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Abstract

Gaussian processes, GPs, are routinely used to approximate complex non-linear functions with relative sim-
plicity. Their regression performance is, at least, comparable to that achieved via artificial neural networks
(ANN) and, in fact, both methods are intrinsically related. They are both non-parametric and, as Neal (1994)
has shown, when the number of nodes in the hidden layer of a neural network tends to infinity the ANN
converge to a Gaussian process.

In most of the cases, the GP will map a multivariate input into a univariate response. In this paper,
however, we present an approach to process monitoring that combines independent and identically distributed
GPs so that multivariate responses can be appropriately modeled. We review a similar approach that has
already been proposed in the literature and highlight some concerns related to it that must taken into
consideration. Additionally, we offer an alternative approach to the way that new observations are mapped
into the non-linear model. A simple simulated example is provided that will help understand the method

flexibility. Furthermore, results from a real example are also discussed.
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1. Notation

The reader familiar with MSPC will notice that our
use of notation throughout the paper is different to
the common standard found in the field. We denote
the data set of N observations on D variables as Y
instead of X. We also refer to the variables in the Q-
dimensional latent space as X instead of T. Although
this is a matter of personal preference, the change
should bring about more clarity in keeping with the
standard terminology used in regression problems.

2. Introduction

There are two main approaches to process model-
ing. On the one hand, models can be built based on
the underlying physics and chemistry laws that gov-
ern the behavior of the process; this is referred to
as mechanistic modeling and requires a thorough and
extensive knowledge about the system under study.
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Very often, restrictions both in term of cost and time
will simply prevent their development. On the other
hand, a viable alternative is to use the data that is
routinely collected from the process to build a data-
based model. Whereas these models are much easier
to develop, it is also true that the information that
can extracted from them is rather more limited. In
many instances, the data-based methodology is used
as a black-box where the user expects to extract a reli-
able prediction of how the system is behaving without
having to worry about the inner-working of the true
generative process.

When it comes to data-based fault detection and
diagnosis, one could further subclassify the models
into three main groups:

e No-model, where the individual process variables
are monitored directly.

e Linear models, where the underlying assumption
is that the process is linear and some form of
linear surrogate variable is formed and subse-
quently monitored.
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e Non-linear models, where the assumption is that
the process is non-linear and non-linear auxiliary
variables are constructed and then monitored.

It is undoubtedly very appealing to simply not
build a model and monitor the process variables indi-
vidually. This is an ideal situation as fault detection
is almost instantaneous and fault diagnosis is direct
in the sense that the variable moving outside its con-
fident limits is the variable developing a fault. But
this situation is not practical: today’s manufacturing
processes measure and log hundreds of variables and
therefore individual variable monitoring is unrealis-
tic to say the least; it besides ignores the fact that
the correct functioning of the process depends on the
joint behaviour of a set of variables and not on each
variable individually (Kourti and MacGregor, 1995).
Attempts can be made to remove the inessential vari-
ables and choose a subset of the original variables that
contain, according to a specific criterion, as much in-
formation as possible. This form of variable selection
was first introduced by McCabe (1984). Exploiting
this idea Srinivasan and Qian (2007) have shown how
a multi-state process could be monitored by just fo-
cusing on those variables whose behaviour is essential
for the smooth running of the process; these variables
most important from a monitoring perspective were
termed as key wvariables by the authors. While the
key-variable approach tackles the issue of dimension-
ality reduction via variable selection, it does not con-
sider the problem of variable association that could
lead to potential departures from normal plant be-
haviour.

Using linear models to build combinations of the
original variables in order to reduce the problem di-
mensionality and, at the same time, obtain a valid
representation of the process is also an attractive idea.
These multivariate projection methods, as they are
commonly known, are built around principal com-
ponent analysis, PCA, and the numerous variants
thereof. For simplicity, in this paper we will refer
to these linear methods simply as PCA. The concept
behind PCA is to project the original data, which in-
cludes noise and redundant variables, into a latent
space with the objective of capturing the true di-
mensionality of the system (Wold et al., 1987). The
method is not based on a probability model although
it has a probabilistic interpretation which stems from
a linear factor analysis model with isotropic Gaus-
sian noise (Tipping and Bishop, 1999). PCA is very
efficient at building a fingerprint of normal plant be-

haviour which can, by comparison, be used at a later
stage for fault detection and diagnosis. Most chemi-
cal engineering systems, however, are non-linear and
therefore models accounting for that non-linearity
would be the most appropriate. Of course, they are
many examples of successful applications of PCA to
non-linear systems and arguments in favour of doing
that; see, for instance, Kourti (2002). Nevertheless,
in most cases, when doing so, the model will simply
be used as a black-box or dimensionality-reduction
artifact where the number of principal components
retained has no resemblance with the real underlying
dimensionality of the problem. A very clear example
of this is given by Simoglou et al. (2000), who man-
aged to identify a problem in an industrial system by
looking at principal components that were explaining
very little of the total variance in the system covari-
ance matrix.

In this paper, we use a non-linear approach to
extracting the underlying characteristics of the pro-
The backbone of the procedure is the Gaus-
sian process latent variable, GPLV, model first sug-
gested by Lawrence (2005) within the machine learn-
ing community. The idea is simply to consider inde-
pendent and identically distributed GPs to map the
input space variables, € R, into the observational
space, y € R”. Note that a-priori the input po-
sitions & are unknown and therefore need to be de-
termined. In a second step, when new observations
become available, we make use of two neural networks
to project them first onto the latent space and sub-
sequently onto the original observational space. This
approach shares similarities to the non-linear prin-
cipal component analysis based on principal curves,
NLPCA, developed by Dong and McAvoy (1996).
Let Y € RV*P be our original observations and
X € RN*Q the corresponding latent variable rep-
resentation. Dong and McAvoy’s approach relies on
an additive model, i.e.

cess.

Q
Y = Z fi(x;) + Error, f; is non linear
i=1

which assumes that the original observations are gen-
erated as a linear combination of (J—univariate non-
linear functions; the latent variables can therefore be
determined one at a time. The GPLV model, on the
other hand, is not restricted to additive models and
can account for multiplicative effects as all the latent
variables are determined simultaneously. The GPLV



model is also closely related to the concept of Input-
Training neural network, IT-net, proposed by Tan
and Mavrovouniotis (1995). The idea is that the net
input variables are not fixed but adjusted along with
internal network parameters so that it can reproduce
the net output more efficiently. Jia et al. (1998) show
how a process fault can successfully be detected us-
ing the I'T-met to map the latent variables into the
observations that have been compressed via PCA. A
significant advantage of using the GPLV model over
the IT-net is that it requires a substantially lower
number of parameters; it is also a full probabilistic
model where prediction uncertainty and hypothesis
testing can be carried out if necessary.

Ge and Song (2010) have recently shown how the
GPLV model can be used in process monitoring.
However, their approach to dealing with new observa-
tions can be problematic if it is not performed care-
fully. We aim to explain in this paper where our
concerns lie when it comes to projecting new obser-
vations onto the GPLV model and offer an alterna-
tive that deals with the problem. Prior to defining
the GPLVM in Section 4 we first offer a quick intro-
duction to GPs in Section 3. We then describe Ge
and Song’s approach to projecting new observations
onto the model as well as our alternative in Section 5.
Finally, both a simple simulation example and a real
application are given in Section 7.

3. Gaussian processes

A short summary about GPs is provided in this
section. The interested reader should refer to Ras-
mussen and Williams (2006, Chapter 2), where the
topic is discussed in detail.

3.1. GP priors

Let us consider the data set
D = {(xi,y:), © € RO, y; € RV, ie it com-
prises N pairs of observations each consisting of
a (@-dimensional input vector x; and a scalar
output y;. Let also X = (x1,@9,...,2,)" be the
N x @ design matrix with all the input vectors
and y = (y1,y2,.--,yn)" the corresponding output
vector. The GP regression model is defined as follows

yi = f(xi) + &
gi ~ N(0,0%) iid
f() ~GP(0, k() (1)

In other words, we are assuming that y; is re-
lated to @x; non-linearly through an unknown func-
tion f, which, in turn, it is being approximated
by a GP. And by saying that the function f fol-
lows a GP it is meant that, over the finite range
of input observations (xi,x2,...,&,), the vector
f=(f(z1), f(x2),..., f(x,))" follows a multivariate
normal distribution. This distribution is commonly
specified as having mean zero and a N X [N covariance
matrix generated via k(-,-), the covariance function
or kernel.

The kernel allows to write the covariance between
the noise-free output, f(x;), as a function of the in-
put vectors, x;. It is a key part of the GP as it will
govern the properties of the regressed function and
it must always generate a positive semi-definite co-
variance matrix. In this paper we use the squared
exponential kernel defined as

kij = k(xi, xj) = cov (f(xs), f(x;))
1 Q
=voexpq —5 Z’y(wiq — xj)? (2)
q=1

where (19,v) are unknown parameters . Let us now
define K as the covariance or kernel matrixz evalu-
ated at all pairs of the IV training observations, i.e.

K = (kij).

3.2. GP posterior

It can be shown that the marginal distribution of
the output vector y follows a multivariate normal dis-
tribution

y ~Nn(0,K, =K +0°l) (3)

where K, is the NV x N covariance matrix whose
(i, 7)™ element is defined as

(Ky)ij = cov(y,', yj) = k(xi, acj) + 025ij (4)

with J;; being the Kronecker delta. Notice the sub-
tle but important difference between K, the noise-
free covariance matrix, and K, which incorporates
the functional noise.

Finally, let us also define 8 = (g, 7, 02) as the vec-
tor of all unknown parameters. @ contains both, the
covariance function parameters, (v, ), and the func-
tional noise, o?; it is commonly referred to as hyper-
parameter vector to emphasize that the parameters
are from a non-parametric model.



3.3. GP prediction

GPs also provide a straightforward framework to
predict the output f(a*) for a new input vector a*.
The joint distribution of the new enlarged vector of
outputs (y1,¥y2,--.,yn, f(x*))T will still be multivari-
ate normal; the prediction, i.e. ¢*, of f(x*)|D is
a normal distribution whose mean and variance are
given as

E(f(z")|D) = KK, 'y (5)
var (f(@*)D) = k(z*,2") — k*TK, k"

where k* = (k(z*,x1),...,k(x*, x,))" is the vector
of covariances between the new input point, &*, and
the training data «;, 1 =1,..., N.

With the distribution of the training data known
as given by Eq. (3), the log-likelihood function can
be easily written as

N 1 1 B
((6]D) = - log(27) — 5 log|Ky| — Sy" (K,) 'y

Training of a Gaussian process involves determining
the values of the unknown hyper-parameter vector
6 given the observed data, D. That can be carried
out by maximizing the previous log-likelihood func-
tion in a procedure known as Empirical Bayes es-
timation. Alternatively, a full Bayesian approach is
also possible whereby prior distributions are allocated
to each of the unknown parameters and are subse-
quently combined with the likelihood function. Full
implementation details are provided by Shi and Choi
(2011, Chapter 3).

4. Gaussian process latent variable models

Up to this point we have assumed that x;, ¢ =
1,..., N were known and the aim of the inference
process was to determine 6. It could be the case,
however, that the input vectors x; are unknown (i.e.
latent); then, the purpose of the inference procedure
would not only be to determine the best value of @
but also the best value of the latent input positions
that would maximize the likelihood of the observed
data.

Consider a mnew dataset D  compris-
ing N D-dimensional observations, ie.
D = {y;|N,, y; € RP}. Instead of a collec-
tion of N-observations, the dataset can also

be thought of a collection of D-variables, i.e.

D= {y(d)’§:17 Y € RN}, A Gaussian process
latent variable model (Lawrence, 2005) is defined as

:'J(d)p(vei’rs’j g’P(O,k(CCZ',CCj;G)) (6)

where by % we mean independent and identically dis-
tributed (iid). Therefore, this class of models are sim-
ply mappings, using itd GPs, between X, the N x @
latent space, and each output dimension yg).

4.1. GPLVM inference

Training of the GPLV model is the procedure
whereby both the latent variables, X, and the ker-
nel hyper-parameters, 8, are determined. In order
to do that, firstly, the joint joint marginal distribu-
tion for Y, the N x D matrix of observations, can be
written as

D
p(Y[X.0) ~ [[N(0,K,)

d=1

where p() denotes the probability density function.
The associated log-likelihood can then be expressed
as

D 1
(X, 0;Y) =~ log[K, | — §tr(IgW'YT) (7)

where the constant terms have been omitted. Max-
imization of the previous function is, however, not
possible without additional identifiability constraints.
By giving a Gaussian prior distribution to each latent
variable, x; ~ N(0,Ig), then X ~ [, N(0,1g).
Hence

1
p(X) o exp {—Qtr(XXT)}
and the posterior distribution is given by:

p(X,01Y) o p(Y|X, 0)p(X) (8)

We can then calculate the mazimum a posteriori
(MAP) solution with respect to the latent factor
scores, X, and the unknown parameters, 8, by maxi-
mizing the following log-likelihood

(X,0: Y )arap = (X, 0:Y) — 5 x(XXT)  (9)

where constant terms have been omitted.



4.2. Empirical Bayes solution

A solution of the GPLV model can be found by
jointly maximizing Eq. (9) with respect to X and
6. The model log-likelihood is both non-linear and
non-conver. Due to the high-dimensionality of the
problem, a global solution cannot be guaranteed and
multiple local maxima will occur. As it is common in
these cases, we randomly start the algorithm at dif-
ferent points and select the solution with the highest
likelihood.

Between the array of non-linear optimizers that
we can be used, conjugate gradient methods (No-
cedal and Wright, 2006, Section 5.2) have been the
suggested choice in the numerical analysis commu-
nity when dealing with these specific problems. In
broad terms, the conjugate gradient method with line
search (CGL) works by iteratively computing search
directions which are conjugate with respect the Hes-
sian matrix (or an approximation thereof). Once the
search direction has been found, a unidimensional
line search with respect to the step size is carried
out along the conjugate direction in order to deter-
mine a new approximation to the local minimum of
the objective function. Note that conjugate gradient
method avoid having to provide to the algorithm the
Hessian matrix.

In our examples, we use the SCG implementation
written by Nabney (2002) which uses the Polak and
Ribiere (1969) formulae to update the search direc-
tion at every iteration. The only inputs required for
the optimization are the likelihood function and its
analytical derivatives with respect to X and 6. The
latter are provided in Appendix A.

4.8. Further considerations

An alternative solution to the Empirical Bayes es-
timate can be found by using a Markov Chain Monte
Carlo algorithm. The interested reader should refer
to Shi and Choi (2011, Section 8.2) where full imple-
mentation details are given.

Numerically, irrespective of whether a full or an
empirical Bayes approach is used to obtain estimates
X and 6, the inverse of the covariance matrix, K’ L
is involved in Eq. (9). The cost of the log-likelihood
evaluations is, hence, of order O(N?), where N is the
sample size. As N increases, model training will slow
down as the cost of the calculation becomes more and
more prohibitive.

In those cases where the nominal data set is sub-
stantially large, training of the GPLV model can

be sped up by selecting a subset Z of size m, with
m < N, from the original data set D. Let us de-
note the remaining (unselected observations) as J.
By replacing D with Z, computational efficiencies are
gained as the cost of the likelihood calculation will
be of order O(m?) rather than O(N?). Z is normally
referred to as the active set and, obviously, its selec-
tion causes a reduction in the information available
for inference (Shi and Choi, 2011, Section 3.3). What
it is expected is that, if a good subset selection is
made, most of the information will be kept. There
are several criteria that can be used to partition D
into Z and J. The most popular ones are proba-
bly based on the Kullback-Leibler divergence crite-
rion and the process entropy. The latter criterion is
used by the Informative Vector Machine, IVM, algo-
rithm (Lawrence et al., 2003) which sequentially se-
lects the points in Z according to the reduction in the
process’ entropy that they cause. An IVM implemen-
tation of the GPLV model can be found in Lawrence
(2005).

4.4. GPLV model prediction

The GPLV model prediction for a new but
known input vector x* is an extension of Eq. (5)
to every output variable yg). Let us define
fu(a®) = (f(z*), f2(2*),..., fo(z*))T.  The joint
distribution of the new enlarged matrix of outputs
(Y1,Ygy - YN, [ ()T will still be multivariate
normal; the prediction, g*, of fas(*)|D is also a mul-
tivariate normal distribution whose mean and com-
mon variance are given as

E(fu(z")|D) = YK, 'k’ (10)
var (far(z*)|D) = (k(z*,z*) — k*TK, 'k*) Ip

where, as before, k* = (k(x*,x1),...,k(z*, x,))"
is the vector of covariances between the new input
point, *, and the training data «;, : =1,...,N; Ip
is the D-dimensional identity matrix.

5. Projecting new observations onto the latent
space

Given a training (nominal) set of D-dimensional
observations Y = (yq,...,yx)", their representation
in the latent space can be found by maximizing
Eq. (9). In other words, both the latent variables
X = (x1,...,xn)" and 6, the GP hyperparameters,
can be considered known once the optimization is



completed. The model prediction, \?, can then easily
be found by applying Eq. (10).

Let us now say that a mnew observation
y; = (yj1,...,y;p)" becomes available. The problem
of projecting that observation onto the latent space
is concerned with finding «;, its associated latent
variable representation. We provide two possible
ways of doing so.

5.1. Method 1: GPLVM projection

Eq. (5) is a standard result from GPs. For clarity,
it can also be expressed as

y,|x;; X, 0 ~ Np(3;,s71p) (11)
where

y;=Y'K, 'k (12)

s? = k(x;, ;) — k:]T.K;lk:j + ajz

and k; = (k(zj,x1),...,k(x;,z,))". Note that, as
we observe y; and not f (x;), the uncertainty is higher
and reflected via 032-.

The only unknown parameters in Eq. (11) is x;.

Its log-likelihood can be written as

D D
Uzj;y5,X,0) = — B log(2m) — Elog(si)
1

2(5?) (yj - @j)T(yj - @g) (13)

Additionally, by giving a Gaussian prior distribu-
tion to the latent variable x;, i.e. ; ~ N (0,1¢), then

1
p(x;) o< exp (—251:}-:(:]')

The MAP can therefore be found by maximizing
the following log-likelihood function

1
Cyap(zj;y,, X, 0) = (z);y;,X,0) — 533}5%‘ (14)

where constant terms have been omitted.

The same scaled conjugate gradient non-linear op-
timizer, used to fit the GPLV model in the first in-
stance, can be employed to determine @ ;; now the ob-
jective function to maximize is given by Eq. (14) and
the gradients thereof with respect to x; are shown in
Appendix B.

This is the method proposed by Ge and Song
(2010) to deal with new observations. Potential users

must be very cautions, however, as the objective func-
tion given by Eq. (14) is non-convex. A procedure
must be put in place to make sure that the global
maximum is chosen when projecting every new ob-
servation. While this is relatively simple when the
underlying dimensionality of the latent space is low,
the problem is far from trivial when this is not the
case. We show a simple simulation example where
this problem will be further explained.

5.2. Method 2: Neural Network projection

The procedure we prefer to follow in order to use
the GPLVM for process monitoring is to build two
neural network models following the idea introduced
by Dong and McAvoy (1996). By doing this we avoid
dealing with the non-convexity problem altogether.
The first ANN would map the D-dimensional data
space onto its underlying @)-dimensional latent space.
The second ANN would then map the @-dimensional
latent variables onto the GPLVM model prediction
as shown in Figure 1.

Net 1 Net 2

Y1 Latent Space

—
Y2
X
—_
Yo
bias
Input Hidden Output
layer layer layer

Figure 1: Architecture of the neural networks needed for pro-
cess monitoring; only 1 latent variable.

Both networks have one hidden layer in which the
inputs and outputs are fully determined and known.
The only remaining unknown is M, the number of
hidden units, that must be adjusted to give the best
predictive performance. M, in turn, controls the total
number of network parameters (model complexity) so
we can expect an optimum value to exist giving the
best generalization performance.

Bishop (2006, Section 5.5) cites different proce-
dures that could be used to for this purpose. The
method we have followed to control network complex-
ity is early early-stopping. The available data is di-
vided into three subsets. The first subset is the train-
ing set, used to compute gradients and the network
parameters. The second subset is the wvalidation set



whose error is monitored during the training process.
The training set error is a non-increasing function of
the iteration index. On the other hand, the validation
set error normally decreases during the initial phase
of training; however, as the network begins to overfit
the training data, the error of the validation data set
will typically begin to rise. When this latter error in-
creases during six consecutive iterations, training is
stopped and the network parameters at the minimum
of the validation error are adopted. The third sub-
set is the test set, which it is only used to assess the
generalization performance of the network.

6. Online monitoring strategy

The GPLVM-based monitoring method is similar
to that using linear PCA in the sense that the same
monitoring statistics are used. Monitoring can be
made on the Hotelling’s T2 statistic, the Q-statistic
(Squared Prediction Error) or directly on the latent
variables themselves. Although the GP latent vari-
ables will be representative of the underlying dimen-
sionality of the system, they lack physical interpreta-
tion which simply makes the problem of fault diagno-
sis more complicated. Serradilla and Shi (2010) offer
details portraying the GPLV model as the building
block of a bigger class of models denoted as Gaussian
process factor analysis models, GPFA. Their main ad-
vantage is that some physical interpretation can be
given to the latent variables if the model structure is
carefully designed.

In terms of the process faults, there two kind of
process abnormalities that can develop in a chemical
system, Zhang et al. (1996). Firstly, the relationship
between the process variables could change. What
it is expected in this situation is that the difference
between the original observations y 4 and the model
prediction g4 be large. These faults can be detected
by monitoring the Squared Prediction Error, SPE.
And secondly, the basic relationship between the pro-
cess variables could remain unchanged but the pro-
cess variables could present a variability higher than
those in the nominal data. This abnormality would
be observable if we were to monitor the latent vari-
ables directly. These faults can be detected by using
Hotelling’s T2 Statistic.

6.1. latent scores monitoring

The latent variables have been constraint to be
x; ~ N(0,Ig), i.e. uncorrelated (independent) and

normally distributed. Therefore they could be mon-
itor directly; confidence limits can be built from the
standard normal distribution.

6.2. Squared Prediction Error

The SPE is simply a measure of the lack of fit in
the observational space. 1t is given by

SPE; =eje;=(y, — )" (y; —¥;)  (15)

where, for observations in the nominal data set
(t=1,...,N), y, is given by Eq. (10) whereas, for
new observations, it will be the output from the sec-
ond neural network.

Confidence limits for the SPE can be obtained by
fitting a weighted y2-distribution to the squared er-
rors generated from normal operating condition data
as explained by Nomikos and MacGregor (1995).

6.3. Hotelling’s statistic

This statistic is a measure of the variation of each
sample within the latent variable space. Therefore
and unlike the SPE, monitoring of the Hotelling’s 72-
statistic occurs directly in the latent space. It can be

found as
Q .2

T} = @A @ = % (16)
g=1 "1
where Ag is @Q-diagonal matrix with elements ),
being the variance of each one of the latent vari-
ables. For observations in the nominal data set
(i=1,...,N), x; is the output from fitting the GPLV
model whereas, for new observations, it will be the
output from the first neural network.

Confidence limits for the Hotelling’s T2-statistic
can be obtained using the empirical reference distri-
bution of the training data or the F-distribution, as

follows QN - 1)
TCQQJV;Oé = N-Q FQJV—Q;Oé

where « is the significance level.

6.4. Monitoring scheme
The monitoring strategy can be summarized as fol-
lows

I. Nominal model

1. Select the nominal data Y = (yq,...,yy)"
from observations where the process is
known to be behaving as intended.



2. Fix the number of latent variables @, for
instance, by setting a desired percentage of
the variance explained.

3. Build the GPLV model. The outputs from
this model will be the latent variables, X,
as well as the GP hyperparameters, 6.

4. Use the fitted model to find the confidence
limits for the SPE and the T? statistics.

II. New Observations

1. Method 1. As recently proposed by Ge and
Song (2010); this is not advisable unless our
algorithm is able to find the maximum of a
non-convex function. Failing to do so will
increase the false alarm rate.

2. Method 2. This requires the construction of
two auxiliary ANNs models. The mappings
are as follows

Net-1: Y € RP s X € R9
Net-2: X € RC > Y ¢ RY

3. Calculate SPE}, Tj2 for every new obser-
vation j or monitor the latent variables di-
rectly.

7. Simulation

7.1. A simple example

This first example refers to the system presented
by Dong and McAvoy (1996). There are three vari-
ables, D = 3, but only one underlying latent variable,

Q=1.

Data generation

The data is generated following these steps:

(a) Assume that =« ~ U(1.01,2) and
eq (d=1,2,3) ~N(0,0.012) is random

dependent noise.

in-

(b) Generate 100 observations of normal operating
data (y1,y2,ys) following the equations on the
left panel. Then simulate a fault in y3 by gener-
ating 100 observations following the relationships

on the right hand panel

y1=x+e; y1=x+ep (17)
yg—x2—3x+62 y2:x2—3x+62
Y3 = —23 + 322 + e3 Y3 = —1.12% + 3.222 + e3

8

Figure 2: Data set for normal condition (o) and fault condition

(+H)

Figure 2 shows the data sets for the normal condi-
tion and fault condition; notice how the faulty ob-
servations detach from the nominal data in the ys
direction.

Model training

The objective is to model the nominal data in the
previous system by using the non-linear GPLV model
defined in Section (4). Latent positions were initial-
ized using linear PCA while the GP hyperparameters
are given random positive values. The prediction for
the training data, as given by Eq. (10), is shown in
Fig 3. As it can be the seen the three #d GPs do
provide an excellent and smooth approximation to
the data.

O Nominal data
Nominal projection

Figure 3: Normalized nominal data and the GPLV model pre-
diction



One of the advantages of using this simulation
is that the generating latent variable, € RY, is
fully known. It can therefore be compared with
its estimate, & € RY, obtained by fitting the GPLV
model. The standardized values of both variables
are shown in Figure 4. The correlation coefficient is
cor(zx, ) = 0.999, showing the suitability of the pro-
posed model for this non-linear system.

Another ’goodness of fit’” measure commonly re-
ported is the percentage of variance in the original
data explained. The single latent variable obtained
with the GPLV model can explain 99.6% of that
variance. Fitting a linear model to nonlinear data
is not entirely appropriate; however, for comparison
purposes, if we used one linear principal component
we would be able to explain 66.1% of the original
variance, thus highlighting the improvement achieved
with the non-parametric model.

Latent variables

2 I I I I
0 20 40 60 80 100

observation

Figure 4: ® and Z for the nominal data

New observations: GPLV model projection

We have generated 100 samples with a known fault
in y3. Before projecting every observation onto the
latent space, let us focus on any single one of them,
which we denote as y;. The aim of the projection is to
determine the latent variable x; associated with the
available observation. As previously explained, this
can be done by maximizing Eq. (14) with respect to
x;. In this case, as the the latent space is mono-
dimensional, the log-likelihood can be visualized for
different values of z;, Figure 5, upper left-hand cor-
ner. What this figure highlights is that the objective

function is not convex and, in this particular case,
three maxima occur. They are shown amplified in
the remaining three panels of the figure.

The projection achieved will be different depend-
ing on the starting point chosen to start the itera-
tive algorithm. In this case, there is no complica-
tion in making the algorithm converge to the global
maximum; we simply choose several random starting
points and select the one with the highest maximum.
However, for multivariate optimization problems, we
will not be able to guarantee that the global maxi-
mum has been achieved at all times.

With this caveat in mind, all the faulty observa-
tions can be projected onto the latent space. The
model predicted values, §j, can be obtain by using
Eq. (10). This then allows the calculation of the
squared prediction error.

The SPE for both the nominal data and the faulty
observations is shown in Fig. 6 along with 95% and
99% confidence intervals calculated as described pre-
viously. As a measure of fault detection performance
we can report the number of observations outside the
99% confidence limit. Using this model, the SPE for
only one observation is outside this limit in the nomi-
nal data set. On the other hand, the method is able to
pick up 9 observations in the 100 samples simulated
for the faulty data set.
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Figure 6: SPE for nominal and faulty observations using the
GPLV model projection method.

For comparison purposes, a linear PCA model with
only one latent variable has also been built. The SPE
for this model is shown in Figure 7. There are 2
and 4 observations outside the 99% confidence lim-



500

-500
—-1000
—-1500

Log-likelihood

-2000

-2500

Log-likelihood, left local maximum

-9
-16 -14 -12

X.
]

-1 -08

Log-likelihood, global maximum

Log-likelihood, right local maximum

| | |
w N = =
o o o o o

|
N
o

|
a
o

Figure 5: Log-likelihood (projection of a faulty observation) and amplified areas where the 3 maxima occur. Global maximum is
at x; = 0.1115, left-side local maximum at z; = —1.1781 and right-side local maximum at z; = 1.0928

its respectively for the nominal and faulty data sets.
Therefore, as expected, the model is unable to de-
tect the faulty condition; to do so would require of
an additional latent variable (not shown).

SPE - linear PCA (1PC)

0 il 1 1 J
100 150 200
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Figure 7: SPE for nominal and faulty observations using 1
linear principal component.
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New observations: ANN projection

Two networks were trained using the nominal ob-
servations with the scaled comjugate gradient back-
propagation algorithm. As previously mentioned,
network complexity was controlled by using early
stopping. The squared prediction error for both the
nominal data and the faulty observations is shown in
Fig. 8 along with 95% and 99% confidence intervals.
In this case, there are 23 observations outside the
99% confidence limits. Note that this performance
is similar to the that reported by Dong and McAvoy
(1996), where the authors argue that their method
using principal curves was able to detect 26 obser-
vations outside this limit. Note also that, for this
particular simple simulation, it seems that project-
ing new observations using NN is more efficient that
doing so with the GPLV model directly.

7.2. Simulated CSTR process

In this example, a non-isothermal continuous
stirred tank reactor (CSTR) is simulated. This ex-
ample has been widely used in the literature to test
other non-parametric methods; see for instance Choi
et al. (2005), Choi et al. (2008) and Alcala and Qin
(2010).
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Figure 8: SPE for nominal and faulty observations using the
NN projection method.

Process description

The process flow is depicted in Figure 9. The re-
action, A — B, is irreversible, exothermic and takes
place in liquid phase. A feed stream of reactant A
with flow rate F, is premixed with a solvent stream
flowing at a rate F§; the concentration of reactant
A in both streams is C,, and C,s respectively. This
premixed stream, with reactant concentration C; and
flow rate F', is then fed into the jacketed reactor where
the reaction takes place.

<0 .
» v 5
ééz C, T/
| FCT

Figure 9: Process flow diagram of the non-isothermal CSTR
system.

The system has only a PI control loop whose aim is
to maintain the outlet temperature 1" at a set value.
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This is done by controlling the flow of cooling wa-
ter, F., which enters the reactor jacket at a temper-
ature T,; and leaves at a temperature T.. The model
assumes perfect mixing, constant physical properties
and negligible shaft work. The dynamic behaviour of
this process is governed by two ordinary differential
equations(ODE). Firstly, the mass balance for reac-
tant A

dC:F(C—CZ‘)—VT‘

p (18)

where V' is the volume of reacting liquid; r is an
Arrhenius-type reaction rate given as r = kge#/1TC
with kg being the pre-exponential factor and R the
gas constant. The second ODE is the global energy
balance written as follows:

dT aF t
= = pe,F(T;,—T)— ——¢ (T —T,
Vpcp dt pcp ( ) FC +Fcb/2chpc( )
+ (=AH,)Vr (19)

where p and p. are the densities of the reacting mix-
ture and the cooling water, respectively, whereas c,
and ¢y, as their specific heat capacities; AH, is the
heat of the reaction. A summary of the process vari-
ables and simulation parameters is given in Table 1.

Table 1: CSTR process variables and parameters summary

Variable type

Controlled variable:
Manipulated variable:
Disturbances:
Measured variables:

Parameters

V =1m?; p = 10°%/m?; p. = 10°g/m?;

¢p = lcal/(a - K); ¢pe = 1cal/(a - K);

ko = 10"min~'; b = 0.5;

a = 1.678 - 10cal /min; AH, = —1.3 - 10”cal /kmol

All process disturbances are simulated as first or-
der autoregressive processes; variables a; and ao in
Table 1 are used to simulate degradation in the reac-
tion rate due to impurities and fouling of the water-
cooled heat exchanger respectively. Likewise, process
noise is added to all measured variables. Further de-
tails about initial conditions, controller information
and disturbances simulation are given by Yoon and
MacGregor (2001).



Complex fault generation

Yoon and MacGregor (2001) categorize abnor-
mal operating conditions as either simple or com-
plex faults; in the former case, a fault occurring in
one variable does not propagate into other variables
whereas in the latter situation, the effect of the fault
is seen by other process variables. To clarify this, let
us generate 100 observations and introduce a complex
fault at ¢ = 50 minutes; the fault is simply a bias of
1°C in the outlet temperature sensor. A time series
plot of both T" and F, is given in Figure 10. Note that
as the outlet temperature is the controlled variable,
the feedback controller will act to remove this bias at
the expense of increasing the cooling water flow rate.
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Figure 10: Bias fault of 1°C in the outlet temperature sensor
occurring at ¢t = 50 min.; controller set point at 368°C.

Complex fault detection

The training data is obtained by simulating the
CSTR process for 200 minutes. A further 100 obser-
vations are generated containing the 1°C permanent
bias in the outlet temperature sensor.

First, linear PCA models have been built; the per-
centage of variance explained as a function of the
number of principal components kept in the model
is given in Table 2. Based on these results and the
amount of noise in the data, up to six principal com-
ponents, which explain 96.6% of the original variance,
would need to be kept in order to have a good model.

Two GPLV models have also been built with the
200 hundred observations from the training data, Y.
By fitting the GPLV model, both an estimation of
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Table 2: Results for PCA and the GPLV model

Explained variance (%)

PCA GPLV model

Latent variables

35.6 84.8
55.3 96.0
71.4 -
83.7 -
90.5 -
96.6 -
99.3 -
100.0 -

0 ~J O T W N

the underlying latent variables, )A(, and the GP pa-
rameters, 0, are found; this then allows to determine
the GPLV model projection, \?, as given by Eq. (10).
To monitor the process, we have then built two neu-
ral network models. The first network builds the map
from Y — X while the second network takes back the
observations from the latent space into their original
dimensionality, i.e. X—Y.

140

SPE, NN projection
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Figure 11: Bias fault of 1°C in the sensor for outlet tempera-
ture. Only one latent variable.

Let us first consider the case with only one un-
derlying dimension. As shown in Table 2, this latent
variable is able to account for around 85% of the orig-
inal variance. The SPE for this example is given in
Figure 11 along with the 95% and 99% confidence lim-
its. As it can be seen, shortly after the sample 200,
the SPE starts moving pretty abruptly outside both
limits as a result of the bias fault being introduced.

A second GPLV model with two latent variables
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Figure 12: Bias fault of 1°C in the sensor for outlet tempera-
ture. Two latent variables.

has also been built; one could argue that the true di-
mensionality of this process is two, as the two latent
variables are able to explain 96% of the variation in
the original data. As before, the SPE has been cal-
culated and plotted in Figure 12. It is very obvious,
even by a visual comparison, that this latter model
is far more sensitive that the model with only one la-
tent variable. Not only the magnitude of the SPE for
the training data reduces as a result of having an im-
proved model but also the range of faulty data SPE
increases quite dramatically.

8. Conclusions

The GP latent variable methodology has already
been introduced in the field of multivariate statistical
process control by Ge and Song (2010). When pro-
jecting new observations into the GPLV space, how-
ever, their approach is prone to the potentially serious
pitfall of having to determine the global maximum of
a likelihood function which is not convex. As the di-
mensionality of the latent space becomes larger, that
problem becomes less and less trivial.

This paper offers a review of similar non-
parametric methods available in the literature. It
provides a detailed description of how to determine
the latent space parameters by using the Empirical
Bayes estimation method; it also provides references
to alternative estimation procedures available in the
literature. To deal with the non-convexity problem
of the likelihood function when projecting new ob-
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servations into the latent space, we propose the use
of two neural network models; this is in line with
previous approaches that have been successfully ap-
plied. By using a simple simulation example we show
how the proposed GPLV model can unravel compli-
cated non-linear relationships and find the underly-
ing latent variables driving the process. We have also
successfully demonstrated the method applicability
with data from highly non-linear CSTR. We expect
that this paper provides enough tools to facilitate the
use of the GPLV model and can only foresee this
methodology to keep growing as further applications
are found.



Acknowledgements

J. Serradilla would like to acknowledge the finan-
cial support throughout his PhD study from the EP-
SRC (EP/P502624/1) and BP Oil International Ltd
(GPTL/MGA/50305/3655). Additionally, thanks to
S. W. Choi for providing the CSTR model to test the
method.

Appendix A. GPLVM derivatives

Training of the GPLV model requires the max-
imization of the log-likelihood function given by
Eq. (9). The analytical derivatives of this function
with respect to the latent positions, X, and the GP
hyper-parameters, 8, are also needed for the SCG op-
timizer. Note that we refer to every element of @ as
0.

These gradients can be calculated using the chain
rule as follows

= () ()
i (5 ()]

The common derivative, i.e. the N x N gradient of
the log-likelihood with respect to the kernel matrix,
is independent of the chosen covariance function and
is given by

(arc)

0K
Hyper-parameters gradient

D ., 1.4 Tyo—1
5K, K YYTK

(A.2)

The kernel matrix K, is a function of € as shown by
Eq. (4). Let us now rewrite the covariance function,

Eq. (2), as

S

g=1

1
= p exp {—2’}/d12]}

where d?j = Z(?:l (ziqg — xjq)? is simply the squared
euclidean distance between x; and x;. Let us also
define D = (dfj), i.e. the N x N matrix of squared

euclidean distances.

Y(@iq — qu

l\.')\r—l

k(xi, xj;0) = vyexp

(A.3)
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9K,

Every ( is an NV x N matrix given as follows:

(A.4)

where I is the N-dimensional identity matrix and ®
represents the Hadamard (element-wise) product.

A further constraint in the GPLV model is that
all hyper-parameters must be positive. In order to
achieve that, it is better to reparametrize and carry
out the optimization in the log-space. That is easily
achieved combining the following equality

(atati) = (3,

0 log(6;)
with equation Eq. (A.1).

K,
00;

Latent positions gradient

Finally (gzz
zeros but the i row/column. The elements of this
row/column are given by

(

where, notationally, the subscript ¢ in the right hand-
side of the equation is included to refer only to the
celements in the i*" row/column of the gradient ma-

> is a N x N symmetric matrix of all

(Tig — 119)k(T1, )
8Ky> (Tig — w2q) (T2, ;)
87- = - .

Tig :

(zig — TNg )k (TN, i)

trix.

Furthermore, note the extra term in Eq. (9) which
is independent of the kernel matrix, 1tr(XXT). As
(% tr(XTX)) = 2X it finally follows that

(o)

Appendix B. GPLVM projection gradients

(X, 0;Y)
X

90(X,0;Y)

) x as

The first derivatives of the log-likelihood, Eq. (13),
with respect the new latent variables can be found by

applying the chain rule as
(@ @)

ol(xj;y,,X,0)
817jq

ot

)

Ok;

Ok;

9z jq




Let us first re-express the log-likelihood as

D
(w59, X,0) = —= log(s))

- (y; —9;,)"(y; — 9;)
2(33) J J J J
D 1
S | 2y _ T
9 Og(sj) 2(5]2)6]6J

where e; =y,

(o) = (3)

— ;. Therefore

1 _ _
" SR [—2K~'Ye;(s]) — e]e;j(—2K ™ 'k;)]
j
DK~ 'k, K-lYe; ele;K 'k,
= 2 + 2 - 2)2
55 5j (57)
and
( o )T DEJK™! + ejT.YTK*1 e}eijTKfl
ok, 53 (s3)
. ok;\ . .
Finally ( 8ij1 ) is the following N x 1 vector
(zjq — x19)k (21, 25)
aki]' B (:qu - xQQ)k(w% xj)
(%ch N :
(zjg — TNg)k(TN, ;)
And, as %ﬂ, (%m}ay) = x;, we finally have the gra-

dient of Eq. (14) with respect to x; as

( I )=
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