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Summary

Dose–response curves describe changes in subjects responses for differing levels of

the dose of a drug or agent, and have a wide application in many areas particularly in

medicine, pharmacology and toxicology. Based on a nonparametric Gaussian process re-

gression model, we proposed a functional regression model to study the dose–response
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relationship. This model enables modelling of a nonlinear functional regression rela-

tionship between a functional response curve and a set of high-dimensional functional

covariates. Mean structure and covariance structure are modelled simultaneously, com-

bining the information borrowed from other subjects and the information collected from

each individual subject. The methodology has been demonstrated for the management of

renal anaemia. The individual dose–response curve can be obtained and can be improved

when more information is gathered from each individual patient over time, which enables

a patient-specific treatment regime.

Keywords: Control of renal anaemia, Gaussian process functional regression model,

Individual dose–response curve, Nonparametric approach, Patient-specific treatment regime.

1 Introduction

The major component of dose–response studies is to characterise the change in subject

response for differing levels of the dose of a drug or agent. This has wide application

in medicine, epidemiology, pharmacology and other areas. We will first use an example

to illustrate the problems we discuss in this paper, as the stimulus to the theoretical

development of random-effects Gaussian Process Functional Regression.

In the UK, for a hospital with a catchment population of around one million, approx-

imately 100 patients each year will need to start replacement treatment for renal failure.

Patients with reduced kidney function not only require dialysis to remove waste products

from their blood, but they also produce less erythropoietin (EPO) the natural stimulus

to the production of red blood cells in the bone marrow. AS a consequence most dialysis
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patients suffer renal anaemia of some degree. This can be very effectively treated by

injection of exogenous epoetin. Injections are given subcutaneous or intravenously with

either a synthetic EPO for example Erythropoetin Beta (EB) or a modified epoetin such

as Darbepoetin Alpha (DA).

The dose of epoetin to be given to each patient is determined by monitoring the

haemoglobin (Hb) concentration from a blood sample taken typically every two or four

weeks. Over the last decade in Leeds, blood samples are taken on a monthly basis and

the epoetin dose calculated using a strict management algorithms (Will et al, 2007). This

represents a clinical decision support system (CDSS). Patients need to have their Hb

levels controlled within relatively narrow limits (Volkova and Arab, 2006). If Hb levels

are too low then patients become symptomatic of anaemia and if too high then there

may be pro-thrombotic risks to their dialysis treatment and vascular tree. The primary

therapeutic concern is how to maintain the Hb level by giving a suitable level of dose of

epoetin for each patient.

In this example, the response is Hb level for a patient, shown as curves for 151 patients

in Figure 1(a). One of covariates is the dose level of epoetin, which is also shown as a

curve for each of the patients in Figure 1(b). Data in many biomedical situations are

collected in the form of curves, so it is natural to consider curves as observations and

covariates. Methodology focusing on the curves themselves, as the objects of interest, is

termed functional data analysis. In many situations such as the renal data presented here,

measurements are taken at different time points, which cannot be regarded as independent

observations since measurements on the same subject will be strongly correlated. Fitting

smooth curves through the measurement series provides curves suited to functional data
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analysis (see Ramsay and Silverman, 2005). In this paper, we will focus on the study of

a functional regression model between a response curve and a set of covariate curves. In

practice, for our renal data and many other examples, we often have little information

about the real physical relationship between the response curves and covariate curves, it

is therefore not realistic to use a parametric model or a linear model such as the linear

functional regression models discussed in Ramsay and Silverman (2005). The approach

in this paper is to use a Gaussian Process Functional Regression (GPFR) model (Shi, et

al., 2005 and 2007), which is regarded as a nonlinear nonparametric model and will be

extended to include random effects.

As argued in Shi, et al. (2007), one major advantage of the GPFR model is not only

to reveal the model structure from the data collected from all subjects, but also to predict

for each individual, based on the common model structure and the data collected from

that particular individual. This is particular useful in dose–response studies such that

we can construct dose–response curve for each individual patient, while the most current

studies can only provide a common dose–response curve (see e.g. the discussion in Gönen,

2005). Our method therefore enables the planning of a patient-specific treatment regime

and that treatment regime can be improved over time as more data is collected for each

of the individual patients. To the best of our knowledge this is the first reporting of such

methodology in the literature.

The paper is organised as follows. Section 2 proposes a mixed-effects GPFR model

with random effects between different subjects. The related theory and methodology

for calculating estimates and prediction are also presented in this section. In Section

3, we demonstrate the methodology for dose–response study with the Leeds renal data.
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Discussion and further developments are given in Section 4.

2 Methodology

2.1 GPFR models for dose–response curves

Let ym(t) be the response curve for m-th subject for m = 1, . . . ,M , and xm(t) and

zm(t) be two sets of functional covariates which are used in mean and covariance models

respectively. Here t is time or another one-dimensional covariate. In the Leeds renal ex-

ample (see the detailed discussion in Section 3), the response curve is the measurement of

hemoglobin (Hb) concentration for renal anaemia patients, which is a functional response

variable changing over time t. The related functional covariates are applied dosage of the

epoetin agent (either EB or DA), and other covariates such as iron dose-level and the Hb

level measured in the previous month, which are all changed along time. The aim of the

research is to explore the dose–response relationship and to use the input covariates to

predict the response curve Hb and then maintain Hb at the desired level. Observations

of Hb and all the covariates are taken once a month over 12 months. The data is shown

in Figure 1. For such data, the measurements on the same subject are strongly corre-

lated. So we will define a functional regression model to model both mean and covariance

structures. The model is defined as follows

ym(t) = µm(um,xm(t)) + τm(zm(t)) + εm(t), εm(t) ∼ N(0, σ2
ε), (1)

where εm(t) are random errors and are independent at different times. The vector um is

a set of curve-based scalar covariates, giving information for the m-th curve or subject,

5



for example patient’s age, sex etc. So, the mean structure µm(um,xm(t)) may depend

on scalar covariates um and l-dimensional functional inputs xm(t). It is usually difficult

to use and justify a very general functional mean structure, some special models are

therefore defined and discussed in this paper. The second term τm(zm(t)) is used to

model covariance structure for correlated data. A nonparametric Gaussian Process (GP)

regression model is used to model the covariance structure (see Rasmussen and Williams,

2006). The GP model is defined as follows:

τm(zm, t) ∼ N(0, C(·, ·; θ)), (2)

where C(·, ·; θ) is a selected kernel covariance function for m-th curve, depending on a

Q-dimensional functional covariates zm. The GP regression model is a nonparametric

model and can be used for fitting any shape of curves in terms of a large dimension

functional covariates zm, while most of conventional nonparametric methods are limited

to a small dimension of covariates (usually Q < 3). Used Larhunen-Loeve expansion to

the GP (Wahba, 1990), the model is expressed as

τm(zm, t) =
∞
∑

j=1

ξjφj(zm(t)), (3)

where ξj’s (j = 1, 2, . . . , ) are independent Gaussian random variables with zero mean and

variance λj which is the j-th eigen-value of kernel covariance function C(·, ·), and φj is the

related eigen-function. Therefore, selecting a kernel covariance function in (2) is equivalent

to selecting a set of basis functions in a conventional nonparametric model. Rasmussen

and Williams (2006) discussed several different types of kernel covariance functions.

We now discuss the mean model in (1). The simplest model is to define a constant
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mean

µm(um,xm(t)) = µm. (4)

We can usually replace µm by the sample mean of the observations collected from m-

th curve, or the sample mean of the observations collected from all the observations if

we assume µm = µ. As pointed out in Shi et al. (2007), this model cannot cope with

the curve-based (or subject-based) information and the heterogeneity caused whereas a

Gaussian Process Functional Regression (GPFR) model enables this extension. The mean

structure is modelled by

µm(um,xm(t)) = um
′β(t). (5)

Thus, a GPFR model is defined by (1) with covariance structure (2) and the above mean

structure (5). This mean model is a linear functional regression model with scalar covari-

ates as discussed in Ramsay and Silverman (2005). The covariance structure is modelled

by a nonparametric Gaussian Process Regression Model. The relationship between the

response curve and the functional covariates are mainly modelled by the covariance model

nonparametrically (see the detailed discussion in Shi et al., 2007). For the problem where

there is little or no information for the parametric relationship between functional response

variable and functional covariates, this model performs very well.

2.2 Mixed-effects GPFR models

For the renal data, the overall sample linear correlation coefficient between Hb and dose

level is about 0.4, meaning there may be a linear relationship between the response curve

and the functional covariate. Motivated by this example, we propose a mixed-effects
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GPFR model. The GPFR model is still defined by (1) with covariance structure (2), but

with the following mixed-effects mean model.

µm(um,xm(t)) = um
′β(t) + vm

′(t)γ + wm
′(t)bm, (6)

bm ∼ N(0,Σ), (7)

where um is a p-dimensional non-functional covariate, vm(t) and wm(t) are r-dimensional

and k-dimensional subsets of functional covariates xm(t) respectively, and Σ = diag(σ2
1, . . . , σ

2
k).

The random effects term associated with covariates wm(t) is used to model the hetero-

geneity for different subjects.

We propose mixed-effects GPFR models (1) with (2), (6) and (7) here. From (3), the

model can be expressed as

ym(t) = um
′β(t) + vm

′(t)γ + wm
′(t)bm +

∞
∑

j=1

ξjφj(zm(t)) + εm(t). (8)

In the right hand side of the above model, the first item stands for the common mean

structure which can be learnt from the data collected from all subjects. The rest of items

stands for patient-specific part, where the second and third items are linear parametric

model. The fourth item is linked to a Gaussian process, which is a nonparametric model

and is the main part to model the covariance structure and model the nonlinear relation-

ship between ym(t) and zm(t). In theory, we can merge the second and the third items

into the fourth item (with a new kernel covariance function), we listed them separately

here because this may offer some information of interpretation in applications. Model

(8) is a nonparametric model which can be used to fit response curves with any shape in

terms of a set of covariate curves although the performance may depend on the choice of

kernel covariance function C(·, ·).
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Suppose that Nm observations are obtained for the m-th subject. All the data collected

for the m-th subject are

Dm = {(ymi, tmi,xmi,zmi) for i = 1, . . . , Nm; um}.

All the observed data is denoted as D. In (6) and (7), vm and wm are subsets of xm.

Since the mean structure involves a functional coefficient β(t), it is therefore not

straightforward to estimate the mean functions. In this paper we propose to use B-

spline approximation. Let Φ(t) = (Φ1(t), . . . ,ΦD(t))′ be a set of B-spline basis functions,

the coefficient function β(t) can be approximated by B′Φ(t), and the mean function is

represented as

µm(um,xm(t)) = um
′B′Φ(t) + vm

′(t)γ + wm
′(t)bm. (9)

Let ym be the vector of {ymi, i = 1, . . . , Nm}, tm = {tmi, i = 1, . . . , Nm}, V m be the

Nm × r matrix with the i-th row vm
′(tmi) and W m be an Nm × k matrix with the i-th

row wm
′(tmi), the model for Nm observations for m-th subject is therefore:

ym = ΦmBum + V mγ + W mbm + τm + εm, (10)

where Φm is an Nm × D matrix with (i, d)-th element Φd(tmi), εm ∼ N(0, σ2
εI),

τm ∼ N(0,C(θ)), and C(θ) is an Nm × Nm covariance matrix with (i, j)-th ele-

ment C(zmi,zmj; θ) given by (2). The unknown parameters involved in the mixed-effects

GPFR models include B-spline coefficient B, fixed effect coefficient γ, random effect co-

variance matrix Σ, the parameters θ involved in covariance structure and variance σ2
ε of

measurement error. These parameters are denoted collectively as

Θ = (B,θ,γ,Σ, σ2
ε).
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2.3 Estimation

We use maximum likelihood method to calculate the estimates of Θ. The log-likelihood

of Θ = (B,θ,γ,Σ, σ2
ε) is

L(B,θ,γ,Σ, σ2
ε)

=
M
∑

m=1

{

−
1

2
Nm log(2π) −

1

2
log |Ωm|

−
1

2
(ym − ΦmBum − V mγ)′Ω−1

m (ym − ΦmBum − V mγ)
}

, (11)

where Ωm = W mΣW m
′ +Cm +σ2

εI and Cm = (Cij
m), i, j = 1, . . . , Nm, is the covariance

matrix whose element Cij
m is given in (2).

From Appendix I, the first derivatives of L(B,θ,γ,Σ, σ2
ε) in terms of vec(B) and γ

are given by (18) and (19), where vec(B) denotes the stacked columns of B. Letting

∂L/∂vec(B) = 0 and ∂L/∂γ = 0, we can get the explicit forms for B and γ given θ, Σ,

σ2
ε as

vec(B) = F1(θ,Σ, σ2
ε), γ = F2(θ,Σ, σ2

ε). (12)

The derivation and the formulae of F1 and F2 are given in Appendix I. Thus, we used the

following iterative procedure. Each of iteration includes two steps:

(i) Update B and γ by (12) given the current values of θ, Σ, σ2
ε ;

(ii) Update θ, Σ, σ2
ε by maximising L in (11) given B and γ.

To speed up convergence, we usually repeat the above two steps several times within each

iteration. There are no explicit expression in step (ii), but we can use the gradient to

speed up the maximisation. The expressions of the gradient are given in (22) to (24) in
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Appendix I. We denote the maximum likelihood estimates by Θ̂. The estimate of the

functional coefficient is given by β̂(t) = B̂
′

Φ(t).

2.4 Prediction

Suppose that we have already observed some training data for a subject (e.g. a new

patient), the (M + 1)-th subject say, and want to predict the output y∗ for a new set of

inputs (t∗,x∗,z∗) with x∗ = x(t∗) and z∗ = z(t∗) at a new test point t∗. This new time

point could be at a past time but without an observation (i.e. a missing observation),

or could be at a future time. The latter is of most interest, meaning we want to predict

the response curve for future times (this is so called extrapolation). Thus, in addition to

the training data observed from the first M subjects, we assume that N observations are

obtained for this (M + 1)-th new subject, providing data

DM+1 = {(yM+1,i, tM+1,i,xM+1,i,zM+1,i) for i = 1, . . . , N ; and uM+1}.

We therefore have training data D = {D1, . . . ,DM ,DM+1}.

In fact, from (11), the random effect part, random measurement error, and Gaussian

process error can be integrated into a new Gaussian process, denoted by τ̃(zm,wm, t),

with zero mean and covariance structure

C̃(zi,zj,wi,wj; θ,Σ, σ2
ε) = C(zi,zj; θ) +

k
∑

q=1

σ2
qwiqwjq + σ2

εδij, (13)

where δij is the Kronecker delta and C(zi,zj; θ) is the kernel covariance function in (2).

The models (1), (2), (6) and (7) can then be written as

ym(t) = µ̃m(t) + τ̃(zm,wm, t), with µ̃m(t) = um
′β(t) + vm

′(t)γ. (14)
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For (M + 1)-th subject, an estimate of the mean at time point t is given by

µ̃M+1(t) = uM+1
′β̂(t) + v

′

M+1γ̂. (15)

Now, we assume that the covariance structure at data points tM+1,i for i = 1, . . . , N and

at new data point t∗ are the same, the prediction at t∗ is given by

ŷ∗ = E(y∗|D) = µ̃M+1(t
∗) + H

′

(yM+1 − µ̃M+1(t)). (16)

The proof is given in Appendix II. The predictive variance is given by (26). Here we

assume that the correlation between the response and input variables are the same at

different times (including future times). This assumption is reasonable in practice.

The predictive mean (16) includes two parts. The first item comes from the common

mean model, which is learnt based on the information collected from all the subjects. If

we have not obtained any data for the new patient, we use it as a prediction. The second

item is estimated from the data collected from the particular subject, i.e. it is estimated

based on the patient-specific information. Thus, the predictive mean (16) can be used to

construct individual dose–response curve and to plan patient-specific treatment regime as

we will discuss in the next section.

2.5 Consistency

We used an iterated maximum likelihood approach to estimate the unknown parameters

in the previous sections. All the data collected from M subjects are used on estimating

parameters. This leads to consistent estimates under some regularity conditions (see

Peters and Walker, 1978).
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The major problem is the consistency of the prediction. The common mean structure

is estimated from the data collected from all M subjects. It is a consistent estimate of

the true mean structure under some regularity conditions (see the details in Ramsay and

Silverman, 2005). If we have not observed any data for a new subject, we can only used

the common mean as a prediction of y∗(t), which is obviously not a consistent estimate of

y∗(t). When we have obtained some observations for a new subject, the prediction ŷ∗(t)

given in (16) is a posterior mean based on a Gaussian process prior. Choi (2005) proved

the posterior consistency of ŷ∗(t) under some regularity conditions if the selected kernel

covariance function is stationary and the sample size of the observations collected in the

new subject is sufficiently large. A more useful result is given in Seeger et al. (2008). They

proved the information consistency under the Kullback–Leibler divergence between the

true function y∗(t) and the prediction ŷ∗(t), and also provided the error bound. However,

it is still an interesting problem to explore what the error bound is when the sample size

of the observations obtained from each individual is not sufficiently large and the kernel

covariance structure is not stationary.

The selection of input covariates in the model is an important issue for prediction. In

this paper we use Bayes factors. Since its exact value is difficult to calculate, we utilise

its approximate form of Bayesian Information Criterion (BIC) (Schwarz, 1978). Recalling

that L(·) is the log-likelihood function as defined in (11) and letting Θ̂ be the maximum

likelihood estimate, the BIC value is given by

BIC = −2L(Θ̂) + G log(N),

where G is the total number of parameters and N = N1 + · · · + NM is the sample size.
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3 Dose-response study with applications to the man-

agement of renal anaemia

We will use our Leeds renal data to illustrate how to use the models discussed in the

above section to conduct a dose–response study.

The main purpose of the experiment is to assess the control of haemoglobin (Hb) lev-

els in patients each dosed with one of two epoetin agents. This however is not entirely

straightforward. Contributions to the variation in Hb levels also come from further deteri-

oration in kidney function, iron status, and inter-current complications such as infection,

surgery, and hemorrhage. Iron status is usually assured with sufficient doses of iron but

there is little control over other aspects.

A recent study was undertaken in Leeds (Tolman et al., 2005) in order to compare the

effectiveness of the weekly administration of two epoetin agents: EB and DA. Consented

patients were randomly allocated to treatment with one of the two agents, then moni-

tored monthly for their Hb levels. A total of 151 patients were followed for the original

study period of 9 months and a further 3 months extension. With initial, Month 0, read-

ings this gave 13 measurements of Hb, epoetin dose, and administered iron supplements.

Throughout, all doses were determined by the same CDSS.

Taking a functional data analysis approach to the data from this trial, West et al.

(2007) demonstrated that control of renal anaemia can be assessed graphically. Phase

plots relating the derivatives of the Hb trajectories identified those patients that were

well controlled by the management regime and those that were less well controlled. The

current study aims to extend that analysis and quantify the degree of control, the primary
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aim being to determine if equivalent control could be achieved by the two agents given the

same clinical environment: the same frequency of epoetin management and administration

(monthly review and weekly injections), and using the same CDSS.

In this section, we will first calculate the prediction and assess the performance of the

models, and then demonstrate how to obtain individual dose–response curves.

3.1 Prediction of Hb

As a consequence of randomisation in the Tolman randomised controlled trial, 77 patients

received EB and 74 DA. It is possible, and of considerable interest to explore, that control

of patients under these two agents differs. Therefore, the mixed-effects GPFR model will

be fitted independently within the two arms of the trial.

We use model (1) with mean model (6) and covariance structure model (2). As an

example, we use the following kernel covariance function

C(zi,zj; θ) = v0 exp

{

−
1

2

Q
∑

q=1

wq(ziq − zjq)
2

}

+ a0, (17)

We will first consider the following three mean models.

M1: with constant mean µm(xm, t) = 11.8;

M2: with simple mean: µm(xm, t) = µ(t), i.e., no covariates are included in the mean

structure; and

M3: with mixed effect mean: µm(xm, t) = vm
′(t)γ + wm

′(t)bm, where the fixed effect

part involves the covariates vm(t) = {1, t, dm(t−2), d2
m(t−2)} and the random effect part

involves the covariates wm(t) = {1, dm(t − 2)}. Here, t is the time and dm(t − 2) is the

dose level for subject m at time t − 2. In this project, we found that the Hb level ym(t)
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has the highest correlation with dose-level dm(t − 2) (i.e. the dosage of the drug taken

between 30–60 days ago), although it is also related to dm(t − 1) and dm(t − 3). So for

clarity of exposition we use dm(t− 2) in this illustrative example. A more comprehensive

study is being undertaken and will be reported at a later date.

In the related covariance structure models, we use all the covariates given in M3 and

the values of Hb observed up to date.

We first used the data collected from all patients to train the model (i.e. estimate

all the unknown parameters involved in the models), and then considered the problem of

prediction for each of the individual patients. We used the data up to current month, and

assumed a level of dosage which was used from the date to the next 30 days to predict the

value of Hb level in 60 days. We started prediction from Month 8 for each subject, i.e.,

we use all the data collected from the patient in the first six months, including Hb level,

to predict their Hb level in Month 8. For each subject, we calculated the predictions from

Month 8 to Month 12. The root of mean squared errors (rmse) between the prediction

and the real observations were used to judge the performance of the model.

Table 1 gives the values of rmse for each of the models under the two epoetin agents.

It can be seen that the performance of the mixed effects model M3 is preferred: it has

the lowest value of rmse for both arms of the trial. Figure 2 shows the predictions and

the real observations for two typical patients.

Having established that the random-effects model performs best, the issue of equality

of prediction under the two agents can be tackled. A Mann–Whitney test applied to the

observed rmse’s indicates no statistically significant difference (p = 0.1301).

The covariance structure involved in model (1) plays an important role in prediction.
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Table 1: The values of rmse for the different models

Model Epoetin agent

DA EB

M1 1.0500 0.7993

M2 0.8773 0.7983

M2(mean only) 1.1452 1.0939

M3 0.7412 0.6982

M3(mean only) 0.8427 0.7521

M4 0.7573 0.6993

If we ignore the covariance structure, and just use the mean structures defined in M2 and

M3, the related average values of rmse are also given in Table 1, which are much larger

than the rmse obtained from Model M2 and M3 respectively. For M3 although the related

mean model includes a quadratic term, the GPFR model performs much better than the

model with mean structure only. This is the evidence that GPFR can model the unknown

nonlinear functional regression relationship, and it therefore improves the model fit and

the prediction. This finding is consistent with the results reported in Shi et al. (2007).

The mean model synthesises the information from different subjects at each time point,

but the covariance model tunes the prediction based on the information collected for each

individual. Therefore, Models (1) give very accurate values of prediction.

We have also considered some other forms of mixed-effects GPFR model, it seems that

the performance of M3 cannot be improved further. For example, we consider the model

with the following mean structure

M4: with the mean model in M3 but with vm(t) = {1, t, t2, dm(t − 2), d2
m(t − 2)} and

wm(t) = {1, dm(t − 2), d2
m(t − 2)}.
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Table 2: Estimates of coefficients for model M4

Fixed-effect part Random-effect part

Covariate Estimate Std error Covariate Estimate Std error

constant 11.1246 0.1583 constant 0.6665 0.1745

t -0.0061 0.0145 dm(t − 2) 2.6722 0.9626

t2 -0.0095 0.0052 d2
m(t − 2) 0.4713 0.4868

dm(t − 2) 3.3384 0.4796

d2
m(t − 2) -0.9350 0.3830

The average value of rmse is 0.7573 which is even slightly larger than the one obtained from

M3 although some more covariates are added in M4. The estimates of γ in fixed-effect

part and σ2
i in random-effect part are given in Table 2. We found that the coefficients for

t and t2 in fixed-effect part and the coefficient for d2
m(t− 2) in random-effect part are not

significant. This explains why the performance of M3 and M4 are almost the same, and

the performance of M3 cannot be improved further by model M4.

3.2 Application to dose–response study

The dose–response relationship describes the change in effect on an organism or patient,

for example the Hb level in our renal anaemia case study, caused by differing levels of dose.

The models discussed in this paper can be used to construct a dose–response curve for

each individual, and therefore support clinicians to prescribe suitable doses to control the

response value within a certain range for each individual patient. This allows a so-called

patient-specific treatment regime.

We now discuss two elements of dose–response study illustrated by our renal anaemia

data. One is to obtain a predictive individual dose–response curve, i.e., predicting the
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values of Hb level if different dose levels are applied. We take 11 different dose levels

from 0 to 2.5, and then calculate the predicted values for each of those dose levels. An

example is given in Figure 3 for a representative patient. We present the predicted values

of Hb for Month 8 based on the data collected at the first 6 months in panel (a) and the

predicted values for Month 12 based the data collected at the first 10 months in panel

(b). The x-axis stands for the different levels of drug DA, while the y-axis stands for the

related predicted values of Hb level. This is a typical dose–response curve. Most studies

can only give a common curve without considering the special feature for each individual,

but 3 (a) gives the individual dose–response curve based on the common model structure

learned from the data collected from all patients and the particular information for the

individual collected in the first six months; while 3 (b) is analogue to 3 (a) but based

on the information collected in the first 10 months for the patient. This is very useful

in practice, and the clinician may prescribe a suitable dose level based on the figure. In

Figure 3, the dotted line is the target control level of Hb. Therefore, a suitable dose level

of drug DA taken by the selected patient after Month 6 should be around 1.4 unit, and

be around 0.7 unit after Month 10.

Another interesting problem is to fix the dose level unchanged at the current level and

to see how the predicted values of the response (Hb) will change in the next few months.

For the patient we selected in Figure 3, if the dose level taken for the patient is fixed

from Month 7 to Month 12 as the same dose level used in Month 6. The predicted values

of Hb is shown as the dashed line in Figure 4(a). As comparisons, the real observations

(the solid line) and the prediction based on actual dose levels (the dotted line) are also

presented. For this patient, it seems appropriate to keep the dose level unchanged for the
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next six months.

3.3 Test for agent EB

Now we consider the prediction of Hb values by using agent EB. We also use the model

M3 as described in the previous subsections, but use the data collected from those taken

drug EB here. We calculated the predicted values of Hb from Months 8 to 12 analogous

to the discussion in the previous subsections for agent DA. The values of rmse between

the predicted values and the corresponding real observations are obtained. The average

value of rmse is 0.6982 for all 77 patients; the values of rmse are given in Table 1 for

other models.

The predicted individual dose–response curve can be constructed similarly. One ex-

ample is given in Figure 5. The panel (a) gives the prediction of Hb level for Month 8

for different dose levels using agent EB based on the data collected up to Month 6; and

the panel (b) gives the predictions based on the data collected up to Month 10. Thus,

the patient needs to take about 1.1 ∗ 200 = 220 unit of EB after month 6 and should take

about .8 ∗ 200 = 160 unit after Month 10.

4 Discussion

In this paper, we proposed a mixed-effects GPFR model to construct individual dose–

response curves for a patient-specific treatment regime. A nonparametric Gaussian Pro-

cess Functional Regression model is used, which can fit a response curve with any shape

in terms of a set of functional covariate curves. The model can therefore be used to
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address a wide class of problems with high-dimensional functional or longitudinal data.

Mean structure and covariance structure are modelled simultaneously, and so combine the

information acquired from other subjects and the information collected from each individ-

ual. The subject-specific prediction and dose–response can be constructed and improved

over time as more individual data becomes available. A comparison of the dose–response

curves constructed for Month 8 and Month 12 were given in Figure 3.

An interesting problem worth further exploration is how to find an optimal solution

for dose level when we want in order to maintain the response curve in a given range

under certain conditions, such as minimising the change of dosage in successive months.

This is important, so that dose titration is not applied to stable patients, with the risk of

provoking or worsening a periodicity of response. This is an active area of research.

A comprehensive study for management of renal anaemia is also being undertaken.

Data are available from a larger multi-centre dataset and our experience from the devel-

opment of methodology here can be further established. A hierarchical model will be used

to model and cluster the data collected from different resources (see e.g. Shi and Wang,

2008), and then to construct a more accurate dose–response curve for each individual

patient. The sensitivity of patients to the epoetin agents can be assessed as reflected in

their dose–response curves.

Generally this methodology has a wide range of applications wherever medications are

used for the long-term maintenance of patient health: for example warfarin for manage-

ment of anti-coagulation and numerous diabetic medicines for glucose control. All these

patients are individually managed. To date, information from the response of other pa-

tients is incorporated through clinician experience and management algorithms are based
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on population-level response. There is an opportunity to refine management of many long-

term conditions by tailoring dose–response curves to individuals from the combination of

group and individual data.
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Appendix I: derivation of the formulae for calculating

the maximum likelihood estimates

The log-likelihood for Θ = (B,θ,γ,Σ, σ2
ε) is given by (11). After a straightforward

calculation and simplification, we obtain

∂L

∂vec(B)
=

M
∑

m=1

(ym − ΦmBum − V mγ)′Ω−1
m (um ⊗ Φ′

m)′, (18)

∂L

∂γ
=

M
∑

m=1

(ym − ΦmBum − V mγ)′Ω−1
m V m, (19)

where ⊗ denotes Kronecker product. Letting ∂L/∂vec(B) = 0 and ∂L/∂γ = 0, we can

get the explicit forms for B and γ as

vec(B) = F1(θ,Σ, σ2
ε) = (A11 − A12A

−1
22 A21)

−1(y(1) − A12A
−1
22 y(2)), (20)

γ = F2(θ,Σ, σ2
ε) = (A22 − A21A

−1
11 A12)

−1(y(2) − A21A
−1
11 y(1)), (21)
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where,

y(1) =
M
∑

m=1

(um ⊗ Φ′

m)Ω−1
m ym,

y(2) =
M
∑

m=1

V m
′Ω−1

m ym,

A11 =
M
∑

m=1

(um ⊗ Φ′

m)Ω−1
m (um

′ ⊗ Φm),

A′

21 = A12 =
M
∑

m=1

(um ⊗ Φ′

m)Ω−1
m V m,

A22 =
M
∑

m=1

V m
′Ω−1

m V m.

Those give the formulae to update vec(B) and γ in (12).

Denote the j-th element of θ by θj. The gradient in terms of (θj, σ
2
ε , σ

2
j ) are given by

∂L

∂θj

=
M
∑

m=1

{

−
1

2
tr(Ω−1

m

∂Cm

∂θj

)

+
1

2
(ym − ΦmBum − V mγ)′Ω−1

m

∂Cm

∂θj

Ω−1
m (ym − ΦmBum − V mγ)

}

, (22)

∂L

∂σ2
ε

=
M
∑

m=1

{

−
1

2
tr(Ω−1

m )

+
1

2
(ym − ΦmBum − V mγ)′Ω−1

m Ω−1
m (ym − ΦmBum − V mγ)

}

, (23)

∂L

∂σ2
i

=
M
∑

m=1

{

−
1

2
tr(Ω−1

m W miW mi
′)

+
1

2
(ym − ΦmBum − V mγ)′Ω−1

m W miW mi
′Ω−1

m (ym − ΦmBum − V mγ)
}

,

i = 1, . . . , k, with W mi being the i-th column of W m. (24)

The above gradients are used such that the maximisation procedure step (ii) in Section

2.3 is implemented most efficiently.
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Appendix II: derivation of predictive mean and pre-

dictive variance

In Section 2.4, we assume that the covariance structure is the same at the different time

points. From (14), when the mean is given, we assume that (τ̃1, . . . , τ̃N , τ̃ ∗) has a (N +1)-

dimensional normal distribution N(0, C̃N+1) with

C̃N+1 =





C̃ C̃(z∗,zM+1,w
∗,wM+1)

C̃
′

(z∗,zM+1,w
∗,wM+1) C̃(z∗,z∗,w∗,w∗)





which is a (N + 1) × (N + 1) matrix. Here,

C̃(z∗,zM+1,w
∗,wM+1) = [C̃(z∗,zM+1,1,w

∗,wM+1,1), . . . , C̃(z∗,zM+1,N ,w∗,wM+1,N)]′

is the covariance between y∗ and yM+1 = (yM+1,1, . . . , yM+1,N)′; C̃ is the N×N covariance

matrix of yM+1 or τ̃M+1 = (τ̃1, . . . , τ̃N)′, which depends on zM+1 and wM+1. All of them

are calculated by (13). The conditional mean and variance of τ̃ ∗ given τ̃M+1 and the

mean µ(t) are given by

E(y∗|D,µ) = µM+1(t
∗) + H

′

τM+1 = µM+1(t
∗) + H

′

(yM+1 − µM+1(t)),

σ̂∗2 = Var(y∗|D,µ) = C̃(z∗,z∗,w∗,w∗) − H ′C̃H ,

where H
′

= [C̃(z∗,zM+1,w
∗,wM+1)]

′C̃−1.

Thus the predictive mean for y∗ at new test point t∗ is given by

ŷ∗ = E(y∗|D) = µ̃M+1(t
∗) + H

′

(yM+1 − µ̃M+1(t)),

where µ̃M+1(t) = (µ̃M+1(t1), . . . , µ̃M+1(tN))′ is the vector of means at data points t =

(t1, . . . , tN) and is given by (15). This is (16) and is used as a prediction of y∗. The
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predictive variance is given by

Var(y∗|D) = E[Var(y∗|D,µ)] + Var[E(y∗|D,µ)]

= σ̂∗2 + Var[µ̃M+1(t
∗) + H

′

(yM+1 − µ̃M+1(t))|D]

= σ̂∗2 + Var[µ̃M+1(t
∗)|D] + H

′

Var[µ̃M+1(t)|D]H − 2H
′

Cov[µ̃M+1(t
∗), µ̃M+1(t)|D].

Defining

Λm =
(

um
′ ⊗ Φm V m

)

and α =





vec(B)

γ



 , (25)

the estimates (20) and (21) can be expressed as

α̂ = Â−1





y(1)

y(2)



 =

(

M
∑

m=1

Λm
′Ω̂−1

m Λm

)−1 M
∑

m=1

Λm
′Ω̂−1

m ym,

where

Â =





A11 A12

A21 A22



 =
M
∑

m=1

Λm
′Ω̂−1

m Λm

with Aij given in Appendix I with the parameters replaced by their estimates. The

variance of α̂ is

Var(α̂) =

(

M
∑

m=1

Λm
′Ω̂−1

m Λm

)−1 M
∑

m=1

Λm
′Ω̂−1

m Var(ym)Ω̂−1
m Λm

(

M
∑

m=1

Λm
′Ω̂−1

m Λm

)−1

=

(

M
∑

m=1

Λm
′Ω̂−1

m Λm

)−1

= Â−1,

where, Ω̂m means Ωm with replacing the parameters by their estimates; see, for example,

Section 3 in Laird and Ware (1982). As noted in Section 3.2 of this paper, these formulae

do not take into account the uncertainty of the estimation of the parameters involved in

Ωm.
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Therefore, we have

Var[µ̃M+1(t)|D] = Var[(uM+1
′B̂

′

Φ(t) + vM+1
′(t)γ̂)|D]

= Var[ΛM+1α̂|D]

= ΛM+1

(

M
∑

m=1

Λm
′Ω̂−1

m Λm

)−1

ΛM+1
′ = ΛM+1Â

−1ΛM+1
′,

where each column of ΛM+1 is defined as in (25) but evaluated at t = tM+1,i for i =

1, . . . , N . And, Var[µ̃M+1(t
∗)|D] and Cov[µ̃M+1(t), µ̃M+1(t

∗)|D] can be calculated simi-

larly.

Combining the above results, we have

Var(y∗|D) = σ̂∗2 + (Λ∗

M+1 − H
′

ΛM+1)
′Â−1(Λ∗

M+1 − H
′

ΛM+1). (26)

where Λ∗

M+1 is defined in (25) but evaluated at t = t∗. This is used to calculate the

predictive variance.
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Figure 1: Renal data: (a) Hb for all patients (b) Dose level
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Figure 2: Prediction of Hb for two patients P1 and P2 and the three models: the solid

lines stand for real observations, and the dashed lines stand for predictions and the 95%

predictive intervals.
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Figure 3: Hb response for different dose DA level: the solid lines stand for predictions

with different dose levels, the dashed lines stand for their 95% predictive intervals, and

the dotted lines stand for the target control level of Hb = 11.8
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Figure 4: Predicted values of Hb when the same dose level as in Month 6 is used: the

dashed lines in (a) stand for the predictions for fixed dose level and their 95% predictive

intervals; the dotted line represents the predictions by using the actual dose level as shown

in (b); and the solid line represents the real observations
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Figure 5: Using EB: Hb response for different dose level: the solid lines stand for predic-

tions with different dose levels, the dashed lines stand for their 95% predictive intervals,

and the dotted lines stand for the target control level of Hb = 11.8
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