( )]ν η α ψi i ik= − −1 3 1
2   (i=1,..,100) (30) 

 

The sensitivity analysis then involves an assessment of the impact of altering each of 

k k1 4,.., .  Thus, varying k1 allows an exploration of the impact of varying total noise 

( k1=1 gives portfolio total variances as estimated in JW data); varying k2  allows an 

exploration of the impact of varying the overall level of noise in the estimate of beta 

( k2 =0 implies betas estimated without error, whilst k2 =1 gives each portfolio beta a 

standard error equal to that in the JW data).  The parameter k3  acts as a ‘variance 
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splitter’  ( 0 13≤ ≤k ) which divides the total variance on the right hand side in (26) 

between that associated with determinants of expected return ( var( )ε ) and that 

associated with the deviation of actual from expected return ( var( )ν ) (thus setting 

k3 =1 gives maximum bias). 

 

The values of α α0 1, , respectively the risk free rate and the market premium in the 

Sharpe CAPM,  can also be expected to have an effect on bias, and so are also treated 

as parameters in the simulation.  Denoting the observed total return on the market 

index used in the JW data set over this period as Rm, then the values of α α0 1,  are 

selected to satisfy 

 Rm m= + = +α α β α α0 1 0 1 ,       (31) 

so that, given a choice of α 1 , the value of α 0  is determined as 

 α α0 1= −Rm          (32) 

We therefore parameterise α α0 1,  by setting 

 α 1 4= k Rm         (33) 

with  0 14≤ ≤k , with α 0  then defined by (32).  Thus setting k4 0=  implies a data 

generating process independent of beta etc.   

  

For given values of k k1 4,.., , equations (23), (24), (25) are used to generate a cross 

section data set for r n n P ni i i( ), ( ), ( )β 0  (i=1,..,100).  The endogenous variable P ni 0( )  is 

generated using (24) and the fact that P n E P R ni it i0 0( ) ( ) ( )= −  (from (4)).  Following 

this,  the cross section regression  

 r n a a n a P n e ni i i i( ) ( ) ( ) ( )= + + +0 1 2 0β   (i=1,..,100)  (34) 

is estimated.  The whole process is repeated (for fixed k k1 4,.., ) n nreps= 1,.., (=5,000)10 

times in order to generate the finite sample characteristics of the OLS estimators for 

α α0 1, .  The ‘population’  bias values are also calculated, using equations (18) and  

(19).  Finally, the values of k k1 4,..,  are varied to explore their impact on finite sample 
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and population bias measures.  The results are reported in table 7 (for the size 

parameter) and 8 (for beta). 

Table 7, 8  here 

 

In table 7, column 6 gives population bias, whilst columns 7-11 report descriptive 

statistics for the size parameter; thus column 7 reports the average level of  bias over 

the 5000 finite sample regressions, whilst column 8 gives the associated average t-

value for the size parameter.  Columns 9-11 give the percentage of the total number of 

regressions in which the size parameter is significant at the 10%, 5%, 2.5% levels of 

significance (one tailed test).  Table 8, focussing on the beta parameter a1 gives similar 

statistics, although we also report in column 6 the ‘ true’  value of α 1  used in the 

simulation (since this varies across cases).  The average value of the t-statistic is 

reported both for the null hypothesis that 0 is the true value (in column 9) and also 

against the true value of α 1  as used in the data generation process (column 10).  

Again, columns 11-13 report the number of regressions in which 
�

α 1  is significantly 

greater than zero (one tailed test) at the 10, 5 and 2.5% levels of significance. 

 

The cases are organised as follows.  Setting k1 05= .  gives a value for α 1  equal to half 

the market rate Rm (in a Sharpe model, equivalent to setting the market premium equal 

to the risk free rate).  The first three cases (both tables) then set simulation portfolio 

variances equal to those found in the JW data (i.e. k2 1= ), with half the noise being 

ascribed to expected return variance and half to actual return (i.e. 

k i i3 05= � =. var( ) var( )ε ν ).  Finally var( )ψ i  is increased from zero (case 1) through 

to the values estimated in the JW data (case 2) and then to 10 times these (case 3).  

The results indicate (the well known result) that, at the level of beta estimation noise 

typical in portfolio analysis, bias due to errors in beta has little impact on bias. 

 

Having explored the impact of beta-estimation bias, and given that it is relatively small 

in any case, this is put to one side in cases 4-11.  Cases 4 and 5 indicate just how 
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important to bias is the value of k3 ; recall that when k3 =0,  this sets var( )ε i = 0, 

whilst k3 =1 sets var( )ν i = 0, such that the bias effect is at its maximum (for given 

total variance).  Thus case 4 merely illustrates the fact that there is no bias at all in 

population or finite sample estimators when var( ) var( )ε ψi i= = 0 (for all i=1,..,100), 

whilst there is a highly significant impact when var( )ε i  is set at its maximum value (the 

average t-value on size in case 5 being -4.27).   

 

Cases 6,7 illustrate the impact on bias of varying the total volatility of the portfolios.  

Setting k2 =0.5 cuts the total variance for each portfolio to one half of that observed in 

the JW data, whilst k2 =5 multiplies it five fold.  The impact is as expected; notice that, 

in table 8, the strength of the effect in case 7 is sufficient to make beta very rarely 

significantly positive.   

 

Cases 9-11 explore the impact of varying the true beta coefficient, from α 1 0=  

through to α 1 = Rm .  This has little impact on the bias observed in the size coefficient 
�

α 2 , but does of course have an impact on the ability of the regression to pick up a 

significant beta effect.  When the beta effect is relatively small (10 or 20% of Rm in 

cases 9, 10 in table 8),  the bias impact is sufficient to leave the coefficient insignificant 

in most regressions.    

 

Finally, in view of the fact that in many cross section regressions recently reported, 

beta is observed to have no significant impact, cases 12 and 13 set α 1 0=  and total 

variance equal to that observed in the JW data, with standard errors on betas as in that 

data; the tables here give the impact of varying expected return noise from its 

maximum (case 12) to its minimum of 0 (case 13).  As expected, the size related bias 

effect shows through heavily in case 12.  However, it is worth noting that, when true 

α 1 =0, the bias on this coefficient is relatively smaller than when α 1  is larger (as 

expected, given equations (16) and (18)).  
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To sum up, the simulation reveals that the extent of bias in finite sample cross section 

regression depends upon the proportion of variance in (26) assigned to var( )ε i .  At its 

maximum (when k3 1= ), the bias can be highly significant in cross section regression, 

to the extent that it could easily result in incorrect inferences on both the contribution 

of size and beta.  In the present framework, it is not possible to disentangle the two 

sources of variation in actual return ( var( )ε i  and var( )ν i ), so it is not possible to say 

which is the more important.11  However, the above analysis does point to the fact that 

in practical applications the observation of a significant size effect could well be the 

result of correlated error bias.  

 

 

5.  CONCLUDING COM M ENTS 

 

The object of this paper has been to clarify the debate as to whether the observation of 

size effects in cross section regression analysis constitutes an ‘anomaly’  or not.  We 

have argued that with beta as the only factor in the data generating process, there is no 

problem with adding a size variable to the right hand side of the cross section 

regression; under the null hypothesis that the CAPM is ‘ true’, the estimators of the size 

and beta effects are unbiased.  However, if the underlying data generating process is 

multi-factor, including non-size factors, then any cross section regression which 

includes beta and size as explanatory variables (but excludes other explanatory 

variables), necessarily leads to correlated error bias in the parameter estimators for 

both size and beta.  The effect is to increase the chance that, in a finite sample 

regression, size will appear to be significant when it is not - and that beta will be more 

likely to appear with an insignificant coefficient even if does have real explanatory 

power.  The evidence provided by the simulation study suggests that in typical cross 

section studies, the bias-effect could be important.  Although the focus has been 

exclusively on size, similar effects occur in cross section regressions where (market 
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value based) leverage, dividend yield, book to market equity, earnings yield, etc. are 

included on the right hand side.  
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Table 1:  Portfolio Average monthly returns 
 

 β1 β 2  β 3  β 4  β5  β 6  β 7  β8  β 9  β10  

S1 1.44% 1.53% 1.56% 1.71% 1.36% 1.44% 1.37% 1.33% 1.46% 1.34% 
S2 1.13% 1.22% 1.09% 1.19% 1.38% 1.37% 1.37% 1.30% 1.15% 0.95% 
S3 1.26% 1.27% 1.22% 1.26% 1.16% 1.29% 1.34% 1.19% 1.12% 0.89% 
S4 1.37% 1.47% 1.40% 1.28% 1.01% 1.39% 1.11% 1.33% 1.07% 0.95% 
S5 0.97% 1.53% 1.10% 1.28% 1.18% 1.04% 1.35% 1.07% 1.23% 0.82% 
S6 1.07% 1.36% 1.34% 1.12% 1.25% 1.27% 0.84% 0.94% 0.92% 0.77% 
S7 0.99% 1.18% 1.13% 1.19% 0.96% 0.99% 1.11% 0.91% 0.90% 0.83% 
S8 0.95% 1.19% 1.02% 1.39% 1.18% 1.24% 0.94% 1.02% 0.88% 1.08% 
S9 0.94% 0.92% 1.05% 1.17% 1.15% 1.03% 1.02% 0.84% 0.80% 0.51% 
S10 1.06% 0.97% 1.02% 0.94% 0.83% 0.93% 0.82% 0.83% 0.61% 0.72% 

 
Table 2:  Portfolio Betas 
 

 β1 β 2  β 3  β 4  β5  β 6  β 7  β8  β 9  β10  

S1 0.90 0.99 1.01 1.13 1.17 1.21 1.2 1.31 1.44 1.54 
S2 0.83 1.00 1.09 1.12 1.18 1.29 1.33 1.39 1.48 1.63 
S3 0.78 0.93 1.09 1.11 1.18 1.27 1.29 1.40 1.42 1.70 
S4 0.75 0.91 1.05 1.13 1.19 1.32 1.25 1.32 1.56 1.61 
S5 0.57 0.78 1.10 1.10 1.12 1.20 1.25 1.43 1.45 1.54 
S6 0.62 0.77 0.88 1.01 1.08 1.25 1.22 1.34 1.32 1.59 
S7 0.64 0.84 1.01 1.07 1.16 1.21 1.26 1.26 1.31 1.54 
S8 0.64 0.73 0.91 1.04 1.07 1.17 1.22 1.19 1.23 1.50 
S9 0.62 0.78 0.88 0.96 1.04 1.05 1.13 1.17 1.22 1.34 
S10 0.68 0.76 0.80 1.00 0.97 1.00 1.04 1.09 1.10 1.28 

 
 
Table 3:  Portfolio Size (log$M ) 
 

 β1 β 2  β 3  β 4  β5  β 6  β 7  β8  β 9  β10  

S1 2.48 2.5 2.49 2.48 2.48 2.50 2.46 2.46 2.46 2.34 
S2 3.71 3.72 3.73 3.73 3.71 3.71 3.72 3.72 3.72 3.72 
S3 4.21 4.21 4.21 4.21 4.21 4.23 4.21 4.22 4.21 4.20 
S4 4.67 4.65 4.64 4.65 4.65 4.65 4.65 4.64 4.64 4.64 
S5 5.07 5.09 5.07 5.08 5.08 5.07 5.07 5.07 5.07 5.05 
S6 5.47 5.48 5.47 5.48 5.48 5.48 5.48 5.48 5.47 5.48 
S7 5.91 5.92 5.93 5.92 5.92 5.89 5.91 5.90 5.92 5.90 
S8 6.44 6.42 6.43 6.39 6.43 6.41 6.43 6.42 6.40 6.40 
S9 6.98 6.98 7.00 6.98 6.96 6.97 6.95 6.96 6.95 6.97 
S10 8.11 8.26 8.22 8.19 8.16 8.18 8.06 8.03 7.92 7.81 
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Table 4: s�

β
, the standard error on portfolio beta  

 
 β1 β 2  β 3  β 4  β5  β 6  β 7  β8  β 9  β10  

S1 0.054 0.054 0.058 0.062 0.064 0.064 0.067 0.070 0.075 0.082 
S2 0.042 0.049 0.046 0.047 0.055 0.055 0.053 0.055 0.060 0.068 
S3 0.041 0.042 0.047 0.046 0.050 0.048 0.052 0.051 0.052 0.060 
S4 0.036 0.037 0.040 0.041 0.042 0.048 0.047 0.047 0.060 0.059 
S5 0.036 0.034 0.031 0.036 0.040 0.044 0.041 0.045 0.050 0.054 
S6 0.036 0.030 0.030 0.034 0.034 0.039 0.041 0.039 0.051 0.054 
S7 0.037 0.035 0.030 0.030 0.034 0.032 0.034 0.035 0.039 0.049 
S8 0.039 0.032 0.028 0.029 0.032 0.029 0.031 0.035 0.039 0.047 
S9 0.037 0.029 0.026 0.028 0.029 0.028 0.031 0.030 0.030 0.038 
S10 0.034 0.028 0.028 0.025 0.023 0.026 0.024 0.024 0.027 0.033 

 
 
Table 5: s�

η , Portfolio unsystematic risk  

 
 β1 β 2  β 3  β 4  β5  β 6  β 7  β8  β 9  β10  

S1 0.044 0.044 0.048 0.050 0.052 0.052 0.055 0.057 0.061 0.067 
S2 0.034 0.040 0.037 0.038 0.045 0.045 0.043 0.045 0.049 0.055 
S3 0.033 0.034 0.038 0.037 0.041 0.039 0.043 0.041 0.042 0.049 
S4 0.029 0.030 0.032 0.033 0.035 0.039 0.039 0.038 0.049 0.048 
S5 0.030 0.027 0.026 0.029 0.032 0.036 0.033 0.037 0.041 0.044 
S6 0.029 0.025 0.025 0.028 0.028 0.032 0.033 0.032 0.042 0.044 
S7 0.030 0.028 0.025 0.025 0.027 0.026 0.028 0.028 0.031 0.040 
S8 0.032 0.026 0.023 0.024 0.026 0.023 0.025 0.028 0.032 0.039 
S9 0.030 0.023 0.021 0.022 0.024 0.023 0.025 0.024 0.024 0.031 
S10 0.027 0.023 0.023 0.020 0.019 0.021 0.020 0.020 0.022 0.027 

 
 
Table 6:  Cross Section Results for the original JW data  
 

 Coefficients  
OLS Regression Constant Beta Size R-square 
(a) on Beta 4.103 

(12.15) 
-0.338 
(-1.16) 

- 
(-) 

0.0135 

(b) on Beta and Size 6.858 
(20.81) 

-1.050 
(-5.19) 

-0.368 
(-11.34) 

0.5757 
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Table 7:  Simulation Results,  Size Parameter. 
 

1 2 3 4 5 6 7 8 9 10 11 
 
 

Case 

 
 

k1 

 
 

k2  

 
 

k3  

 
 

k4  

 
 
Populatio
n bias in 

�

α 2  

Average 
bias in 
finite 
sample 
estimator

�

α 2  

Average t-
value (for 
null 
hypothesis 
that α 2 =0) 

% of regressions in which the 
beta parameter 

�

α 2  is 
significantly less than zero at 
the significance level: 

        10% 5% 2.5% 
1 0.5 1 0.5 0 -0.086 -0.084 -2.099 76.320 65.580 54.560 
2 0.5 1 0.5 1 -0.090 -0.087 -2.175 78.780 67.860 57.080 
3 0.5 1 0.5 10 -0.119 -0.144 -3.854 99.180 98.000 96.000 
4 0.5 1 0 0 0.000 0.000 -0.008 11.680 6.260 3.320 
5 0.5 1 1 0 -0.159 -0.154 -4.272 99.620 99.100 98.260 
6 0.5 0.5 1 0 -0.086 -0.084 -3.012 94.420 89.300 82.960 
7 0.5 5 1 0 -0.486 -0.479 -9.537 100.000 100.000 100.000 
8 0 1 1 0 -0.159 -0.154 -4.238 99.640 99.220 98.440 
9 0.1 1 1 0 -0.159 -0.154 -4.233 99.720 99.200 98.000 

10 0.2 1 1 0 -0.159 -0.155 -4.280 99.800 99.260 98.240 
11 1 1 1 0 -0.159 -0.155 -4.266 99.660 99.120 98.160 
12 0 1 1 1 -0.158 -0.154 -4.261 99.680 99.300 97.980 
13 0 1 0 1 0.000 0.001 0.024 11.140 6.320 3.200 

 
k1= value of α 1  as proportion of Rm. 
k2 = total variance multiplier ( k2 =1 gives portfolio variances as in original JW data). 
k3  splits variance between ε  and ν  ( k3 =1 gives maximum bias effect). 
k4 =multiplier on beta error variance ( k4 =1 implies betas have same standard errors as in original JW data; k4 =0.5 halves this etc.). 
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Table 8:  Simulation Results, Beta parameter  

 
1 2 3 4 5 6 7 8 9 10 11 12 13 
 
 

Case 

 
 

k1 

 
 

k2  

 
 

k3  

 
 

k4  

 
 
α 1  (True 
value) 

 
 
Population 
bias in 

�

α 1  

Average 
bias in 
finite 
sample 
estimator 

�

α 1  

Average t-
value (for 
null 
hypothesis 
that 
α 1 =0) 

Average t-
value (for 
null 
hypothesis 
that α 1  
equals its 
true value) 

% of regressions in which the 
beta parameter α 1  is 
significantly greater than zero at 
the significance level  

          10% 5% 2.5% 
1 0.5 1 0.5 0 1.497 -0.296 -0.286 4.247 -1.009 99.820 99.440 98.680 
2 0.5 1 0.5 1 1.497 -0.345 -0.336 4.147 -1.204 99.720 99.140 98.060 
3 0.5 1 0.5 10 1.497 -0.659 -1.242 1.923 -9.354 71.060 59.940 48.520 
4 0.5 1 0 0 1.497 0.000 0.004 5.077 0.011 99.960 99.940 99.780 
5 0.5 1 1 0 1.497 -0.545 -0.534 3.612 -2.019 99.580 98.300 96.000 
6 0.5 0.5 1 0 1.497 -0.296 -0.288 6.120 -1.466 100.000 100.000 100.000 
7 0.5 5 1 0 1.497 -1.667 -1.643 -0.331 -3.669 2.280 0.720 0.260 
8 0 1 1 0 0.000 -0.307 -0.304 -1.240 -1.240 0.400 0.120 0.080 
9 0.1 1 1 0 0.299 -0.355 -0.347 -0.195 -1.397 6.980 2.720 1.180 

10 0.2 1 1 0 0.599 -0.402 -0.394 0.802 -1.570 30.340 19.860 11.980 
11 1 1 1 0 2.994 -0.783 -0.764 7.513 -2.588 100.000 100.000 100.000 
12 0 1 1 1 0.000 -0.298 -0.290 -1.206 -1.206 0.780 0.240 0.080 
13 0 1 0 1 0.000 0.000 0.002 0.009 0.009 12.080 6.580 3.460 
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FOOTNOTES 

                                                        
1 These are termed ‘size related’  because they incorporate size either directly or in some form of  ratio 
with other variables.    
 
2  Some selected references on the size related determinants of expected stock returns (the literature is 
massive):  

(i)  size (e.g. Banz [1981], Chan and Chen [1988], Handa, Kothari and Wasley [1989], Fama 
and French [1992]) 
(ii) leverage  (e.g. Bhandari [1988]) 
(iii) book to market equity (e.g. Rosenberg, Reid and Lanstein [1985],  Fama and French 
[1992, 1993]) 
(iv)  earnings yield (e.g. Basu [1983]). 

Much recent work on the determinants of stock returns has focussed on measurement problems (data 
snooping and survivorship bias etc.), market frictions, investor ‘ irrationality’  (see e.g. MacKinlay 
[1995] for discussion) or variants of the conditional CAPM (e.g. Jagannathan and Wang [1995]). 
 
3 Section 2 essentially reworks his analysis to emphasise why it can be understood as a problem of 
misspecification and bias in estimation. 
  
4 Where E0(.)  denotes that expectations are formed at time 0. 

 
5 Clearly the structure of the bi-variate distribution function for C,R is such that  
Pr( ) Pr( )C C C Ci j= = =  and Pr( ) Pr( )R R R Ri j= = =  for all i j I, ∈   etc. 

 
6 For γ 1 1> − ; absolute bias increases the more negative γ 1  is in this range. 

 
7 This data set is in fact available over the internet; see the paper by Jagannathan and Wang [1995] 
for details regarding how to download this data.  
 
8 Tables 1-3 give data/results also reported in Jagannathan and Wang [1995]; we replicate their work 
in order to add results for standard errors on betas and also for unsystematic risk (tables 4,5).   
 
9 Table 6 replicates results reported by JW (although the unconditional CAPM was not the focus of 
their study).  The only difference between the results in table 6 and those of JW is that here the 
regression is of total return against beta and size, whilst JW report the result for average return 
against these variables.  Given there are 330 observations, the difference amounts to a scale factor of 
330 for parameter estimates; R-square, t-values etc. are naturally unaffected.  
 
10 This number of replications gives adequate stability for our purposes. 
 
11 Notice that using end of period size does not side-step the problem that the size variable is 
correlated with the error term; in this case the problem is with ν  rather than ε .  


