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SUMMARY

Grouped dose measures, heterogeneity and publication bias are three major problems for meta-

analysis in trend estimation. In this paper, we propose a model which allows for arbitrarily aggre-

gated dose levels, and show that the resulting estimates and standard errors can be quite different

from those given by the usual assigned value method. Based on fitting a model to the funnel plot,

we discuss a method for random effects sensitivity analysis which deals with the problems of het-

erogeneity and publication bias. A meta-analysis of epidemiological studies on the effect of alcohol

on the risk of breast cancer is used to illustrate the method. Our analysis suggests that the rate

of increase in risk with alcohol consumption is substantially less than has been previously suggested.
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1 Introduction

In epidemiological studies of the association between disease and exposure to some agent or

hazard, it is often of interest to estimate how much risk increases as exposure increases. For

example, in smoking and lung cancer, we would like to know how much the risk increases

as we increase the number of cigarettes smoked per day. Alcohol use and breast cancer is

another example. It would be meaningless to try and quantify the association between the

incidence of breast cancer and whether of not alcohol has ever been consumed: the risk

clearly depends on the actual amount of alcohol. Studies which measure the risk at different

levels of exposure are usually analysed by trend estimation. Meta-analysis is used to combine

together the evidence from several such studies in order to get a clearer assessment of the

nature of the association.

The usual approach to trend estimation is to estimate a log-odds ratio (or adjusted log-

odds ratio) at each of several dose levels, and to fit a weighted linear regression through

the origin. In practice the dose levels are often not recorded exactly but are grouped into

class intervals — the usual method is to assign a single representative dose value for each

category. Given several such studies, the resulting regression slopes and their standard

errors are combined together into a single trend estimate using the standard methods of

meta analysis.

There are (at least) three important statistical problems which arise in meta analysis for

trend estimation. Firstly, as already mentioned, is the problem of grouped dose levels. If the

class intervals cover a wide range of levels of exposure, the assigned value method is clearly

unsatisfactory — different choices of assigned values will give different estimates. Secondly,

as in meta analysis more generally, there is the problem of heterogeneity, recognising that

the design quality and sample selection can be very variable between the different studies

(see, e.g., Thompson and Sharp [1] and Copas [2]). The third problem is publication bias,

recognising that the studies used in meta-analysis are themselves selected. It is almost

certainly the case that studies with significant results and/or large sample sizes are more

likely to be published, or more likely to be published in journals accessible to the reviewer,

than studies with inconclusive outcomes or small sample sizes [3]. The aim of our paper

is to develop a method for the meta analysis of trend estimates which address these three
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problems.

Section 2 introduces our motivating example, a meta analysis of thirteen case-control

studies on the association between alcohol consumption and the risk of breast cancer. A

conventional fixed-effect meta analysis of these data gives a trend of around 0.01 as the

regression slope of cancer log-odds on the consumption of alcohol in grams per day. In

practical terms this means that, very roughly, one extra drink per day increases risk by

about 16%. Our aim is to review this figure using more appropriate statistical methods.

The methodology leading to our method is set out in Section 3. Section 3.1 discusses a

basic model which allows for heterogeneity between studies and which takes into account the

correlation between log-odds ratios caused by the fact that each study uses a single estimate

of base level risk. Section 3.2 adapts the model to allow for grouped exposure levels by

assuming that the actual dose levels follow a distribution across the different subjects in the

studies. In Section 3.3 we show how to carry out a sensitivity analysis for publication bias

following our previous work in [4] and [5].

In Section 4 we revisit the example of alcohol and breast cancer. Allowing for hetero-

geneity and grouped dose levels reduces the overall trend estimate very considerably, from

about 0.01 to about 0.005. The funnel plot for these data gives evidence of publication bias.

Our sensitivity analysis suggests that only a few ‘unobserved studies’ are needed for the

estimated trend to reduce still further. The example demonstrates that the problems we

discuss in this paper are not just minor refinements to theory, but can have a substantial

practical impact.

Some final comments are given in Section 5.

2 A motivating example

Table 1, taken from Rohan and McMichael [6], reports data from a case-control study inves-

tigating the association between the consumption of alcohol and the risk of breast cancer.
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Table 1. Case-control data on alcohol use and breast cancer

Alcohol Assigned dose No. of No. of Crude Adjusted OR

(g/day) x cases controls OR (CI)

0 0 165 172 1.0 1.0

< 2.5 2 74 93 0.83 0.80 (0.51-1.27)

2.5-9.3 6 90 96 0.98 1.16 (0.73-1.85)

> 9.3 11 122 90 1.41 1.57 (0.99-2.51)

Here, for each of 451 cases and an equal number of controls, we have an estimate of alcohol

consumption grouped into one of four exposure bands, including the base line group with

zero dose. Each row gives an estimate of the odds of being a case versus being a control,

and hence the estimates of the odds ratios reported in the fifth column. For example,

1.41 = (122/90)/(165/172). In practice, as in this study, we usually adjust these estimates

to allow for other covariates known to be related to risk, such as age. The sixth column in

Table 1 gives the adjusted odds ratios and their confidence limits. The standard errors of

the corresponding adjusted log odds ratios can be deduced from the limits of the reported

confidence intervals in the obvious way.

If the jth dose class can be assumed to have a single dose level xj, and if the corresponding

log odds ratio (or adjusted log-odds ratio) yj has standard error sj, the usual approach of

trend estimation is to fit a linear regression through the origin,

yj = βxj + sjεj, j = 1, · · · , n, (1)

where n is the number of non-zero exposure levels, equal to 3 for Table 1, and the εjs are

assumed to be standard normal residuals. A crude application of least squares gives the

estimated dose-response regression slope β̂, and its variance, as

β̂ =

∑

j xjyj/s
2
j

∑

j x2
j/s

2
j

; s2
β =

1
∑

j x2
j/s

2
j

. (2)

Taking the xjs to be the assigned dose levels listed in the second column of Table 1, formulae

(2) gives β̂ = 0.033 with standard error 0.017, suggesting a marginally significant association

between risk and exposure to alcohol.

Greenland and Longnecker [7], and other papers by these authors (see the references at

the end of this paper), discuss the meta analysis of several different studies similar to that

in Table 1. If there are m such studies, formulae (2) give individual study estimates β̂i and

sβi
for i = 1, 2, · · · , m. A fixed effects meta analysis, assuming that the true value of β is
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constant across the studies, gives the pooled estimate of the regression slope and its variance

to be

β̂ =

∑

i β̂i/s
2
βi

∑

i 1/s
2
βi

=

∑

ij xijyij/s
2
ij

∑

ij x2
ij/s

2
ij

and var(β̂) =
1

∑

i 1/s
2
βi

=
1

∑

ij x2
ij/s

2
ij

. (3)

Here, in the obvious notation, xij, yij and sij are the values of xj, yj and sj specific to the

ith study. This fixed effects estimate is often used as the overall estimate of trend in meta-

analysis. See Section 4 below for details of m = 13 case-control studies in the cancer/alcohol

application.

There are a number of statistical problems with this analysis. First, and most obviously,

is the implied assumption of independence in the variance formula in (2). Greenland and

Longnecker [7] suggested the use of generalized least squares to allow for the correlation

between log-odds ratios — this correlation results from the fact that the yjs in each study

use the same base-line estimate for the unexposed group. Their approach is followed in

Section 3.1 below.

The second problem is the grouped dose levels and the need for assigned values xij in

calculating the least squares estimates. Table 1 uses assigned values 2, 6, 11 for the categories

0 < x < 2.5, 2.5 ≤ x ≤ 9.3 and x > 9.3 respectively, leading to the trend β̂i = 0.033 for

this particular study. But if we take the assigned values instead as 1.25, 5.24 and 25.01,

which are the mean dose levels in each category using the model suggested in Section 3.2, β̂i

becomes 0.018. Clearly this difference cannot be ignored. The fewer categories there are the

more sensitive the trend estimate is to the choice of assigned values. Accurate estimation of

the variances of the β̂is is also important, because they are used as weights in meta-analysis.

The third problem is the assumption implicit in (3) that each study is estimating the

same underlying trend. Between study heterogeneity is usually resolved by assuming that

the true values follow a random effects model — this is the approach we follow in Section 3.

The fourth problem is the presence of publication bias, immediately evident from the

funnel plot in Figure 1(i). This plots the m = 13 values of β̂i calculated by the method

of Section 3.2 against their corresponding standard errors. There is clear evidence that the

small studies (those with large sβi) tend to give more positive outcomes than the large studies

(those with small sβi), just as one would expect of publication bias. If we assume that small

studies are less likely to be published than large studies, then the plot suggests there may
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be several unpublished small studies which give lower trend estimates than those observed,

and so ignoring them will lead to an overestimate of β. This is examined in Section 3.3.

3 Methodology for meta-analysis in trend estimation

3.1 Dose analysis model with heterogeneity

As above, suppose there are m studies in the meta-analysis, with the log-odds ratios (or

their adjusted values) for the individual studies satisfying model (1). The assumptions that

the slopes are equal, and that the log odds ratios are uncorrelated within each study, both

need to be relaxed. To model heterogeneity between studies, assume that

βi ∼ N(β, τ 2). (4)

To allow for within-study correlation between log-odds ratios, we follow the discussion in

Greenland and Longnecker [7] and suppose that the correlation between yij and yik, the jth

and kth log odds ratio in the ith study, is

ri,jk = vi0/(vijvik)
1/2

for j 6= k, where

vi0 = 1/Ci0 + 1/Di0, vij = 1/Ci0 + 1/Di0 + 1/Cij + 1/Dij

and (Ci0, Di0) and (Cij, Dij) are the numbers of cases and controls respectively for the un-

exposed group (x = 0) and the exposed group with assigned dose xij. Defining yi =

(yi1, · · · , yini
)′, let

Ωi = var(yi|βi), (5)

a matrix with jth diagonal element equal to s2
ij and (j, k)th off-diagonal element equal to

ri,jksijsik. The log-likelihood for the unknown parameters (β, τ) is therefore

L(β, τ) =
m

∑

i=1

{

−
1

2
log |Σi| −

1

2
(yi − βxi)

′Σ−1
i (yi − βxi)

}

(6)

where Σi = Ωi + τ 2xixi
′ is the marginal covariance matrix of yi, with

Σ−1
i = Ω−1

i − Ω−1
i xixi

′Ω−1
i /(1 + τ 2xi

′Ω−1
i xi). (7)
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The maximum likelihood estimate (MLE) of (β, τ) can be calculated by maximising L(β, τ),

and homogeneity (H0 : τ = 0) can be tested by the corresponding likelihood ratio test.

The above method is approximately equivalent to the following two step procedure.

Firstly, we calculate the estimate of βi for the ith study as β̂i = s2
βixi

′Ω−1
i yi and s2

βi =

(xi
′Ω−1

i xi)
−1. Then we assume that, conditionally on the true value βi, β̂i ∼ N(βi, s

2
βi) so

that, marginally,

β̂i ∼ N(β, s2
βi + τ 2). (8)

The overall MLE of (β, τ) is calculated by maximising

m
∑

i=1

{

−
1

2
log(τ 2 + s2

βi) −
1

2
(β̂i − β)2/(τ 2 + s2

βi)

}

.

The standard error sβ is calculated by s2
β = 1/

∑

(τ 2 + s2
βi)

−1, where τ is evaluated at its

MLE. This method is simple and easy to use in practice, and can be extended to allow for

grouped vales of xij as discussed in the next subsection.

3.2 Grouped exposure levels

As in Table 1, the exposure levels for each subject are often not recorded exactly but grouped

into class intervals. We suppose that exposure (or dose) is an underlying continuous covariate

belonging to observable intervals Jij, so that each subject in the jth group in the ith study

has x ∈ Jij.

The customary method of analysis is to assign a single value xij as representative of Jij.

Longnecker [8] used historical data to obtain the population distribution of exposure levels,

and then calculated the assigned values as the medians or means within each category.

There are two obvious disadvantages with this method. Firstly the distribution obtained

from historical data may not be that of the population from which the particular subjects

in a study are selected. For example, Longnecker [8] used historical data for US women, but

about half of the 39 studies being considered were outside the US (Longnecker recognised

the problem by stating (p.79) “US women, in general, do not drink much”). We suggest

that historical data can be used as prior information, but that the observed frequencies of

Jij in each study should inform us about the distribution of x appropriate to that study.

The second disadvantage, as mentioned earlier, is that using a single assigned value for each
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Jij leads to inaccurate estimates and underestimation of variance.

Suppose the exposure levels of all individuals in a particular study are sampled from

some distribution with probability density function f(x). Then if the probability of being a

case given dose x is px, the probability that an individual in class interval J is a case is
∫

J
pxf(x)dx

∫

J
f(x)dx

. (9)

The observed number of individuals in this class interval who are cases therefore follows a

binomial distribution with this as the probability of success. Using the derivation given in

Appendix I, the likelihood for βi is

Li = log li = −
1

2
log |Ωi| −

1

2
{yi − Ai(βi)}

′
Ωi

−1 {yi − Ai(βi)}), (10)

where Ai(βi) = (Aij(βi)) is given by (20), and Ωi is defined by (5). It is fairly easy to

calculate the integrals involved in Li because they are all one-dimensional. For instance

Monte Carlo and Gaussian quadrature [9] are all efficient approaches to calculating these

integrals. Once the MLE of βi and its standard error are obtained, model (8) is used to

calculate the overall pooled estimate in the same way as before.

To implement this procedure we need to know the dose distribution f(x). We suggest

using a parametric model fitted to the observed frequencies of the dose intervals. Let nij be

the number of subjects in Jij, and suppose that the interval Jij is (Jij∗, J
∗
ij) (taking the end

points as 0 or ∞ when needed). One possible model is to assume that the dose levels (or

transformations of them) have a normal distribution x ∼ N(ξ, λ2). Under this model, the

frequencies nij give the log likelihood

∑

i,j

nij log P (x ∈ Jij) =
∑

i,j

nij log

{

Φ(
J∗

ij − ξ

λ
) − Φ(

Jij∗ − ξ

λ
)

}

, (11)

where Φ is the standard normal distribution function. The parameters ξ and λ can be

estimated by maximising this log likelihood. In principle any parametric or nonparametric

method could be used at this stage to estimate the density of x. Prior knowledge from

historical data can also be incorporated, perhaps estimating the posterior distribution by a

Markov Chain Monte Carlo algorithm (see, e.g., Carlin and Louis [9]; Shi and Lee [10], and

the references therein).

It is shown in Appendix II that the above approach is also approximately valid for
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adjusted log odds ratios provided the covariate adjustments are not too big. In practice we

estimate βi by using the values of the adjusted rather than the crude log odds ratios yi in

(10).

3.3 Publication bias and sensitivity analysis

As noted earlier, the funnel plot for the alcohol and breast cancer meta-analysis in Figure

1(i) shows clear signs of publication bias. This graph is a scatter plot of the estimates of β̂i

and their standard errors estimated by the ML approach discussed in the last subsection.

We follow Copas and Shi [4] and [5] by developing a sensitivity analysis which monitors the

effect on the overall slope estimate of different degrees of study selection. The idea is to

formulate a family of selection models which explains the trend we have seen in the funnel

plot, and then to study the possible values of β̂ given by the models within that family. The

important question in the example is to assess whether some or even all of the dose response

is an artifact of publication bias rather than a real effect of alcohol on breast cancer.

Our selection model is based on the idea that there is a population of comparable studies

which been done in the area of interest, and that the studies available for the meta-analysis

are a selection from this population. We imagine that the studies which have not been

selected were either never written up, not accepted for publication, or were published in

obscure journals beyond the reach of the literature search. Publication bias arises if the

selection is biased, i.e. if some studies in the population are more likely to be selected than

others. Let Si be the event that the ith study in the population is selected. To allow for

the possibility that selection is biased in favour of the studies with more positive outcomes

and/or with larger sample sizes, Copas and Shi [4] and [5] supposed that a study reporting

estimate β̂i and standard error sβi is selected with probability

q(yi|βi) = P (Si|β̂i, sβi, βi) = Φ







ui + ρ β̂i−βi

sβi

(1 − ρ2)1/2







(12)

where ui = a+b/sβi. This probability is conditional on the true value βi. With βi ∼ N(β, τ 2),

the overall selection probability for a study with data (β̂i, sβi) is

q(yi) = P (Si|β̂i, sβi) =

∫

q(yi|βi)p(βi)dβi = Φ(vi), (13)

9



where

vi =
ui + ρ̃ β̂i−β

(τ2+s2

βi)
1/2

(1 − ρ̃2)1/2
, ρ̃ =

sβi

(τ 2 + s2
βi)

1/2
ρ.

See Copas and Shi [4] for a discussion of the form of these equations and the motivation

behind them.

The marginal selection probability for a study with standard error sβi is

P (Si|sβi) = Φ(ui) = Φ

(

a +
b

sβi

)

. (14)

This gives the interpretation of the parameters a and b. Parameter a controls the overall

proportion of studies selected. Parameter b, expected to be positive, controls how the chance

of selection depends on study size. To interpret the parameter ρ, (12) shows how ρ controls

the dependence of selection on study outcome. If ρ = 0 there is no publication bias, and

the model is equivalent to the model we discussed in the last section. If ρ > 0, which we

suspect for the meta-analysis of alcohol and breast cancer, the selected studies will be biased

in favour of those with more significant results (larger β̂i), hence inducing a trend in the

funnel plot as we have seen in Figure 1(i).

Assume now that the studies have resulted from the above selection model. The likelihood

is now formed from the conditional distribution of the yis given that the events Si have

occurred, so that the log likelihood for the unknown parameters (β, τ, ρ) is

L(β, τ, ρ|a, b) =

m
∑

i=1

log p(yi|Si) =

m
∑

i=1

{log p(yi) + log q(yi) − log Φ(ui)}, (15)

where p(yi) is the distribution of yi studied in Section 3.2, q(yi) is given by (13), and Φ(ui)

is given by (14). With grouped exposure levels, the marginal density function p(yi) is the

integral

p(yi|J i, θ) = τ−1

∫

p(yi|J i, βi)φ

(

βi − β

τ

)

dβi

where p(yi|J i, βi) is the density function of N(Ai(βi),Ωi), and φ is the standard normal

density function.

Since we have no information about the number of unpublished studies, i.e. the studies

in the population which have not been selected, it is intuitively clear that the likelihood can

give us no useful information about the selection parameters a and b. We follow the same
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procedure as argued in Copas and Shi [4]: we estimate (β, τ, ρ) for a range of different values

of (a, b), and then monitor how sensitively the results depend on the particular choice of

these selection parameters.

For any given pair (a, b), the unknown parameters can be estimated by maximising (15).

The goodness-of-fit of the model can be assessed by calculating fitted values and plotting the

corresponding residuals from the funnel plot. Following Copas and Shi [4], the fitted values

of βi are

E(β̂i|Si) = β + ρsβi
φ(ui)

Φ(ui)
, (16)

giving the approximate residuals

ri = {β̂i − E(β̂i|Si)}/sβi
. (17)

A plot of ri against sβi can be used as an informal test of goodness-of-fit. Copas and Shi [4]

suggest testing the hypothesis H0 : γ = 0 in the extended model

βi ∼ N(β + γsβi, τ
2), (18)

fitted under the restriction that ρ ≥ 0. This is testing whether the trend in the funnel plot

is real or whether it is simply an artifact of the selection process. Note that this analysis is

conditional on the selection events Si, and so all these quantities are functions of a and b.

Accepting this null hypothesis for any particular pair (a, b) suggests that the model gives a

satisfactory fit to the funnel plot.

An exact analysis is difficult because of the integrals in the likelihood (15), but we propose

the following approximate method. Assuming that, for each study in the population, β̂i

follows (8), we can write the model generating the β̂is as

β̂i = βi + sβiεi, εi ∼ N(0, 1) βi ∼ N(β, τ 2).

Now the selection model defined in (12) can equivalently be written in the form of a selection

equation

zi = ui + δi, δi ∼ N(0, 1),

where zi is now a latent variable: the ith study is selected if zi ≥ 0 and not selected if

zi < 0. The parameter ρ is now the correlation between the residuals of these two equations,
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ρ = corr(εi, δi). This is now very similar to the formulation discussed in Copas and Shi [5],

and so the algorithms developed there can now be applied to fit the model.

4 Example: association between breast cancer and al-

cohol

4.1 Meta-analysis for alcohol use and breast cancer

The association between alcohol consumption and risk of breast cancer was studied in the

systematic review reported by Longnecker et al. [11]. A reanalysis of the same data, al-

lowing for the correlation between estimated log-odds ratios, was subsequently published by

Greenland and Longnecker [7]. These authors included 16 studies in their meta-analysis, of

which we use m = 13 here. We have omitted two of them (their studies 12 and 13) because

of difficulties in extracting the raw figures, and a third study (number 11) because of the

poor quality of data. This particular study has only two non-zero dose categories and only 2

cases at the higher level (actually if this study is included it makes no appreciable difference

to the analysis because of the very high variance of its β̂i). Because of the reduced number

of studies our analysis is not directly comparable to the results published earlier. The data

in Table 1 is study number 10 in our meta analysis.

With the fixed effects model (Section 3.1 with τ = 0), and using the same assigned

values for xij as used by these authors, our overall estimate of the trend parameter β is

0.0088 with standard error 0.0014, comparing quite closely with the figures of 0.0082 and

0.0013 for the 16 studies of Greenland and Longnecker [7]. Details are given in the columns

headed ‘GL approach’ in Table 2. Replacing fixed effects by the random effects model (8),

gives β̂ = .0112 with standard error 0.0026, and τ̂ = .0065 (penultimate two rows). The

heterogeneity is significant (P = 0.02, the last row of the table). The corresponding P-value

for H0 : β = 0 is less than 0.001, suggesting that the association between breast cancer and

the consumption of alcohol is highly significant.

These results are based on the assigned values of alcohol consumption chosen by these

previous authors. As discussed earlier, the estimates β̂i can be very sensitive to these choices.

Following Section 3.2, suppose that alcohol consumption has a lognormal distribution over
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all the subjects in these studies. Taking x to be the log of alcohol consumption, we maximise

(11) to give the estimates ξ̂ = 1.533 and λ̂ = 1.380. We next take f(x) to be this fitted

log normal distribution and maximise Li in (10), followed by calculating the standard errors

from (21). We have used Monte Carlo to calculate the integrals in (10), with a sample size

of 2000. The results are reported in the columns headed ‘ML approach’ in Table 2.

For a further comparison of methods, we use this fitted dose distribution to suggest an-

other method of calculating assigned doses, leading to the columns headed ‘Mean approach’.

Here we have defined xij by finding the expected log dose calculated from the appropriate

truncated section of the lognormal distribution.

Table 2 shows that for many of the individual studies there are considerable differences

between the methods of analysis. In a few cases, the estimates and standard errors for both

assignment methods are far away from those calculated using the ML approach, especially

for studies with a small number of categories. As expected, the mean approach estimates

are somewhat closer to ML, but the differences can still be large relative to the underlying

sampling variability.

When the studies are pooled together using the fixed effects model, the Mean and GL

approaches are suggesting a much stronger dose trend than the ML approach. With the

random effects model, the estimates from the assigned values approaches are even higher.

The value of τ̂ for the ML approach is much smaller than for the assigned values approaches,

in fact the fixed and random effects models are almost indistinguishable when ML is used.

It seems that the extra uncertainty through the variability of dose levels within classes has

almost entirely explained the heterogeneity. The consequence of having a large value of τ is

that more weight is given to the smaller studies. Because of the evident publication bias, the

smaller studies tend to be those with larger regression slopes, and hence the pooled estimates

by the assigned value methods will be over-estimated.
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Table 2. Meta analysis estimates for alcohol and breast cancer studies

Mean approach∗ ML approach∗ GL approach∗ Number of non-zero

Study number β SE β SE β SE categories

1 0.0054 0.0028 0.0027 0.0016 0.0043 0.0025 3

2 0.0111 0.0044 0.0070 0.0029 0.0109 0.0041 4

3 0.0149 0.0030 0.0067 0.0010 0.0284 0.0057 4

4 0.0328 0.0164 0.0157 0.0069 0.1180 0.0476 3

5 0.0107 0.0033 0.0087 0.0030 0.0121 0.0043 4

6 0.0256 0.0080 0.0204 0.0076 0.0870 0.0232 2

7 0.0030 0.0033 0.0024 0.0027 0.0031 0.0037 6

8 0.0000 0.0072 0.0000 0.0043 0.0000 0.0094 2

9 0.0026 0.0030 0.0020 0.0024 0.0060 0.0066 4

10 0.0211 0.0089 0.0190 0.0094 0.0479 0.0205 3

11† 0.0081 0.0041 0.0053 0.0035 0.0111 0.0048 4

12† 0.0112 0.0054 0.0080 0.0045 0.0148 0.0064 2

13† 0.0092 0.0067 0.0066 0.0054 -0.0008 0.0087 2

Pooled estimate by fixed effect model

0.0084 0.0012 0.0055 0.0007 0.0088 0.0014

Pooled estimate by random effect model

0.0090 0.0016 0.0054 0.0009 0.0112 0.0026

τ̂ 0.0034 0.0013 0.0065

p-value of τ = 0 0.1164 0.3814 0.0201

*ML approach is based on grouped data; the others are based on assigned values using the

mean of each category or using the values in Greenland and Longnecker [7];

†Since original studies 11, 12 and 13 are excluded, these three studies are numbers 14, 15

and 16 in Greenland and Longnecker [7].

With the GL approach the random effects trend estimate is 0.0112, implying that one

extra drink daily (about 13g of alcohol, according to Longnecker [8]) increases risk by about

16%. By the ML approach the risk increase is less than half that figure, about 7% (from an

estimated trend of 0.0054) .

4.2 Sensitivity analysis for publication bias

Figure 1(ii) plots the residuals (β̂i − β̂)/sβi against sβi
for the random effects model without

publication bias, i.e. the plot of ri in (17) when a = b = ∞ or when ρ = 0. The clear

upwards trend in this plot is informal confirmation of the presence of publication bias. More

formally, a likelihood ratio test of the hypothesis H0 : γ = 0 in (18) derived from the

likelihood function without selection gives a P -value of Pγ=0 = 0.05.

To implement the approximate method discussed in Section 3.3, we use the Splus algo-
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rithms scode1 and scode2 listed in Copas and Shi [5]. Taking the estimates of the individual

regression slopes and their standard errors (the figures in the columns headed ‘ML approach’

in Table 2) as input, we first run algorithm scode1. This gives the eight quantities presented

in Table 3, for each of six pairs of values of a and b representing increasing severity of selec-

tion bias. Copas and Shi [5] describes how these representative values of a and b are chosen.

The eight quantities calculated by scode1 are the columns of the table:

1. β̂, the pooled estimate β

2. Pβ=0, the P -value for testing the null effect hypothesis H0 : β = 0

3. β̂L, lower 95% confidence limit for β

4. β̂U , upper 95% confidence limit for β

5. Pγ=0, the P -value for fit to the funnel plot (testing γ = 0 in (18))

6. Max P (Si), the marginal selection probability for the largest observed study (the one

with the smallest standard error)

7. Min P (Si), the marginal selection probability for the smallest observed study (the one

with the largest standard error)

8. N , the estimated total number of studies given by

N =
∑

i

{P (Si)}
−1.

This last quantity is an estimate of the size of the hypothetical population of studies from

which those in the meta analysis are assumed to have been sampled, and can be used as an

aid to interpreting the severity of selection being invoked.

The first row of Table 3 takes a = b = ∞ and so is assuming no selection; these figures

are just reproducing the analysis in the last subsection. The last entry in the first row is

therefore just 13, the number of studies actually in the meta-analysis. The second row admits

a small amount of selection, imagining the 13 studies to be selected out of 15 (2 unpublished

studies). The estimate of β has decreased. The next row has the 13 studies selected from 22.

There is now considerably more publication bias, and the P -value for H0 : β = 0 becomes
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rather less clear-cut (Pβ=0 = 0.01). The corresponding fitted values in the funnel plot are

the dashed line in Figure 1(i), giving the residuals in Figure 1(iii). These are calculated from

(16) and (17). Similarly, the fourth row gives the dotted line in Figure 1(i) and the residual

plot in Figure 1(iv). Both third and fourth rows give a reasonable explanation of the trend

in the funnel plot, confirmed by the fact that Pγ=0 in Table 3 is well in excess of 5% from

the second row downwards.

Table 3 shows the drastic effect of selection bias. The fourth row (13 studies out of 35)

no longer gives a significant trend, Pβ=0 = 0.16. The apparent association between alcohol

and breast cancer in the conventional meta-analysis is being explained away as an artifact

of the way in which the studies have been selected. Of course we have no evidence that the

(a, b) pair underpinning this row in the table is ‘correct’ — all we can say is that this model

fits the data well, and that the possibility that there are 35− 13 = 22 further studies which

have been done somewhere in the world but have not turned up in the literature search, does

not seem entirely unreasonable.

Table 3. Sensitivity analysis for publication bias

(a, b) selection β̂ Pβ=0 β̂L β̂U Pγ=0 Max P (Si) Min P (Si) N
1 0.0054 0.0000 0.0029 0.0080 0.0591 1.00 1.00 13

2 0.0046 0.0002 0.0022 0.0070 0.3184 0.95 0.80 15

3 0.0036 0.0108 0.0008 0.0063 0.5548 0.80 0.50 22

4 0.0029 0.1592 -0.0012 0.0071 0.8219 0.60 0.30 35

5 0.0029 0.1894 -0.0014 0.0071 0.9723 0.40 0.10 91

6 0.0029 0.1872 -0.0014 0.0071 0.6545 0.20 0.01 670

The rows of Table 3 select six ‘representative’ (a, b) pairs. A much wider selection of

possible values of a and b (essentially all reasonable possibilities) is taken by the algorithm

scode2 in Copas and Shi [5]. This results in Figure 2, which plots values of β̂ against the

corresponding P -values for the fit to the funnel plot (value of Pγ=0). The general downwards

drift of the points in this plot suggests that, on the whole, the better a selection model fits

the data, the smaller is the estimate of β. The points in the graph are divided into those

corresponding to N ≤ 26 (the dots), those with 26 < N ≤ 39 (denoted +), and those with

N > 39 (the circles). Respectively, these represent marginal selection probabilities of more
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than 1/2, between 1/3 and a 1/2, and less than 1/3. The average value of β̂ for the dots in

Figure 2, where the number of unpublished studies is less than the actual number of studies

in the meta analysis, is around 0.0038, a reduction of a third from the value with no selection.

A trend estimate of 0.0038 means that the risk increase attributed to one extra drink daily

is about 5%, compared to the earlier figures of 16% (GL approach) and 7% (ML approach).

Allowing for a modest amount of selection, the evidence for the association becomes much

more marginal. The appearance of lines in Figure 2 is purely an artifact of the numerical

method used by the algorithm, which takes (a, b) pairs over a uniform rectangular grid .

Taking a finer grid (by changing one of the arguments of scode2) gives a denser cloud of

points but the same overall shape.

5 Discussion

In this paper we have discussed three major problems for meta-analysis in trend estimation.

The example shows that the estimates and standard errors given by the assigned value meth-

ods can be markedly different from those given by a model which allows for the variation in

exposure level within each class interval. This can have a major effect on the pooled estimate

of the underlying trend. The method we have used (Section 3.2) can only be regarded as a

rather crude attempt to overcome deficiencies in the data, and more refined methods may

be needed, for example to allow subsets of the studies to have different underlying expo-

sure distributions. These difficulties suggest that, whenever possible, data for finer exposure

intervals should be routinely reported in such studies.

The second difficulty is heterogeneity. We have followed the usual method of adding

a normally distributed random effect, but this itself can be problematical. If publication

bias exists then a random effects model makes things worse, as more weight will be given

to the smaller studies. At a more fundamental level, a random effects model makes the

objective of meta-analysis less clear — are we interested in a global ‘average’ effect, or the

effect prevailing under particular circumstances? Under a random effects model these are

not the same thing. What our example does suggest is that if we model the within-study

variability correctly then the random effect will have a smaller variance or even be eliminated

altogether.
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The third difficulty, and the most troublesome, is publication bias. Study selection can

have a drastic effect on the outcome of a meta-analysis, as seen in the second column of

Table 3. Several methods for correcting for publication bias have been proposed in the

literature [3]. These methods inevitably rest on assumptions which cannot be checked from

the available data. Following Copas and Shi [4] and [5], we have argued for a sensitivity

approach. The essential indeterminacy of the problem means that we cannot give a single

‘best’ estimate, all we can do is study a range of possibilities which conform to the evidence

in the funnel plot. We have argued in the example that the range of plausible trend estimates

does not include the conventional fixed effects or random effects results — the true figure is

likely to be smaller and possibly substantially smaller. If we entertain the possibility that

the systematic review has only found about 50% of all relevant studies, then the evidence

that alcohol is a risk factor for breast cancer becomes unclear.

Our more cautious analysis of the studies in Longnecker et al. [11] is consistent with the

later more extensive meta-analysis of 39 studies in Longnecker [8]. Using the mean approach

for assigning exposure levels, their overall random effects estimate is 0.0073 (Longnecker

[8], p77) compared with the figure of 0.0090 in our Table 2. Longnecker’s comment ([8], p

73) that “the modest size of the association and variation in results across studies leaves

the causal role of alcohol in question” seems to be confirmed by our sensitivity analysis.

Unfortunately we have not been able to extract the raw data needed to reanalyse all 39

studies in Longnecker [8].
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Appendix I: Likelihood theory for Section 3.2

Following the dose analysis model (1), we assume that

log
px

1 − px
= log

p0

1 − p0
+ βx,

where p0 is the probability of being a case for the unexposed group. For the ith study,

log(p0/(1 − p0)) is estimated by α̂i = log(Ci0/Di0). Thus from (9), the probability that an

individual in class interval Jij in the ith study is a case is

pij(βi) =
1

qij

∫

Jij

exp(α̂i + βix)

1 + exp(α̂i + βix)
f(x)dx (19)

where qij =
∫

Jij
f(x)dx.

Define

Aij(βi) = log
pij(βi)

1 − pij(βi)
− α̂i. (20)

Then, following the approximations in Section 3.1, the vector of log odds ratios yi = (yij)

is approximately normally distributed with mean Ai(βi) = {Aij(βi)} and covariance matrix

Ωi. This gives (10) as the likelihood for βi. The MLE β̂i is then given by the non-linear

least squares equation

∂Li

∂βi
= {yi − Ai(βi)}

′
Ω−1

i (
∂Ai

∂βi
) = 0.

The variance of β̂i is equal to the inverse of the negative second derivative of Li, namely

∂2Li

∂β2
i

= −(
∂Ai

∂βi
)′Ω−1

i (
∂Ai

∂βi
) + {yi − Ai(βi)}

′
Ω−1

i (
∂2Ai

∂β2
i

). (21)

The derivatives appearing in these expressions are vectors formed in the obvious way from

∂A

∂β
=

ṗ

p(1 − p)
,

∂2A

∂β2
=

p̈

p(1 − p)
−

ṗ2(1 − 2p)

p2(1 − p)2
,

ṗ =
∂p

∂β
=

1

q

∫

J

eu

(1 + eu)2
xf(x)dx and p̈ =

∂ṗ

∂β
=

1

q

∫

J

eu(1 − eu)

(1 + eu)3
x2f(x)dx,

with u = α̂ + βx.

Appendix II: Use of adjusted log odds ratios in Section 3.2

In applying the formulae in Section 3.2 we assumed that we can use covariate adjusted log-

odds ratios in place of the actual log-odds ratios yij. To see why this is at least approximately
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valid, suppose there are just two exposure groups, an unexposed group d = 0 and an exposed

group d = 1. The cases are labelled c = 1 and the controls c = 0. The exposed group have

independent dose levels x, sampled from a known distribution, and all subjects have covariate

vectors z which we wish to use to adjust the estimate of the log-odds ratio. Let the mean

of z in each group be µ1 for the exposed group and µ0 for the unexposed group. We assume

that in the exposed group x and z are independent.

If we knew all the values of x and z, we could fit the logistic models

log
P (c = 1|d = 0, z)

P (c = 0|d = 0, z)
= α + δ′z, (22)

and

log
P (c = 1|d = 1, x, z)

P (c = 0|d = 1, x, z)
= α + βx + δ′z. (23)

Then if the covariate regression effect δ is sufficiently small, we can use the lemma below to

find

P (c = 1|d = 0) = Ez{P (c = 1|d = 0, z)} ' pα + pα(1 − pα)δ′µ0, (24)

where

pα =
eα

1 + eα
, (25)

and

P (c = 1|d = 1) = Ex,z{P (c = 1|d = 1, x, z)} ' pαβ + pαβ(1 − pαβ)δ′µ1, (26)

where

pαβ = Ex
eα+βx

1 + eα+βx
.

Thus the log-odds ratio which compares the two marginal probabilities (26) and (24) is

Acrude = Aadj + δ′(µ1 − µ0), (27)

where

Aadj = log
pαβ(1 − pα)

pα(1 − pαβ)
.

If, however, the varying dose x is ignored but we still observed z, the model would be

log
P (c = 1|d, z)

P (c = 0|d, z)
= α + γd + δ′z.
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Here, γ is the covariance adjusted log-odds ratio under this model. If δ were known, the

equations for the MLEs of α and γ would be

∑

(

c −
eα+γd+δ′z

1 + eα+γd+δ′z

) (

1

d

)

=

(

0

0

)

.

Again using the lemma, the solution to these equations reduce to

α̂ ' log
C0

D0
− δ′µ0,

and

α̂ + γ̂ ' log
C1

D1
− δ′µ1,

where C0 and D0 are the numbers of cases and controls for the unexposed group, and C1

and D1 are the same quantities for the exposed group. Thus

γ̂ ' y − δ′(µ1 − µ0),

where

y = log
C1D0

C0D1

so that

γ̂ − Aadj ' y − Acrude. (28)

The left hand side of (28) is the difference between the adjusted log-odds ratio which is

generally reported in studies of this kind, and its expected value under the full model (22) and

(23). The right hand side is the difference between the observed and expected values used in

the non-linear least squares analysis of Section 3.2, namely the difference between the crude

log-odds ratio calculated from the observed marginal frequences Cd and Dd, and its expected

value under the full model. For small values of δ these are approximately equal. Further

use of the lemma shows that, to the same order of approximation, Aadj is approximately

the same whether α is estimated by the adjusted estimate α̂ or by the unadjusted estimate

log(C0/D0) = α̂ + δ′µ0.

A more careful analysis with more than two groups follows similar lines. The approxi-

mations depend on the linearisation of the logit function implicit in the lemma, and so are

good approximations when δ and β are small.
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Lemma: If ε is small then

eα+ε

1 + eα+ε
= pα + pα(1 − pα)ε + O(ε2).

where pα is defined in (25).
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Figure 1: Alcohol use and breast cancer data. (i) Funnel plot of β̂i against sβi. The solid line

represents the conventional estimate β̂ = .0054, the dashed and dotted lines represent the fitted

values for the 3rd and 4th rows of Table 3 (β̂ = .0036 and 0.0029 ). (ii)–(iv) Residual plots corre-

sponding to the solid, dashed and dotted lines respectively in (i).
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Figure 2: Sensitivity analysis plot: β̂ against Pγ=0 for selection models with N ≤ 26 (·),

26 < N ≤ 39 (+) and N > 39 (◦).
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