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Summary

Conditional likelihood approach is a sensible choice for a hierarchical logistic regres-

sion model or other generalized regression models with binary data. However, its heavy

computational burden limits its use, especially for the related mixed effects model. In

this paper, we use modified profile likelihood as an accurate approximation to conditional

likelihood, and then propose the use of two methods for inferences for the hierarchical

generalized regression models with mixed effects. One is based on hierarchical likelihood

and Laplace approximation method, and the other is based on Markov chain Monte Carlo

EM algorithm. The methods are applied to a meta-analysis model for trend estimation

and the model for multi-arm trials. A simulation study is conducted to illustrate the

performance of the proposed methods.

Keywords: Conditional likelihood, Hierarchical likelihood, Laplace approximation, Meta-

analysis model, MCMC-EM algorithm, Mixed effects model, Modified profile likelihood,

Multi-arm trails.
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1 Introduction

We consider a meta-analysis model combining several 2×2 tables. Suppose that a typical

2× 2 table has mt cases and mc controls, and binomial outcomes

Zti ∼ Bin(mti, πti); Zci ∼ Bin(mci, πci); i = 1, . . . , K.

The log odds ratio for this study is

ηi = log
(

πti

1− πti

· 1− πci

πci

)
,

which is the parameter of a main interest. When mti and mci are sufficiently large and

when πti and πci are not very close to zero or one, we can use normal model based

on empirical logistic transformations (Cox and Snell, 1989); otherwise, we should use

the above exact binomial distributions. Unconditional approach is based on the above

binomial distribution with

log
(

πci

1− πci

)
= αi, log

(
πti

1− πti

)
= αi + ηi,

where αi stands for trial effects. The model with ηi = η is called fixed effect model. When

mti and mci are small and K is large, the estimation based on unconditional likelihood

approach may be biased (Lubin, 1981 and Cox and Snell, 1989). For example, the un-

conditional maximum likelihood estimator η̂ is close to 2η (Cox and Snell, 1989, p59 and

p103) for matched pairs, having mti = mci = 1. The conditional likelihood approach

gives a better estimator, but involving heavy computation (see discussion in Liao, 1999

and Vollset, Hirji and Elashoff, 1991). Therefore, a development of an efficient computa-

tional method for conditional approach is essential. Among many others, Davison (1988)

proposed a method based on saddlepoint approximation (see also Barndorff-Nielsen and
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Cox, 1979); Sartori (2003) used modified profile likelihoods as an accurate approximations

to conditional likelihood; and Shi and Copas (2002) proposed a method based on Markov

chain Monte Carlo EM (MCMC-EM) algorithm.

This paper is concerned with the conditional inference in mixed effects models with

binary data. The difficulty here is that the conditional likelihood involves an intractable

integration which the integrand is the conditional density function for binomial distribu-

tion. The difficulty increases as the dimensionality of integration increases as for example

the meta-analysis models for multi-arm trials we consider in Section 4. Our basic idea is to

approximate the conditional density by modified profile likelihood and then use Laplace

approximation to the marginal likelihood. The other method is to use a MCMC-EM

algorithm. Section 2 describes conditional inference for a logistic regression model with

random effects and its accurate approximation. Sections 3 and 4 apply the proposed

methods to meta-analysis model for trend estimation and the model for multi-arm trials.

Some simulation study results are reported in Section 5, and some discussion is given in

Section 6.

2 Mixed Effects Models with Binary Data

2.1 Conditional Inference

We now consider a hierarchical logistic regression model. Suppose that there are several

sets of data, in which the ith data set has (ni + 1) treatment groups, and has zij cases

out of mij subjects in jth treatment group for j = 0, 1, . . . , ni, where j = 0 stands for the
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base-line control group. The binomial outcomes have the distribution:

zij ∼ Bin(mij, πij), j = 0, 1, . . . , ni. (1)

The related log-odds is defined as

ηij = log

(
πij

1− πij

)
(2)

for j = 0, 1, · · · , ni. The ith set of data can be the data collected in ith study in meta-

analysis, the data collected in the ith centre in multi-centre analysis or the data collected in

ith subject in trend estimation. If the jth treatment group is associated with a univariate

covariate xij (e.g. the dose level in trend estimaton) for ith set of data (usually xi0 = 0),

we can define a logistic regression model by

ηij = αi + βixij, j = 0, 1, . . . , ni (3)

where βi measures the association between the log-odds ratio and xij, the effect of covariate

such as dose level in trend estimation which is the parameter of interest, and αi is a

nuisance parameter.

When mij is relatively large, we can use a normal approximation for empirical log-

odds ratio (Shi and Copas, 2004). However, such a normal approximation may not be

appropriate when some mij is small, while K is large, so that we may use an exact likeli-

hood. There are problems to use an unconditional approach for the models. If αi is fixed,

we have not got enough data in each trial to estimate αi; we face the notorious problem

of infinitely many nuisance parameters that leads to inconsistent estimates (Andersen,

1970). An alternative way is to assume a random-effect model for αi’s:

αi ∼ H(·, θα).
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However, it is often not feasible to find such a model, for example, when the data includes

both retrospective and prospective trials in meta analysis. Even if we can assume a

distribution, the inference on parameters of interest could be sensitive to the selection of

the distributional assumption about αi.

Following the above discussion and the discussion given in Section 1, a sensible way

is to use a conditional approach to eliminate nuisance parameter αi. A direct way is to

consider the conditional likelihood given Ti = Zi0+Zi1+· · ·+Zini
= ti = zi0+zi1+· · ·+zini

:

f(zi|Ti = ti; βi) = p(Zi = zi|Zi0 + Zi1 + · · ·+ Zini
= ti)

=

∏ni
j=0

(
mij

zij

)
exp(βizijxij)

∑
ui∈Ui

(
mi0

ti − ui1 − · · · − uini

)∏ni
j=1

(
mij

uij

)
exp(βiuijxij)

, (4)

where ui = (ui1, · · · , uini
)t, and

Ui = {ui : 0 ≤ uij ≤ mij, and ti −mi0 ≤ ui1 + · · ·+ uini
≤ ti}.

By the conditional approach the nuisance parameters αi are eliminated. However, the

denominator, which is proportional to P(Ti = ti), is hard to enumerate unless ni is

small. Furthermore, the combination term

(
mij

uij

)
cannot be computed with ordinary

statistical packages when mij is moderately large (see for example Vollset, Hirji and

Elashoff, 1991). Thus, in this paper we first study how to approximate (4) accurately to

implement conditional inferences.

2.2 Modified profile likelihood

Barndorff-Nielsen and Cox (1994, p288) proposed using the modified profile likelihood to

approximate the conditional likelihood for 2×2 tables. It reduces the biases of estimators
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from profile likelihood in general.

Consider the parametric model for data z, with parameter θ=(β, α) and log-likelihood

`(β, α) = `(β, α; z) = log f(z; β, α).

When the data z can be replaced in the likelihood by (β̂, α̂, A), where A is ancillary

statistic, so that

`(β, α; β̂, α̂, A)

is proportional to `(β, α; z).

First consider the profile likelihood,

`P (β) = `(β, α̂β),

where α̂β is the maximum likelihood (ML) estimator of α when the value of β is treated as

fixed. However, this profile likelihood could give biased estimation, so that the modified

profile likelihood below can be used

`M(β) = `P (β) + M(β)

where

M(β) = − log |`α;α̂(β, α̂β; β̂, α̂, A)|+ 1

2
log |jαα(β, α̂β; β̂, α̂, A)|,

| · | is determinant,

`α;α̂ = ∂2`(β, α; β̂, α̂, A)/∂α∂α̂t

is the matrix of mixed second order derivatives and jαα = −∂2`(β, α; β̂, α̂, A)/∂α∂αt is the

observed information matrix with respect to α (Barndorff-Nielsen and Cox (1994)). Under

appropriate regularity conditions, the modified profile likelihood `M(β) approximates
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both conditional and marginal likelihood, when they exist (Severini, 2000, Section 9.3.2

and 9.3.3). Furthermore, the modified profile likelihood is quite effective even when

neither a conditional nor marginal likelihood exists, since the resulting estimating equation

is approximately unbiased (Pace and Salvan, 1997, Section 11.6). The modified profile

likelihoods is invariant with respect to reparametrizations of α, while the profile likelihood

is not.

Sartori (2003) gives a theoretical comparison of the asymptotic properties of profile

and modified profile likelihoods in stratified model, considering a setting in which both the

number of strata, K, and the average stratum sample size, n̄ = n/K, increase to infinity.

In particular, a sufficient condition for the normal approximation to the distribution of

usual likelihood based statistics is K = o(n̄) = o(n1/2) for the profile likelihood, and K =

o(n̄3) = o(n3/4) for the modified profile likelihood. Moreover, even when the condition

does not hold, the modified profile likelihood gives a remarkable improvement over profile

likelihood in terms of bias of estimates. The simulation study in Sartori (2003) showed

that the approximation of conditional likelihood by using modified profile likelihood is

accurate even if m is very small comparing to K for binary data.

Following Severini (2000) we can show (the proof is given in Appendix) that in the

logistic regression models (1) to (3), i.e.,

ηij = log(
πij

1− πij

) = αi + βixij,

the term log |`αi;α̂i
(βi, α̂βi

; β̂i, α̂i, Ai)| depends on data only, where α̂βi
is the ML estimator

of αi when the value of βi is treated as fixed, so that we have an explicit form of modified
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profile likelihood; up to a constant,

`M
i (βi) = `P

i (βi) +
1

2
log |jαiαi

(βi, α̂βi
; β̂i, α̂i, Ai)| (5)

=
∑
j

{zij log(
π̂ij

1− π̂ij

) + mij log(1− π̂ij)}+
1

2
log

∑
j

{mijπ̂ij(1− π̂ij)}, (6)

where π̂ij is given by 1/(1 + exp(−α̂βi
− βixij)). In this paper we show that `M

i (βi) is an

accurate approximation for f(zi|Ti = ti; βi) in (4), but have no computational difficult.

2.3 Conditional likelihood for a random effect model

2.3.1 Laplace approximation

Due to the nature of the way collecting data in meta-analysis and other fields, we usually

need to allow for heterogeneity among different data sets. For this a random effect model

is often proposed to use; for example

βi ∼ N(µβ, τ 2). (7)

The full conditional likelihood for unknown parameters (µβ, τ 2) is given by

l(µβ, τ 2) =
K∑

i=1

log
∫

β
f(zi|Ti = ti; β)φ(β; µβ, τ 2)dβ (8)

where f(zi|Ti = ti; β) is given by (4), and φ(β; µβ, τ 2) is the density function of the

normal distribution N(µβ, τ 2). However, an explicit form of this is not often feasible,

so that we may either use a numerical method such as Gauss-Hermite quadratures or

the Laplace approximation. Tierney and Kadane (1986) showed that Laplace method is

often sufficiently accurate and easy to obtain. For binary generalized linear mixed models

(GLMMs), Noh and Lee (2007) showed that Laplace approximation is accurate enough

in practice. It can be used even when the dimensionality of integral is large, while Gauss-
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Hermite quadratures cannot. In this paper we use the Laplace approximation following

Lee, Nelder and Pawitan (2006,Ch.4). Gauss-Hermite quadratures can be used when the

dimensionality of integral is not large.

In this paper, we propose the following h-likelihood inferential procedure.

• Define the h-likelihood using the modified-profile likelihood

hM =
∑

i

hM
i

where hM
i = `M

i (βi) + log φ(βi; µβ, τ 2), `M
i (βi) is the modified profile likelihood (5).

• For estimating mean parameter µβ, use the Laplace approximation pβ(hM) to the

marginal likelihood

pβ(hM) = hM(β̂)− 1

2
log

∣∣∣(−∂2hM/∂β∂βt)/(2π)
∣∣∣ |β=β̂,

where β̂ =argmaxβh(β)

• For estimating dispersion parameter τ 2, use pδ(h
M) with δ = (β, µβ)

Lee and Nelder (1996) proposed the use of h-likelihood for inferences from hierarchi-

cal generalized linear models. They define pδ(h) as an approximation to the restricted

likelihood (Lee, Nelder and Pawitan, 2006, Section 5.2.2). In this paper we show the h-

likelihood approach gives practically useful inferences for the meta analysis, by comparing

MCMC-EM algorithm of Shi and Copas (2002).

2.3.2 Markov chain Monte Carlo EM algorithm

Shi and Copas (2002) proposed the use of MCMC-EM algorithm for meta analysis. The

EM algorithm arises because the true value of βi can be thought of as a missing observa-
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tion, and the MCMC algorithm arises because the E-step of the EM algorithm involves

an integral with respect to the distribution of βi. They used the Metropolis-Hastings

algorithm to generate a Markov chain of βi in the E-step of every iteration, such that its

equilibrium distribution is the conditional distribution of βi given the current estimates

of unknown parameters.

We now extend the MCMC-EM algorithm to the above random effect model by using

conditional likelihood approach. Because of difficulty in computing the exact conditional

likelihood we propose to use the modified profile likelihood as follows:

• E-step: In the (r + 1)th iteration, we calculate the conditional expectation

E(
∑

i

{`M
i (βi) + log φ(βi; µβ, τ 2)}|z, µ

(r)
β , τ 2(r)

)

In this and subsequent expressions, expectations are also conditional on Ti =
∑

j zij =

ti. As there is no analytical form for the above equation, we use MCMC algorithm

to calculate it.

The Metropolis-Hastings Algorithm is used to generate a random variate βi from

its conditional distribution.

p (βi|zi, Ti = ti) ∝ exp(`M
i (βi))φ(βi; µβ, τ 2).

Suppose that βa
i is the random variate generated at the ath iteration. Then at the

(a + 1)th iteration we generate a random number βi from an aperiodic recurrent

transition density q(βa
i , βi) and accept it as βa+1

i with acceptance probability

min

(
1,

p(βi|zi, Ti = ti)q(βi, β
a
i )

p(βa
i |zi, Ti = ti)q(βa

i , βi)

)
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• M-step: We get the explicit formula for µβ, τ 2.

µ̂β =
1

K

K∑
i=1

E(βi|zi, Ti = ti)

τ̂ 2 =
1

K

K∑
i=1

E((βi − β̄)2|zi, Ti = ti).

Let {βa
i , a = 1, . . . , A} are the random variates generated in the MCMC E-step, and

let

µ̂a
β =

1

K

K∑
i=1

βa
i , v̂a =

1

K

K∑
i=1

(βa
i − µ̂a

β)2

then µβ and τ 2 can be updated by the sample means of µ̂a
β’s and v̂a’s, respectively.

Bellio and Sartori (2003) showed that the modified profile likelihood gives an accurate

approximation to the conditional likelihood when mij ≥ 5. Furthermore, it is numerically

much faster than by using the exact density because it does not have combination terms.

We discussed conditional inference for mixed effects models with binary data in this

section by using h-likelihood Laplace approximation method and MCMC-EM algorithm.

Although the derivation is for one dimensional random effect only (i.e., β is univariate),

there is no difficult to extend the methods to the model with high-dimensional random

effects, see for example the meta-analysis model for multi-arm trials discussed in Section

4.

3 Meta-analysis and trend estimation

3.1 Conditional inference for meta-analysis with selection bias

We now apply the proposed approaches to meta-analysis and trend estimation with se-

lection bias (see the details in Shi and Copas, 2004). The meta-analysis model is given in
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(1) to (3), where the ith data set is the data collected in the ith study. The parameter βi

measures the association between the log-odds ratio and the dose level xij. Shi and Co-

pas (2004) used a normal approximated model based on empirical logistic transformation

which is not suitable for small mij as discussed in Section 1.

To address the problem of publication bias, a selection model is defined (see Shi and

Copas, 2002 and 2004). Let β̂ be the estimate of slope in an individual study and s is its

standard error and S be the event that a study is selected. To model the possibility that

the selection is biased in favour of larger studies (with smaller value of si), and in favour

of studies having a more positive outcome (with larger value of β̂i), suppose that a study

reporting estimate β̂i and standard error si is selected with probability

q(zi|βi) = P (S i|β̂i, si, βi) = Φ

(
a + b/si + ρ(β̂i − βi)/si

(1− ρ2)1/2

)
, (9)

where b ≥ 0, ρ ≥ 0, Φ is the cumulate distribution function of the standard normal

distribution. Copas and Shi (2000) argued that a and b are not estimable without making

strong assumptions. They proposed a sensitivity analysis instead: give a range of dif-

ferent values of (a, b) and then monitor how sensitively the estimate (µβ, τ, ρ) and other

quantities depend on the particular choice of these selection parameters.

For the meta-analysis of K studies, the log-likelihood is for those selected studies, and

it is therefore given by

`(Z; θ) =
K∑

i=1

log{p(zi|Ti = ti,S i, θ)}

=
K∑

i=1

log

{
p(zi,S i|Ti = ti, θ)

p(S i)

}

=
K∑

i=1

{log p(zi,S i|C, θ)− log p(S i)}
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=
K∑

i=1

{
log

∫
βi

f(zi|Ti = ti; βi)q(zi|βi)φ(βi : µβ, τ 2)dβi − log p(S i)
}

(10)

'
K∑

i=1

{
log

∫
βi

exp(`M
i (βi))q(zi|βi)φ(βi : µβ, τ 2)dβi − log p(S i)

}
(11)

We need to consider the problems similar to (8), but the integrand is more complicated

than the one in (8). In (11), log p(S i) could be ignored.

Here we continue to use the modified profile likelihood `M
i (βi) as an approximation to

log f(zi|Ti = ti; βi) in (10). Even though the model become more complicated due to the

inclusion of selection model, the implementation algorithm remains essentially the same.

The proposed h-likelihood inferential procedure is as follows.

• Define the (modified) h-likelihood

hM =
∑

i

hM
i

where hM
i = `M

i (βi) + log q(zi|βi) + log φ(βi; µβ, τ 2).

• For estimating mean parameter µβ, use the Laplace approximation pβ(hM) to the

marginal likelihood

pβ(hM) = hM(β̂)− 1

2
log

∣∣∣(−∂2hM/∂β∂βt)/(2π)
∣∣∣ |β=β̂,

where β̂ =argmaxβh(β)

• For estimating dispersion parameter τ 2 and selection parameter ρ, use pδ(h
M) with

δ = (β, µβ)
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3.2 Trend estimation for alcohol use and breast cancer

To study the association between breast cancer and alcohol consumption, a number of

epidemiologic investigations have been conducted. Table 1 reports the results for such

a study (Hiatt and Bawol, 1984). In this follow-up study, each row is correspond to an

exposure band, including the base-line group with zero dose. The empirical odds ratio

reported in the last column gives an estimate of the odds of being a case versus being a

control. We apply the model defined in Section 2.1 but for this individual data-set only,

and obtain the estimates α̂1 = −4.6117 and β̂1 = 0.0092. The value of β measures the

relation between the alcohol consumption and the risk of breast cancer. The estimate

β̂1 = 0.0092 implies that one extra drink daily (about 13 gram of alcohol) increases risk

by about 12 per cent.

There are total 14 studies used in a meta-analysis. Since some of the studies are case-

control and some are follow-up, the values of αi are quite different, and it is impossible

to assume any distribution for αi. The numerical study shows that the calculation of the

estimates of αi are very unstable by using unconditional approach and the calculation

of the estimate β is also not reliable. Both of them are very sensitive to the choice of

starting values in the iteration process.

In the contrast, there is only three parameters, θ = (µβ, τ 2, ρ), are involved in the

model by using conditional approach. The calculation of the estimates are very stable,

and converges very fast. As an illustration, we consider the models with the following

three typical pairs of (a, b) in sensitivity analysis (see the details in Shi and Copas, 2004):

(0.9292, 0.0017), (−1.4061, 0.0073), and (−2.4769, 0.0056).
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We used both the h-likelihood approach based upon Laplace approximation and MCMC-

EM algorithm discussed in the previous section. The results are given in Table 2. Both

methods give similar analysis. MCMC-EM is computationally intensive, and choice of

sample size and stopping rule are rather subjective, while the h-likelihood procedure is

computationally straightforward, using Newton-Rhapson method. For the case without

selection bias, we observed that the h-likelihood procedure takes 6 seconds, while MCMC-

EM algorithm takes 186 seconds.

4 Meta-analysis for multi-arm trials

4.1 Conditional likelihood

Consider a model for multi-arm trials of Lu and Ades (2004)

zij ∼ Bin(mij, πij), (12)

where i = 1, . . . , K and j = 1, . . . , J . Here, we assume that there are J treatments

involved in the trials and there are K studies in a meta-analysis. Choosing treatment 1

as the baseline, and θij as the treatment effect of j-th treatment relative to the baseline,

we can define a random effect model for multi-arm trials as follows

logit(πi1) = µi − θi2/J − θi3/J − . . .− θiJ/J

logit(πi2) = µi + (J − 1)θi2/J − θi3/J − . . .− θiJ/J (13)

· · ·

logit(πiJ) = µi − θi2/J − θi3/J − . . . + (J − 1)θiJ/J
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where logit(π) = log π/(1− π), and

θi = (θi2, . . . , θiJ) ∼ N(η,Σ), (14)

where η = (η2, . . . , ηJ) are (J − 1)-dimensional overall log-odds ratio for j-th treatment

(j = 2, . . . , J) relative to the baseline (treatment 1), and Σ is the related covariance

matrix. Lu and Ades (2004) suggested two special forms, which are

Σ = σ2


1 ρ · ρ
ρ 1 · ρ
...

...
. . .

...
ρ ρ · · · 1

 (15)

or

Σ =


σ2

2 ρσ2σ3 · ρσ2σJ

ρσ2σ3 σ2
3 · ρσ3σJ

...
...

. . .
...

ρσ2σJ ρσ3σJ · · · σ2
J

 (16)

with ρ = 1/2. Here, σ2 or {σj, j = 2, . . . , J} are unknown parameters. Let

X =



−1/J −1/J · −1/J
(J − 1)/J −1/J · −1/J
−1/J (J − 1)/J · −1/J

...
...

. . .
...

−1/J −1/J · (J − 1)/J

 =


XT

1

XT
2

XT
3

· · ·
XT

J

 ,

the model (13) can be rewritten as

ηij = logit(πij) = µi + XT
j θi. (17)

By the same reasons discussed before, we use a conditional likelihood to eliminate the

nuisance parameters {µi, i = 1, . . . , K} in the above equations.

In meta-analysis, some studies may include only part of those J treatments. Let Ii

be the indices of the treatments involved in the i-th study. Thus the data involved in the

i-th study is

Di = {(zij, mij), j ∈ Ii}.
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The conditional likelihood for i-th study is therefore given by

f(Di|
∑
j∈Ii

zij = ti, θi) =

∏
j∈Ii

(
mij

zij

)
exp(zijX

T
j θi)

∑
u∈Uij

∏
j∈Ii

(
mij

uj

)
exp(ujX

T
j θi)

, (18)

where u = (u1, · · · , uJ)′, and

Uij = {u : 0 ≤ uj ≤ mij, and
∑
j∈Ii

uj = ti}.

The full conditional likelihood for unknown parameters involved in (η,Σ) is

l(η,Σ) =
K∑

i=1

log
∫
θi

f(Di|
∑
j∈Ii

zij = ti, θi)φ(θi; η,Σ)dθi (19)

'
K∑

i=1

log
∫
θi

exp(`M
i (θi))φ(θi; η,Σ)dθi, (20)

where `M
i (θi) is the modified profile likelihood (6), approximating log f(Di|

∑
j∈Ii

zij),

φ(·; η,Σ) is the pdf of the multivariate normal distribution (14) with covariance matrix

(15) or (16).

For the analysis of the data in multi-arm trials the equation (8) involves a (J − 1)-

dimensional integration. With the numerical method such as Gaussian-Hermite quadra-

tures methods the calculation becomes much more difficult as J increases. In the h-

likelihood approach, the implementation algorithm remains essentially the same. The

proposed h-likelihood inferential procedure is as follows.

• Define the (modified) h-likelihood

hM =
∑

i

hM
i

where hM
i = `M

i (θi) + log φ(θi; η,Σ).

• For estimating mean parameter η, use the Laplace approximation pθ(hM) to the
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marginal likelihood where η = (η2, · · · , ηK)

pθ(hM) = hM(θ̂)− 1

2
log

∣∣∣(−∂2hM/∂θ∂θt)/(2π)
∣∣∣ |

θ=
ˆθ
,

where θ̂ =argmaxθhM(θ)

• For estimating covariance parameters involved in Σ , use pδ(h
M) with δ = (θ, η)

4.2 Aspirin for preventing vascular event

In total there are 39 randomised trials investigating the use of medium dose aspirin and/or

high dose aspirin in the prevention of vascular events in high risk patients, making the

comparison between three treatments High dose(500-1500 mg/day) aspirin(A), Medium

dose(75-325 mg/day) aspirin(B) and control (C), where 3 trials compare A and B, 19

trials compare A and C, and 17 trials compare B and C (see the details in Song, et al.,

2003). The data are given in Table 3.

To use the model given in the previous section, the control group is treated as treat-

ment 1, and the high dose (A) and medium dose (B) are treated as treatment 2 and 3

respectively. The first number in the table is zij and the second number is mij in (12).

The first three studies include treatments 2 and 3 only, studies 4 to 22 include treatment

1 and 2 only while studies 23 to 39 include treatment 1 and 3 only. Thus

Ii =


{2, 3} for i = 1, 2, 3
{1, 2} for i = 4, . . . , 22
{1, 3} for i = 23, . . . , 39

The estimates by using conditional approach are given in Table 4. The estimates by both

methods are quite close. Due to the slow convergence of Metropolis-Hastings algorithm,

the computational burden for MCMC-EM algorithm is much heavier than the h-likelihood
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Laplace approximation method.

5 Simulation Study

We conduct a simulation study in this section to study the performance of the proposed

methods and compare the conditional and unconditional approaches. Numerical studies,

based upon 100 replications of simulated data, are presented in Table 5. We only consider

the hierarchical likelihood approach based on Laplace approximation because MCMC-

EM method is computationally too intensive. First we consider the single random effect

problem of alcohol use and breast cancer data in Section 3.2. Simulated data are generated

from the following logistic model,

log(πij/(1− πij)) = αi + βixij

where αi and βi are sampled from models

M1 : αi ∼ N(−2, 12) and βi ∼ N(µβ, τ 2)

M2 : αi ∼ 0.6 ∗N(−2, 12) + 0.4 ∗N(1, 12) and βi ∼ N(µβ, τ 2).

We use the same covariates and binomial denominators of the original dataset. Three

pairs of values for (µβ, τ 2) are considered (see the second column in Table 5). In each

replication, we generated data based on the above real values of the parameters, and then

calculate the estimates by using conditional likelihood approach based on h-likelihood

Laplace approximation. We report the mean and standard error for the estimates of

(µβ, τ 2) in Table 5, in which µ̂β and its standard error are defined by
∑

i µ̂
i
β/100 and√∑

i(µ̂
i
β − µ̂β)2/(99× 100) respectively based on 100 replications. Note that µ̂i

β is the
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estimate of µβ in the ith replication and µ̂β is the sample mean of µ̂i
β’s. The values of τ̂ 2

and its standard error are calculated similarly. We used R in the simulation study. Table

5 shows that the proposed method give very accurate results for both simulation models

M1 and M2.

As comparison, we also used the unconditional likelihood approach. The results are

given in Table 6. This approach has many nuisance parameters αi, which make the

convergence to be slow, having occasional divergences (see the numbers listed in the last

column). Comparing with the conditional approach, although the mean of µ̂β’s by using

unconditional approach is also quite close to the true value, but the estimates is much

more variable. Because of increase in the number of nuisance parameters the dispersion

parameter τ 2 is often under-estimated.

Secondly, we consider the multi-dimensional random effects problem of Aspirin for

preventing vascular event in Section 4.2. We did not consider the unconditional approach

because the lager number of divergences. Simulated data are generated using the logistic

model,

log(πij/(1− πij)) = µi + XT
j θi

where µi and θi are from models

M3 : µi ∼ N(−2, 0.12) and θi ∼ BV N((η2, η3),Σ)

M4 : µi ∼ 0.6 ∗N(−2, 0.12) + 0.4 ∗N(1, 0.12) and θi ∼ BV N((η2, η3),Σ)

and

Σ = τ 2

[
1 1/2

1/2 1

]
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and BV N(0,Σ) means bivariate normal distribution with mean 0, covariance Σ. We also

use the same covariates and binomial denominators of the original dataset. For the above

simulation models, we conducted a simulation study by using conditional approach with

h-likelihood Laplace approximation. The simulation results are reported in Table 7. As

before, the true values of the parameters are given in the second column, and the mean

and standard error of the related estimates are given in the other columns. The proposed

method gives very accurate results for both simulation models M3 and M4.

6 Discussion

We discussed a hierarchical logistic regression model with mixed effects for binary data

in this paper. Conditional likelihood approach is a sensible choice to eliminate the many

nuisance parameters and give consistent estimates for the parameters of interest. However,

as we have discussed, the heavy computational burden limits the use of the approach. We

proposed h-likelihood Laplace approximation method and MCMC-EM algorithm in this

paper. Both methods give accurate results. The computation for the former is very

straightforward, although the MCMC-EM method is still quite computational intensive

especially for the model with multi-dimensional random effects.

We applied the methods to two important models. One is the meta-analysis model

with publication bias for trend estimation. The inference based on conditional likelihood

and the exact binomial distribution is difficult, and the inference is more intractable for

the model with publication bias. However, both proposed methods perform very well and

are computationally efficient. The second application is for the model with multi-arm

trials. This is the model having multi-dimensional random effects, and the computa-
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tion based on conditional likelihood is extremely intractable. The h-likelihood Laplace

approximation method still works very efficiently, even for the model with large dimen-

sional random effects. There is rich literature in medical science and other areas on using

similar hierarchical or multi-level mixed effects models. We use those two typical exam-

ples to demonstrate how the two proposed methods work based on conditional likelihood

approach.

Although the derivation given in this paper is for hierarchical logistic regression model

only, there is no major difficult to extend the proposed methods to other types of gener-

alized linear regression models with mixed effects.

Appendix: Proof of equation (5)

Since Zij|βi ∼ Bin(mij, πij) where log(πij/(1 − πij)) = αi + βixij, j = 0, 1, ..., ni. The

log likelihood `i(βi, αi; β̂i, α̂i, Ai) in Section 2.2 is

∑
j

[log

(
mij

zij

)
+ zij(αi + βixij) + mij log(1− πij)]

where zij = zij(β̂i, α̂i, Ai). Let β̂i and α̂i be parameter estimates, only depending upon

the data. Note that

∂`i(βi, αi; β̂i, α̂i, Ai)/∂αi =
∑
j

(zij −mijπij),

so that

`αi;α̂i
(βi, α̂βi

; β̂i, α̂i, Ai) = ∂2`i(βi, αi; β̂i, α̂i, Ai)/∂αi∂α̂i|αi=α̂βi

depends on the data only because ∂
∑

j(mijπij)/∂α̂i = 0. Thus, we can ignore `αi;α̂i
(βi, α̂βi

; β̂i, α̂i, Ai)

to give the modified profile likelihood (5).
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Table 1. Follow-up data on alcohol use and breast cancer
Alcohol Assigned dose No. of No. of Empirical
(g/day) x cases controls OR

0 0 252 24089 1.0
< 26 6.8 505 49432 1.024
39-65 46.34 68 3892 1.670
> 78 83.6 13 760 1.635

Table2. . Result of Meta analysis for each (a, b)
Methods (a, b) µβ (s.e.) τ 2 (s.e.) ρ (s.e.)

H1 (0.9292, 0.0017) 0.009702 (0.000968) 0.00001311 (0.000006383) 0.9900 ( fixed3 )
EM2 (0.9292, 0.0017) 0.009211 (0.001135) 0.00001720 (0.000006409) 0.9792 (0.0430)
H (−1.4061, 0.0073) 0.008179 (0.001084) 0.00001646 (0.000007531) 0.6827 (0.2560)

EM (−1.4061, 0.0073) 0.007854 (0.001080) 0.00001641 (0.000006136) 0.7158 (0.1642)
H (−2.4769, 0.0056) 0.006235 (0.001080) 0.00001634 (0.000007565) 0.5284 (0.1376)

EM (−2.4769, 0.0056) 0.005638 (0.001158) 0.00001845 (0.000007192) 0.6093 (0.1064)
H without assuming 0.009965 (0.001030) 0.00001486 (0.000007289)

EM selection bias 0.009890 (0.001031) 0.00001495 (0.000006083)

1. H means hierarchical likelihood approach based on Laplace approximation.
2. EM means MCMC-EM algorithm.
3. A value of ρ close to 1 is not realistic because it implies that accepting a study for review is

then simply a matter of comparing the empirical log odds with a fixed threshold. Following
Shi and Copas (2002), we assume ρ ≤ 0.99.
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Table 3. Randomized trials of Aspirin data
Study number Number of patients

High dose(A) Medium dose(B) Control(C)
event/total event/total event/total

1 168/815 174/806
2 18/155 18/154
3 9/242 9/253
4 2/63 6/69
5 6/243 14/236
6 375/1856 406/1855
7 129/847 186/878
8 76/758 102/771
9 379/2267 411/2257
10 23/101 27/102
11 6/75 10/73
12 1/71 5/77
13 26/162 35/157
14 33/317 45/309
15 65/672 106/668
16 2/30 5/30
17 59/253 55/252
18 5/92 6/84
19 4/42 2/40
20 1/148 3/150
21 0/357 3/357
22 5/44 5/44
23 21/150 21/151
24 163/676 193/684
25 46/474 85/471
26 111/1009 159/1026
27 33/336 34/336
28 12/50 18/50
29 2/29 4/31
30 915/8587 1236/8600
31 1/19 1/25
32 33/313 46/306
33 5/28 1/28
34 57/615 76/624
35 124/404 127/378
36 1/26 4/24
37 45/661 75/677
38 49/552 49/568
39 5/37 5/33
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Table 4. Result of meta-analysis with multi-arm trials

Methods η2 (s.e.) η3 (s.e.) τ 2 (s.e.)
H -0.2674 (0.01411) -0.2956 (0.01411) 0.007766 (0.002615)

EM -0.2585 (0.01218) -0.2745 (0.01216) 0.005760 (0.001289)

Table 5. Simulation study: conditional analysis for single-arm trial
α (µβ, τ 2) µ̂β (s.e.) τ̂ 2 (s.e.)

M1 (0.01, 0.000015) 0.01003 (0.00005976) 0.00001448 (0.0000004075)
(0.05, 0.000015) 0.05005 (0.00007253) 0.00001384 (0.0000006807)
(0.01, 0.000050) 0.009953 (0.0001828) 0.00004678 (0.000001992)

M2 (0.01, 0.000015) 0.01001 (0.00007797) 0.00001482 (0.0000007806)
(0.05, 0.000015) 0.05008 (0.00007306) 0.00001386 (0.0000006145)
(0.01, 0.000050) 0.01024 (0.0001636) 0.00004615 (0.000001901)

Table 6. Simulation study: unconditional analysis for single-arm trial
α (µβ, τ 2) µ̂β (s.e.) τ̂ 2 (s.e.) # of divergences

M1 (0.01, 0.000015) 0.009906 (0.0001425) 0.000008991 (0.0000009974) 3
(0.05, 0.000015) 0.05003 (0.0001457) 0.000008375 (0.0000008892) 7
(0.01, 0.000050) 0.009962 (0.0002679) 0.00003907 (0.000002104) 2

M2 (0.01, 0.000015) 0.01070 (0.0001503) 0.000009327(0.000009057) 6
(0.05, 0.000015) 0.05010 (0.0001462) 0.000008531 (0.0000008992) 8
(0.01, 0.000050) 0.01027 (0.0002318) 0.00003327(0.000002057) 6

Table 7. Simulation study: meta-analysis with multi-arm trials
(θ2, θ3, τ

2) θ2 (s.e.) θ3 (s.e.) τ 2 (s.e.)
M3 (−0.26,−0.29, 0.01) -0.2629 (0.004522) -0.2884 (0.004437) 0.008378 (0.0009477)
M4 (−0.26,−0.29, 0.01) -0.2685 (0.004183) -0.2860 (0.004698) 0.008577 (0.0009514)
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