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a b s t r a c t

Geobrowser tools offer easy access to geographical and map images over which geospatial data can be

overlaid, a process that provides a powerful new visualization resource for scientists. Many of these

tools make use of the well-documented KML/XML data formats, and the challenge for the scientist is to

generate KML files from their simulation and analysis programs. Since many of these programs are

written in the Fortran language, which does not have native tools to support XML files, we have

developed a new library – WKML – that enables KML files to be produced directly and automatically.

This paper describes the WKML library, gives a number of different examples to illustrate the breadth of

its functionality, and describes in more detail an example of its use for hydrology.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Geobrowsers and XML

The recent development of geobrowser tools that provide free
and easy access to high-quality maps and high-resolution aerial
photographs of land have revolutionized the way in which
researchers can visualize geospatial data. Not only are researchers
able to use these tools in their own data analysis tasks, but they
can create representations that allow them to present information
to their collaborators or the wider public.

Many geobrowser tools (e.g. Google Earth, ArcGIS Explorer,
NASA World Wind) will accept geospatial data represented using
the Keyhole Markup Language (KML) (Wernecke, 2009), an XML-
based language. KML is able to describe various primitive
elements, such as points, lines and polygons, with specific geo-
graphical information. For example, a point can be represented
using the following relatively simple piece of code:
Listing 1: Example of a simple KML file showing information
about a single point.

o?xml version¼ ‘‘ 1:0’’ encoding¼ ‘‘ UTF�8’’ ?4
okml xmlns¼ ‘‘ http : ==earth:google:com=kml=2:2’’ 4
oPlacemark4
oPoint4
ocoordinates4�122:0822;37:4222
o=coordinates4
ll rights reserved.

x: +44 1223 333450.
o=Point4
o=Placemark4

o=kml4

Although this code looks straightforward, a file with many data
points (and with more complex primitives) might normally be
expected to be generated automatically as an output from a
simulation or data analysis program. Many (or even most)
numerical and simulation computer programs used in several
branches of science – including climate, atmosphere, ocean, and
hydrology models – are written using the Fortran language, and
there are a number of reasons why it would be useful to have a
library to support writing XML in general, and KML specifically,
from Fortran programs. Briefly, some of these reasons are:
1.
 To make it easy to write XML/KML documents from a Fortran
program, reducing the burden on the programmer in terms of
the amount of coding and familiarity with XML and KML
required. This is not to imply that programmers should not
need to know anything at all about KML/XML, but essentially
all they need to know is the broad general ideas. Moreover,
there is no reason why a programmer should need to know
about issues such as namespaces (as represented by the line
okml xmlns¼ ‘‘ :::’’ 4 in Listing 1).
2.
 To enable additional content, such as contour maps, which are not
included in KML, to be automatically generated from programs.
3.
 For the generation of KML documents to be automatic from
within a simulation program. The reader might question
whether it would instead have been better to focus on writing
a program that would parse a general output file into KML using
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a more natural programming language. Whilst this is possible, it
would put an additional burden on the code developer (not least
because he/she would need to generate this tool, and parsing
tools require some effort for them to be made robust), and would
require the end user to run an additional program.

For these reasons we have created a library of subroutines to
enable easy generation of KML files from within Fortran
programs; the purpose of this paper is to provide a wide-ranging
introduction to its use.
1.2. A taster of our XML Fortran library

We have previously developed the Fortran library ‘‘FoX’’ –
Fortran XML (White et al., 2006a, 2006b, 2009) – to support writing
XML from Fortran 95 programs.1 For particular XML languages, we
have developed specific libraries that provide more powerful
language-specific subroutine calls. For example, much of our earlier
work was concerned with the Chemical Markup Language (CML;
White et al., 2006a, 2006b, 2009), and we developed a set of
subroutines within the FoX library that automatically impose the
appropriate syntax required by CML (WCML, ‘‘Writing CML’’). This
has been demonstrated to be extremely useful in the chemical
simulation sciences to quickly add CML output capabilities to
existing codes (Salje et al., 2009). The FoX library (Dove, 2009) is
available as a download package, free of charge for anyone.

Based on our experience with FoX and WCML we have
developed another FoX library called WKML (‘‘Writing KML’’) to
enable KML output to be produced by Fortran codes, and the
purpose of this paper is to describe this library and to give a case
study to illustrate its value. In anticipation of the description that
follows later in this paper, and to set the scene, the small KML file
shown above (Listing 1) would be written using the following
WKML library calls within a Fortran program:

Listing 2: Fortran code to generate a KML file shown in Listing 1.

program write_kml_points

! Set up the XML file output channel

typeðxmlf_tÞ :: xfile

real :: lat_long_positionsð2;1Þ

! create the file

call kmlBeginFileðxfile;‘‘ output:kml’’ Þ
! Set up data

lat_long_positionsð1;1Þ ¼ �122:0822
lat_long_positionsð2;1Þ ¼ 37:4222

! Do the hard work with one subroutine call

call kmlAddPointsðxfile;lat_long_positionsÞ
! close the KML file neatly

call kmlFinishFileðxfileÞ

end program write_kml_points

What should be clear from this example is:
1.
inco

for
No part of the program needed an awareness of the syntax of KML.

2.
 The writing of the latitude and longitude points required one

simple subroutine call (kmlAddPoints), which clearly makes
for condensed code when this process is repeated often in a
program.
1 Fortran 77 has persisted into the 21st Century for many applications, but

rporation of Fortran 77 syntax within a Fortran 95 program is straightforward

well-written codes.
3.
 The subroutine calls kmlBeginFile and kmlFinishFile handle
the correct beginning and ending of the KML file, again without
requiring the programmer to know what XML/KML expects.

1.3. XML and eScience

Grid computing, as a general framework, is being adopted
more and more by the Earth and Environmental Sciences
communities worldwide (Renard and Badoux, 2009). Examples
include the use of eScience approaches in Earth System modeling
(Lenton et al., 2009), oceanographic modeling (Holt et al., 2009),
geology (Gahegana et al., 2009), mineral physics (Salje et al.,
2009), climate modeling (Frame et al., 2009), and simulations of
natural hazards (Bovolo et al., 2009). Grid computing for
hydrological applications, however, is still a relatively new field.

Grid computing can be a valuable resource for hydrology,
particularly since it is well-suited for computationally intensive
applications such as large-scale parameter sweeps, sensitivity studies
and uncertainty analysis, and for multiple scenario applications such
as looking at the impacts of land-use change or future climate change
on the hydrology of a catchment. Such virtual experiments, by their
very nature, generate large number of simulations and hence vast
amounts of data, which in turn require efficient data handling and
metadata management tools, together with ways to visualize and
capture relevant outputs. Simple visualization tools such as Google
Earth, are particularly useful, as they allow geospatial, graphical and
animated outputs to be viewed in a freely available, easy to use,
dynamic, interactive environment on the user’s desktop.

Our work on WKML has arisen from realising that the use of XML
for data representation can play an important role in aiding data
interoperability (White et al., 2006a, 2006b). The e Minerals project
(Salje et al., 2009) developed the FoX toolkit for the use of XML in grid
computing, enabling automatic collaborative exchange of informa-
tion, metadata collection through using Xpath expressions coupled
with the e Minerals RCommands system (Tyer et al., 2006, 2007) and
data analysis. In the development of the new WKML library for
writing KML, we envisage that this will facilitate, in particular, the
ability of collaborating researchers to share results with each other
and with a wider public. This may include communities involved in
setting policies and those who are subsequently affected.

1.4. Outline of this paper

In the next section of this paper we will build upon this
introduction to give a more detailed description of some of the
key features of WKML together with some simple examples.
Following this we will describe a case study from the field of
hydrology, but the reader should appreciate that nothing within
WKML prohibits application in any other field of science that uses
geospatial data or information. In the use case described here we
actually focus on the visualizations of outputs using WKML and
its benefits, and the associated eScience infrastructure, rather
than on the scientific aims and results.
2. The new WKML Fortran library

2.1. General principles

The introduction described the main design requirement
behind WKML, namely is that it should make creation of KML
files as easy and intuitive as possible from within Fortran
programs. The target audience is the Fortran programmer who
wants to be able to generate KML files but who is not necessarily
an expert in KML. Thus our main aim has been to create a set of



Table 1
Summary of main WKML subroutines that form basic API for the programmer.

Subroutine name Purpose

General API General functions, such as opening and closing files

and other book-keeping tasks

kmlBeginFile Open a new KML file

kmlFinishFile Close an open KML file and ensure that all tags

are closed

Geometry API Functions for creating geometrical objects, such as

points, lines, and polygons

kmlCreatePoints Create a set of points from an array of data

kmlCreateLine Create a set of lines from an array of data, with an

option to close the polygon

kmlStartRegion Create an outer boundary from an array of data

values

kmlAddInnerBoundary Create an inner region from an array of data

values

kmlEndRegion Close the creation of a region defined by the

previous two calls

Two-dimensional field API Functions for visualizing two-dimensional fields of

data

kmlCreateCells Create a grid of cells on a grid colored according

to the third dimension of an array of data

kmlCreateContours Create a contour plot from a grid of cells with a

third dimension of an array of data

Color-handling API Functions for manipulating the colors of objects

kmlGetCustomColor Select a color from the X11 color palette

kmlSetCustomColor Select a color using the standard 8-digit

hexadecimal palette

Styling API Functions for manipulating the styles of objects,

such as widths

kmlCreatePointStyle Style individual points

kmlCreateLineStyle Style individual lines

kmlCreatePolygonStyle Style individual polygons

Chart API Functions for adding charts

kmlAddChart Create a chart using the Google Earth API

kmlAddChart_gnuplot Create a chart using the gnuplot API
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subroutines that can be called in a style that likely best matches
the thought processes of the scientist programmer, with usability
being a key requirement. As a result, we have attempted to
identify the sort of task that the programmer will want to tackle
based on analyzing the actual work requirements of a small group
of users and programmers, and the subroutine calls have been
designed accordingly. We have not set out to provide a complete
coverage of KML functionality, although missing features can often
easily be added.2 Some of the general principles have been
described in a preliminary conference paper (Chiang et al., 2007)
and a brief report (Chiang et al., 2009).

In this section we describe the main subroutines that are each
accessed by programmers as a standard Application Programming
Interface (API). These are summarized in a handy form in Table 1.
WKML also provides a set of lower-level functions which are
designed for developers to build a WKML API rather than for
application programmers, and we will only mention some of
these in passing here.

One point should be noted at the outset is that WKML does not
provide a Document Object Model (DOM) type of mechanism for
writing the XML file. One of the implications of this is that
programmers are required to write their programs in a style in
which data are added to the KML file in a sequential manner. On the
other hand, although not discussed here, FoX does provide the
capability for reading XML using a DOM (Dove, 2009). It should also
be noted that programmers need to open the tag and close all tags
manually. If any program fails to perform a close operation, the FoX
library will generate an error message to report an invalid XML file.

WKML has been developed through a period of time that saw
several updates to the KML schema. The version described in this
paper is fully compatible with the current OGC standard KML 2.2
schema and therefore is designed to work with all tools that
properly follow this standard. On the other hand, although the
KML schema has recently been extended to include parts of the
GML schema, these are not yet implemented within WKML.

2.2. File structure

XML files, as illustrated in Listing 1, have a well-defined
structure, particularly with regard to the syntax of the file header
and the end of the file. WKML provides one subroutine call,
kmlBeginFile, to open an output KML file and write the
appropriate header information, and another subroutine call,
kmlFinishFile, to close the file correctly. It is possible for a
program to write to several KML files at any point, and WKML
provides a data type that specifies a specific Fortran channel
number associated with each file. This is associated with the
xmlf_t type in Listing 1, with the associated variable (xfile in
Listing 1) defining the write channel.

We note that WKML can support nested structures such as
folders, but through the lower-level functions rather than through
the public API described here.

2.3. WKML primitives

The simplest tasks that can be imagine are to create some basic
primitive elements within the KML document, such as to place a
marker (point) at a specific geographical location, to connect two
points with a line, or to encompass a geographical area with a
polygon. The first two can be accomplished with the kmlCrea-

tePoints subroutine shown in Listing 1, and the kmlCreate-
2 The authors of WKML are happy to collaborate with users to implement new

feature requests, and also are happy to include new features added independently

in subsequent version updates.
Line subroutine. An example of using kmlCreatePoints for a
geophysical application is shown in Fig. 1. The kmlCreateLine

subroutine call has the form

call kmlCreateLineðxfile; lat_long_positions; &
color¼ ‘‘ red’’ ; linewidth¼ 5Þ

The features of points and lines, such as color, width and style can
be defined with additional and optional subroutine call argu-
ments, as in this example, or with a prior call to a style subroutine
such as kmlCreatePointStyle or kmlCreateLinetyle. It is
also possible to add text description to a point or line.

Creating a polygon can be achieved using the subroutine
kmlCreateLine with an argument that tells the subroutine to
close the loop around a series of points. However, users may
frequently want to draw polygons in a more sophisticated
manner, particularly to create multiple inner boundaries. An
example can be seen in Fig. 2. The following snippet of code shows
how this can be implemented within a Fortran program:

call kmlStartRegionðxfile; longitude_out; &
latitude_out; altitude¼ zed_outÞ

call kmlAddInnerBoundaryðxfile; longitude_in; &
latitude_in; altitude¼ zed_inÞ

call kmlEndRegionðxfileÞ

The effect of creating filled regions with inner boundaries is
achieved using the three subroutine calls shown in this listing.
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These subroutines are used in WKML’s contour algorithms
discussed next.

2.4. Handling two-dimensional data

One common use case is the need to overlay a map with a
representation of an array of gridded data, such as surface
temperature, depth of the water table, or a density of specific flora
or fauna. This is not a feature that is native to KML, and thus we have
created two approaches (this being part of the added value of WKML
pointed out in the introduction). The first, using the subroutine
kmlCreateCells, is to create a grid of cells with an associated
value, which can be represented either as a color or a vertical
elevation. This is illustrated in the following snippet of code:

mycið:Þ ¼ kmlGetCustomColorðcolrÞ

call kmlCreateCellsðxfile; xygrid; field; myciÞ

where the two-dimensional array xygrid contains the x–y grid
values (but note that the longitudinal and latitude coordinates can
be passed across as two one-dimensional arrays), field contains
the array of values that will color the cells, and myci is an array
that contains the color map.

The problem with gridded cells is that file sizes can become
unreasonably large, particularly with fine grids. One solution is to
be able to create polygons where neighboring cells have the same
color or height, and to achieve this we have developed a contour
Fig. 1. Use of points to highlight earthquake activity in an area of Northern California

as generated by HypoDD program, showing earthquake hypocenters as initial estimates

(circles) and computed (squares) with test data provided by program web site.

Fig. 2. Demonstration of using polygon fills with inner boundaries. Left image shows ho

and right image shows use of an inner boundary to reveal building’s courtyard.
routine within WKML. This only requires a simple call to a
subroutine called kmlCreateContours, with options to control
the look of the contour map:

call kmlCreateContoursðxfile; grid; field; myciÞ

To accomplish the creation of a contour map in a robust manner
(for example, avoiding problems with boundaries) we used the
algorithm of van Snyder et al. (1978). The resultant contour map uses
the polygonal region routines described in the previous subsection.
2.5. Graphs and charts

Geobrowser tools may enable graphs and charts to be
incorporated within the map plot. WKML uses two approaches
to implement this capability, namely the use of the Google Chart
API and the use of gnuplot as an external tool. An example using
the first approach is shown in Fig. 3.

The Google Chart API (Google, 2010) was released at the beginning
of 2008 (renamed to Google Chart Tools in 2010), and this can be
integrated within KML. In short, the Google Chart API merely needs a
server URL including values for several variables such as chart size,
chart data, and chart type. The WKML library wraps the interface to
the Google Chart API within the kmlCreatePoints subroutine we
met previously, allowing information such as chart type, chart data,
chart scale to be passed as variables as in this example:

call kmlCreatePointsðxfile; grid; &
charttype¼ type; chartsize¼ size; chartdata¼ dataÞ

There are two issues about this approach that merit comment.
First is the fact the Google Chart API only supports just over 2000
characters, which limits the ability of KML to represent data for
plotting. In practice, therefore, users would need to decide on the
granularity of the chart. However, a hydrological simulation, by way
of example, may generate many more data records than can be
supported by the character limit imposed by the API. The additional
granularity parameter would complicate the routines. The second
issue is that not all versions of Google Earth properly support the
Google Chart API. For example, our own tests showed that it worked
fine on version 4.2 for the Microsoft Windows and Mac OS X
operating systems, but since version 4.3 (including 5.0) the Windows
version has not been working properly (the OS X version works fine).

An alternative approach is to use gnuplot, which has the
advantage of being a package that is widely in most Linux/Unix
(including Mac OS X) systems and can be run from the command
shell (Crawford et al., 2010). The subroutine kmlAddChart_gnu-
plot has been provided within WKML, and is called as in this
w we have used WKML to create an image mask over a polygonal-shaped building,



Fig. 3. Example of use of a Google chart. This plot shows temporal variation of an urban pollutant associated with a point in the city of Cambridge, UK. Data courtesy of

Dr Mark Calleja, Cambridge eScience Centre.

Fig. 4. Plot of river links (dark blue) within Dunsop Catchment overlain onto digital terrain model. Each grid cell measures 100�100 m2. Colors reflect surface height, with

white corresponding to lower heights and green to higher land. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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example snippet of code:

call kmlAddChart_gnuplotðxfile; longitude; latitude; &

commands_filename ¼ ‘‘ plotfile:com’’ Þ

where the last argument points to a gnuplot command file that
has to be created in advance. The WKML subroutine calls gnuplot
via a system call (as enabled within Fortran 2003, and incorpo-
rated into many Fortran 95 compilers currently being used),
generating a graphics image (in a standard format such as PNG,
EPS etc.) of the chart and writing the file URL to the KML file.
An example of the gnuplot command file is

set terminal png

set output‘‘ discharge:png’’
plot‘‘ :=output=dunsop�discharge�sim:txt’’
exit

with commands that request creation of a PNG file, providing the
output file name, and thirdly requesting plotting of data held
within another file.
Fig. 6. This KML shows vegetation types generated by using kmlCreateCells.

Color scheme is gray for urban, orange for deciduous trees, bright green for conifer

trees, yellow for crops and light green for grass (the simulations place grass at grid

points not included in catchment area). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
3. Case study: using WKML for hydrological modeling

3.1. The SHETRAN hydrological modeling program

SHETRAN (Ewen et al., 2000, 2002) is a three-dimensional
(ie including the surface and subsurface structures) physically
based hydrology simulation program, which uses a spatially
distributed finite difference model to simulate coupled water
flow, multifraction sediment transport and multiple reactive
Fig. 5. Representation of workflow associated with running SHETRAN within a grid infrastr

preparation stage and as outputs from the simulations. SRB is used for storing all files so t
solute transport in river basins. It is capable of modeling all
phases of the hydrological cycle. Water flow can be simulated
following temporal and spatial varying rainfall patterns and other
meteorological inputs, accounting for flow on the surface, through
stream channels, and in saturated or unsaturated zones. It is also
able to model processes such as canopy interception, evapotran-
spiration, soil erosion and sediment yield arising from rain drop
ucture and using the WKML library to analyze outputs. KML files are generated at data

hat users can view the simulation inputs and outputs using a geobrowser client tool.



Fig. 7. Comparison of representations of phreatic surface in Dunsop catchment generated at an instantaneous moment during a SHETRAN simulation. Left image shows cell

representation (generated using kmlCreateCells) and right image shows contour representation (generated using kmlCreateContours) Scale runs from dark blue

representing water table being at the ground surface to white representing water table lying 1 m below ground surface. Those two images are viewed from different

directions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3 CamGrid http://www.escience.cam.ac.uk/projects/camgrid/, accessed April

21, 2010.
4 NGS http://www.ngs.ac.uk/, accessed April 21, 2010.
5 SRB, http://www.sdsc.edu/srb/, accessed April 21, 2010.
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impact and overland flow. SHETRAN is thus a powerful, high-end
research tool. SHETRAN takes as input several parameters that
describe the physical characteristics of the catchment, including
soil and vegetation types and properties, and gives as output a
detailed description in time and space of the flow and transport in
the basin. Within SHETRAN the spatial distribution of catchment
properties, rainfall input and hydrological response is achieved in
the horizontal direction through the representation of the
catchment by an orthogonal grid network and in the vertical
direction by a column of horizontal layers at each grid square,
thereby allowing a representation of the sub-surface. Rivers, or
‘‘links’’, are located along the edges of the grids and fluxes are
calculated across all links and grid boundaries. SHETRAN has the
capability of simulating a vast amount of output data, including
for example, transpiration, evaporation from the soil surface,
evaporation from intercepted storage, drainage from intercepted
storage, canopy storage, vertical flow, snow pack depth, phreatic
(i.e. groundwater) depth below surface, overland flow, surface
water depth, the soil water potential and soil water content for
one or each river link and/or grid cell for each time step in a
simulation.

Initially within the MEDIGRID project, and subsequently as a
new project based on the e Minerals toolkit, SHETRAN has been
incorporated into a grid infrastructure to enable a range of
computationally intensive and multiple scenario hydrological
experiments to be carried. An example is the use of this
infrastructure to carry out the investigation of flood-peak
response to changes in land-use and land management practices
(O’Connell et al., 2007).

Prior to our work, SHETRAN used text-based and HDF5
(The HDF Group, 2009) formats as output. We have incorporated
our WKML library into SHETRAN to produce KML output
capability. We do not attempt to replace the HDF5 output file
with an XML file because the resultant file would be too large to
parse and maintain. Instead we use the KML file for the key data
for visualization. We remark here that KML is incomplete for
hydrological data description, because it is designed primarily for
visualization and is therefore limited in practice in the extent to
which it can represent all the information hydrologists require for
a complete data description (such as the full state of the
catchment at each model time-step). Therefore, we augment the
XML file with the use of HydroXC (Piasecki, 2007) through the use
of an analogous WHML library. HydroXC handles geo-reference
data based on the Geographical Markup Language (GML), but
HydroXC is not officially a GML application schema; a description
of WHML is beyond the scope of this paper.
3.2. The Dunsop catchment

The Dunsop catchment is an area of size 26 km2 located in the
Forest of Bowland in Lancashire, UK (geographic coordinates
53.997681, �2.5271061). The Dunsop River is a tributary of the
Hodder and Ribble Rivers. Large-scale changes are being made to
the land-use and its management, giving a special opportunity to
analyze the effects on local and downstream flood risk. The
changes being made include woodland planting, blocking of
moorland grips, changes in stocking density, and changes in
bracken burning policy, all with the aim of preventing further
deterioration of the raw water quality and improvement of the
condition of the area (which has been designated as a UK Site of
Special Scientific Interest).

The Dunsop catchment is represented in Fig. 4, where we have
plotted the digital terrain model (DTM) using our WKML tool,
drawing rivers and adding colors to indicate the variation in
surface height.

In the virtual experiments we are performing using SHETRAN,
we are investigating the way that flood-peaks respond to changes
in land use and land management practices. A range of physically
realistic parameters are being changed in a systematic way to
identify which values and combinations of parameters lead
to a significant increase in peak river-discharge during storms
(Ewen et al., 2000). For example, one will be able to query which
sets of parameters lead to a given percentage increase in peak
discharge and these physically based parameters will then be
interpreted in a hydrological context to determine the possible
land use management scenarios or farming practices which might
result in these high peak river discharges and therefore high
flood-risk scenarios.
3.3. Computing and data grids for simulation jobs

In order to run the proposed range of hydrological experiments
we used a grid infrastructure that had previously been the basis of
the e Minerals project. The computing grid includes the resources
of the University of Cambridge Campus Grid,3 and the UK National
Grid Service.4 The data grid component is based on the Storage
Resources Broker,5 developed by the San Diego Supercomputer

http://www.escience.cam.ac.uk/projects/camgrid/
http://www.ngs.ac.uk/
http://www.sdsc.edu/srb/
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Center. In operation, the files created by a job, including the KML
files, are stored together with all input files on the SRB directly as
part of the job workflow. One important component concerns
metadata. Large collections of data, such as can easily be
accumulated with grid computing methods, should ideally have
a rich set of metadata in order to allow the data to be
unambiguously linked with their source, and to enable data to
be easily discovered. The e Minerals project (Salje et al., 2009)
developed the Rcommands system for metadata management,
Fig. 9. Hydrograph generated using kmlAddChart_gnuplot subroutine from a SHETRA

surface. (For interpretation of the references to color in this figure legend, the reader i

Fig. 8. A screen shot showing a single frame of animation of phreatic surface, with

a value for a specific grid cell shown following a mouse click on that cell.
and the grid computing tools used in this work were developed to
allow automatic collection of metadata from simulation jobs (Tyer
et al., 2006, 2007). One metadata item is the location of the output
files on the SRB. In this project the e Minerals metadata system
has been adapted and exploited for hydrological research.

Fig. 5 illustrates the grid infrastructure and the workflow. In
the data preparation stage, a large number of different land use
scenarios are generated using a Monte Carlo program we
developed for this work. We then use an automatic system
(called Monty) to compress the input files and application binary
into a single control file that is uploaded to the SRB. The job
submission is handled using the e Minerals RMCS system (Dove
et al., 2007; Walker et al., 2009), which allocates the jobs to the
computing grid, and creates scripts to manage the data transfer
from the SRB at the start of the job and to the SRB at the end of the
job. The RMCS system also harvested metadata from the output
XML files (Tyer et al., 2007; Salje et al., 2009). Collaborating
hydrologists can access the KML files for automatic visualization
of the simulation results.

3.4. Incorporating WKML into SHETRAN

SHETRAN requires visualizing of several types of gridded data,
such as the DTM of the catchment area, the land use and
vegetation types, the level of water table, or the net rainfall across
the catchment area. Passing these data to the KML file generated
directly by SHETRAN can be achieved using the WKML kmlCrea-
teCells subroutine. An example plot of one of the vegetation
models is shown in Fig. 6. It is also required to plot the river links,
which we represent as lying along edges of the grid cells. These
can be plotted using the kmlCreateLine subroutine, but
modified in one critical way. The standard kmlCreateLine

subroutine is given a one-dimensional array containing
N simulation of Dunsop catchment. Colors of the grid cells represent the phreatic

s referred to the web version of this article.)
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the coordinates of each node of the line. Moreover, SHETRAN has
to plot a number of river links, for which kmlCreateLine is
essential. An example was previously shown in Fig. 4. The river
links as shown as the blue lines overlaying the DTM of Dunsop
catchment.

The two subroutines kmlCreateCells and kmlCreateCon-

tours can be used to generate visualizations of the simulation’s
outputs. Fig. 7 compares both representations of a snapshot of the
instantaneous phreatic surface (defined as the depth below
ground to the water table) generated by both functions. In
practice images such as those shown in Fig. 7 need to be
generated as a time sequence in order to produce animations. The
two subroutines kmlCreateCells and kmlCreateContours

can take an argument that defines the time according to ISO8601
standard.

The KML 2.2 schema (Wernecke, 2009) now provides the new
tag oextendeddata4 to represent the actual data value
represented by a color instead of just the hexadecimal color code.
Exploiting this, it is possible to allow a mouse click on a cell
placemark to see the table of a data value. Fig. 8 shows a single
frame of an animation based on the phreatic surface and a value
associated with a specific grid cell.

Finally, it is necessary to plot the hydrograph at the outlet of
the catchment. Hydrologists use hydrographs to display the
hydrological variables over time. One of the most interesting
hydrographs in this project is the river discharge hydrograph.
Fig. 9 shows a hydrograph of water discharge data at the outlet of
the Dunsop River, generated using the kmlAddChart_gnuplot
subroutine as discussed in Section 2.5.
4. Discussion

In this paper we have described the WKML library for
producing KML files as outputs from Fortran programs suitable
for viewing using a geobrowser client tool. Our motivation has
been to make this process as easy as possible for the Fortran
programmer, reducing the need for the programmer to know
about the syntax of KML or XML. Instead all the programmer
needs to know is the format of some subroutine calls, which have
been designed to be as intuitive as possible. We have illustrated
some of the functionality of WKML using some simple examples
and a more detailed case study based on the SHETRAN hydrology
code operating within a grid computing infrastructure. This use
case is interesting because KML representations of data are
required for all stages in the job workflow, from the definition of
the scientific virtual experiment, to the preparation of data, and
for the simulation outputs. We have stressed that the approach is
not tied to any particular application area (the range of examples
demonstrates this point).

The coordinate system of WKML simply uses longitude/
latitude, it does not support any map projection. If trying to
rendering a large data set (500�500 grids), it takes about 3 min to
display. Thus, users need to consider the performance of using
KML when trying to plot large data set.

WKML is freely available from http://web.esc.cam.ac.uk/xml/
kml.html together with on-line documentation. It is released as an
open-source product, in anticipation that if it proves to be useful
to the scientific community additional contributions from other
people will follow.
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