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Abstract

Shi et al. (2006) proposed a Gaussian process functional regression (GPFR)

model to model functional response curves with a set of functional covariates.

Two main problems are addressed by this method: modelling nonlinear and

nonparametric regression relationship and modelling covariance structure and

mean structure simultaneously. The method gives very good results for curve

fitting and prediction but side-steps the problem of heterogeneity. In this paper

we present a new method for modelling functional data with ‘spatially’ indexed

data, i.e., the heterogeneity is dependent on factors such as region and individual

patient’s information. For data collected from different sources, we assume that

the data corresponding to each curve (or batch) follows a Gaussian process func-

tional regression model as a lower-level model, and introduce an allocation model
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for the latent indicator variables as a higher-level model. This higher-level model

is dependent on the information related to each batch. This method takes ad-

vantage of both GPFR and mixture models and therefore improves the accuracy

of predictions. The mixture model has also been used for curve clustering, but

focusing on the problem of clustering functional relationships between response

curve and covariates. The model is examined on simulated data and real data.

Key words: Curve clustering, Curve prediction, Functional data analysis,

Gaussian process, Gaussian process functional regression model, allocation model,

batch data

1 Introduction

Shi et al. (2006) proposed a Gaussian process functional regression (GPFR) model

for modelling functional response curves in terms of a set of functional covariates.

Their methods have two main contributions: modelling nonlinear and nonparametric

regression relationship and modelling covariance structure and mean structure simul-

taneously. In Figure 1(a), the mean curve is shown as the solid line. The dotted line

is the curve with mean plus independent random errors, while the dashed line is the

curve with dependent errors. In practice, many data-sets are similar to the dashed line,

having common mean structures but with dependent errors, for example the curves in

dark colour as shown in Figure 1(b). Certainly, if we model the mean structure only,

we can only model the solid line in Figure 1(a), which is systematically different from

the dashed line – the real curve. It is therefore better to model both the mean and

covariance structure for such data. If the curve depends on time or a one-dimensional
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covariate t, Rice and Silverman (1991) defined a stochastic process model. Suppose

that there are M curves, with the m-th curve defined as

ym(t) = µm(t) + τm(t), for m = 1, . . . ,M, (1)

where µm(t) = E(ym(t)) and τm(t) is a stochastic process with zero mean and kernel

covariance function C(t, t′) = Cov(y(t), y(t′)). Shi et al. (2006) extended the idea to

deal with a functional regression problem involving a number of functional covariates

x = (x1, . . . , xQ)′ (the dimension Q of x is usually quite large):

ym(t,x) = µm(t) + τm(x), (2)

where t is time or some other one-dimensional temporal or spatial covariate. In many

applications, the response curve ym depends on t as well as on other covariates x. In

model (2), the mean structure is modelled by a linear functional regression model and

the covariance structure is modelled by a Gaussian process regression model:

µm(t) = um
′β(t), and τm(x) ∼ GP (x; θ), (3)

where the mean structure model depends on t and some non-functional p-dimensional

covariate um = (um1, . . . , ump)
′. The regression relationship between functional re-

sponse y and the functional covariates x is mainly modelled by the covariance structure

through a nonparametric Gaussian process regression model.

The main purpose of this paper is to extend the GPFR model to functional cluster-

ing curves or ‘spatially’ indexed data, which may be collected from different sources.

The heterogeneity is dependent on factors such as region and subject. In our para-

plegia project (see the details in Section 3), data are collected from each standing-up

from different patients (we will refer to all the data collected in each standing-up as
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a batch). The data in each batch include both the response curve (the trajectory of

the patient’s body centre of mass, which can only be observed in a lab environment)

and a set of functional covariates (which are easy to observe in any environment). We

therefore want to use those functional covariates to reconstruct the response curve.

There are several challenging problems for this project. One is the nonlinear and non-

parametric relationship between the response curves and the functional covariates; for

this the GPFR model seems a good choice (see Shi et al., 2006). Another problem is

the heterogeneity of the regression relationships among different batches, depending

on the subject’s personal circumstances such as the level of injury, height, weight and

even gender, depending on the tactic they used for standing up and on other factors.

Thus, it is essential to cluster the batches and give larger weight to the batches which

have similar situations to the new patient whose response curve we want to recon-

struct (i.e. if we can cluster the data, we use the data in the same or similar clusters

for prediction). We propose a mixture of GPFR models to address this problem.

Mixture models have been studied for many decades in their two main roles of

modelling heterogeneity for data coming from different populations and as a convenient

form of flexible population density (see e.g. Titterington, Smith and Makov, 1985 and

McLachlan and Peel, 2000). Recently, a mixture of Gaussian process regressions model

has been used to fit correlated data in a heterogeneous population (Shi, Murray-Smith

and Titterington, 2005). For spatially indexed data, the heterogeneity may depend on

region or subject. An allocation model may be defined to address such a problem. For

example, Green and Richardson (2000) used a Potts model, and Fernandez and Green

(2002) used the density of a Markov random field to define an allocation model. As

discussed above, the heterogeneity in the paraplegia data is dependent on the subject,
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the tactic used for standing up and other factors. We will therefore define an allocation

model which depends on those factors.

The mixture model has also been used for curve clustering. Curve clustering has

been widely studied and various methods have been proposed; see for example, Müller

(2005), James and Sugar (2003). However, most existing methods concern the clus-

tering of longitudinal data or time-varying functional data, in which the clustering is

essentially based on the shapes of the curves. In this paper, we deal with data de-

pending on a number of functional covariates, and what we are interested in is how the

observations are affected by the functional covariates for different groups or subjects;

that is, we want to cluster relationships between the observations and the input covari-

ates. Gaffney and Smyth (2003) discussed a similar problem but assuming a functional

linear relationship between response curve and covariates. Here, we assume a nonlinear

and nonparametric GPFR model.

The paper is organized as follows. Section 2.1 defines a mixture model of Gaussian

process functional regressions with an allocation model. In Section 2.2 an EM algorithm

is discussed for estimating all the unknown parameters. Sections 2.3 and 2.4 discuss

the two main problems concerned in this paper, i.e., curve prediction and clustering.

The problem of model selection is also discussed in Section 2.4. A number of examples

with simulated and real data are presented in Section 3. Finally, we conclude the paper

by some discussions in Section 4.
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2 Methodology

2.1 Hierarchical mixture of GPFR models with an allocation

model

Suppose that there are M different groups of data which come from different sources.

A hierarchical mixture model of GPFRs can be defined for such data by the following

hierarchical structure: a lower-level model is assumed for the data corresponding to

each batch separately, the structures of those models being similar but with some

mutual heterogeneity; a higher-level model is defined for modelling the heterogeneity

among different batches. The lower-level model is defined as

ym(t,x)|zm=k ∼ GPFRk(t,x;Θk) (4)

independently for m = 1, · · · ,M , where zm is an unobservable latent indicator variable,

and GPFR(t,x;Θ) stands for a GPFR model defined in (2) and (3), where Θ is the

set of all the unknown parameters. Thus, GPFRk(t,x;Θk) is the k-th component,

with unknown parameters Θk.

The association among the different groups is introduced by the latent variable zm,

for which

P (zm = k) = πk, k = 1, · · · , K,

for each m. However, the heterogeneity among those different batches often depends

‘spatially’ on the information about each batch as discussed in the previous section.

Suppose that the covariates vm in the m-th batch influences the heterogeneity, or

that vm can determine to which ‘cluster’ the batch will belong. We define a logistic
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allocation model as follows:

P (zm = k) = πmk =
exp{vm

′γk}
1 +

∑K−1
j=1 exp{vm

′γj}
, k = 1, . . . , K − 1, (5)

and P (zm = K) = πmK = 1 − ∑K−1
j=1 πmj, where {γk, k = 1, . . . , K − 1} are unknown

parameters to be estimated.

The model defined in (4) and (5) provides a convenient form of flexible relationship

of correlation and accommodates for multivariate cases. The logistic allocation model

can be easily replaced by other models such as the Potts model (Green and Richardson,

2000). We may also use a nonparametric Gaussian process classification model (see

Shi et al., 2003).

2.2 Estimation

From (3), the k-th component of the mixture model GPFRk defined in (4) includes

two parts

µmk(t) = um
′βk(t), and τmk(x) ∼ GPk(x; θk). (6)

The covariance structure is modelled by a Gaussian process regression model (see, e.g.

Shi et al. (2005)) with zero mean and a kernel covariance function. In this paper, we

will use the following covariance function (see MacKay (1999) for the selection of the

covariance function):

C(xmi,xmj; θk) = vk
1 exp

(

− 1

2

Q
∑

q=1

wk
q (xmiq − xmjq)

2
)

+ ak
1

Q
∑

q=1

xmiqxmjq + vk
0δij, (7)

where θk , (wk
1 , . . . , w

k
Q, vk

1 , a
k
1, v

k
0) denotes the set of unknown parameters. The last

term of the above equation corresponds to the independent random error.

It is not straightforward to estimate the mean functions from the observations. In

this paper we propose to use a B-spline approximation. Let Φ(t) = (Φ1(t), . . . ,ΦD(t))′
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be a set of B-spline basis functions. Then the mean function can be represented by

µmk(t) = um
′βk(t) = um

′Bk
′Φ(t),

where Bk
′ = (B1

k, . . . , B
D
k ) is a p×D unknown B-spline coefficient matrix. In practice,

the specification of D and locations of the knots for B-spline is important. However,

we have not found this difficult in our examples, since our data in each batch are

quite dense and the results are rather insensitive to the specification; a relatively small

number of equally-spaced knots are enough. In the examples discussed later we used 20

equally spaced knots for the splines. More details on selection of the form and number

of the basis functions are discussed by Faraway (1997, 2001).

Suppose that Nm observations are obtained for the m-th batch/group. The data

collected in the m-th batch are

Dm = {(ymi, tmi,xmi) for i = 1, . . . , Nm; um and vm}, (8)

where um = (um1, . . . , ump)
′ and vm = (vm1, . . . , vmr)

′ are non-functional covariates

which are used in the mean structure model (3) and the logistic allocation model

(5) respectively. The totality of observed data are denoted by D. Let ym be the

vector of {ymi, i = 1, . . . , Nm} (we can similarly define tm = {tmi, i = 1, . . . , Nm},

xm = {xmi, i = 1, . . . , Nm} and so on). From (4), the model for the data is therefore

ym|zm=k = µmk + τmk, for k = 1, . . . , K, (9)

where

µmk = ΦmBkum, and τmk ∼ N(0,C(θk)),

Φm is an Nm×D matrix with (i, d)-th element Φd(tmi), and C(θk) is an Nm×Nm covari-

ance matrix with (i, j)-th element C(xmi,xmj; θk) given for example by (7). Thus, the
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unknown parameters include B = {Bk, k = 1, . . . , K}, θ = {θk, k = 1, . . . , K} and

γ = {γk, k = 1, . . . , K − 1}, involved in the above mean structure, covariance struc-

ture and the allocation model (5) respectively. The log-likelihood of Θ = (B,θ,γ)

is

L(B,θ,γ) =
M

∑

m=1

log{
K

∑

k=1

πmkp(ym|Bk,θk,xm)}, (10)

where p(ym|Bk,θk,xm) is the density function of the Nm-dimensional normal distri-

bution defined in (9).

As a result of the large number of unknown parameters and the complicated co-

variance structure, it is quite tricky to carry on the estimation. We will use the EM

algorithm in this paper. The basic idea is to treat z as missing. For convenience, we

define a new variable zmk, which takes the value 1 if zm = k and is 0 otherwise. It is

obvious that {zmk} and zm are identical, and we will use z to represent either of them.

The log-likelihood for complete data (y,z) is

Lc(Θ) =
K

∑

k=1

M
∑

m=1

zmk{log πmk + log p(ym|Bk,θk,xm)}. (11)

In E-step of the i-th iteration, we need to calculate the conditional expectation of

Lc(Θ), given D and based on the current estimate Θ(i),

Q(Θ;Θ(i)) , EΘ(i){Lc(Θ)|D}

=
K

∑

k=1

M
∑

m=1

EΘ(i)(zmk|D){log πmk + log p(ym|Bk,θk,xm)}

=
K

∑

k=1

M
∑

m=1

αmk(Θ
(i)){log πmk + log p(ym|Bk,θk,xm)},

with

αmk(Θ) = EΘ(zmk|D) =
πmk p(ym|Bk,θk,xm)

∑K
j=1 πmj p(ym|Bj,θj,xm)

. (12)

The M-step includes the following two separate maximizations:
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• Estimate γk by maximizing Q(Θ;Θ(i));

• Estimate Bk and θk by maximizing Q(Θ;Θ(i)).

The details of the M-step are given in Appendix. We can also calculate the related

standard errors, which are also given in Appendix.

2.3 Prediction

We consider two types of prediction. First suppose that we have already observed

some training data in a new batch, the (M + 1)-th batch say, and want to predict the

output for a set of new inputs. In addition to the training data observed in the first

M batches, we assume that N observations are obtained in the new (M + 1)-th batch

and are denoted by {yM+1,i, i = 1, . . . , N}. They are observed at {t1, . . . , tN}. The

corresponding input vectors are {xM+1,1, . . . ,xM+1,N}, and we also know the batch-

based covariates vM+1 and uM+1. We still use D to denote all the training data

observed in the M + 1 batches. It is of interest to predict y∗ at a new test data point

t∗ in the (M + 1)-th batch. Let x∗ = x(t∗) be the test inputs. If the component

from which this new batch comes is known, the k-th say, the corresponding predictive

distribution of y∗, given training data D, is also a Gaussian distribution. Its predictive

mean and variance are given by (see Shi et al., 2006)

ŷ∗

k = E(y∗|D, zM+1 = k) = µ̂M+1,k(t
∗) + H ′

k(yM+1 − µ̂M+1,k(t)),

σ̂∗2
k = V ar(y∗|D, zM+1 = k) = [Ck(x

∗,x∗) − H ′

kCkHk](1 + uM+1
′(U ′U )−1uM+1),

where U = (u1, . . . ,uM)′ is an M×p matrix, t = (t1, . . . , tN), µ̂M+1,k(·) = uM+1
′B̂k

′

Φ(·),

H ′

k = [Ck(x
∗,xM+1)]

′C−1
k , Ck(x

∗,xM+1) is the N -dimensional vector of the covariance
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between y∗ and yM+1 = (yM+1,1, . . . , yM+1,N)′ given zM+1 = k, i.e.

Ck(x
∗,xM+1) = (C(x∗,xM+1,1; θk), . . . , C(x∗,xM+1,N ; θk))

′,

and Ck is the N × N covariance matrix of yM+1. The covariance is calculated by (7)

with the parameters evaluated at θ̂k.

Therefore, the overall prediction for y∗ is given by

ŷ∗ = E(y∗|D) =
K

∑

k=1

α̂M+1,k ŷ∗

k, (13)

σ̂∗2 = V ar(y∗|D) =
K

∑

k=1

α̂M+1,k σ̂∗2
k +

K
∑

k=1

α̂M+1,k ŷ∗2
k − ŷ∗2, (14)

where α̂M+1,k is the conditional probability that the (M + 1)-th curve belongs to the

k-th component. It can be estimated by

α̂M+1,k = EΘ̂(zM+1,k|D) =
π̂M+1,k p(yM+1|B̂k, θ̂k,xM+1)

∑K
j=1[π̂M+1,j p(yM+1|B̂j, θ̂j,xM+1)]

,

where

π̂M+1,k = exp{vM+1
′γ̂k}/[1 +

K−1
∑

j=1

exp{vM+1
′γ̂j}]. (15)

The second type of prediction is to predict for a completely new batch, which is

one of the major problems we want to address in this paper. We still refer to the new

batch as the (M +1)-th batch. The observed data D include the training data collected

from batches 1 to M , and for the (M + 1)-th batch we only observe the batch-based

covariates vM+1 and uM+1. We want to predict y∗ at (t∗,x∗) in the (M + 1)-th batch.

Since we have not observed any data for the response variable in the (M +1)-th batch,

we cannot use the result discussed above which is based on the assumption that the

covariance part of yM+1 and y∗ comes from the same Gaussian process. However,

batches 1, . . . ,M provide an empirical distribution of the set of all possible batches,

P (y∗ belongs to the m-th batch) = wm. (16)
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Shi et al. (2006) assumed that wm = 1/M , i.e., each of the training batches is given

the same ‘weight’ in predicting the new data. In the paraplegia example, this means

that we use the information from each patient in the database equally to predict the

trajectory of a completely new patient. This may lead to a very inaccurate result since

the natures of the patients in the database may be quite different. A better way is to

use the data collected from patients who are similar to the new patient to do prediction.

In other words, we should give relatively large weights in the empirical distribution (16)

to training batches ‘close’ to the new patient and small weights for the others. The

closeness of two batches is taken to be equivalent to how close the distribution of zm

is to the distribution of zM+1, which can be measured by Kullback-Leibler divergence:

KL(zM+1, zm) =
K

∑

k=1

π̂M+1,k log
π̂M+1,k

π̂mk

, m = 1, . . . ,M,

where π̂mk is represented by (5) with the parameter evaluated at γ̂k. Since KL(zM+1, zm)

is not symmetric, we can also use KL(zM+1, zm) + KL(zm, zM+1) or some other quan-

tities in practice. The weights in (16) are therefore defined as

wm ∝ 1/KL(zM+1, zm).

The Kullback-Leibler divergence is equal to zero for two identical distributions. If the

distribution of M0, say, zm’s is exactly the same as that of zM+1, we define the weights

for those batches to be 1/M0, and the weights for the other batches to be zero.

Let y∗

m and σ∗2
m be the prediction mean and variance if the new batch belongs to

the m-th batch, which can be calculated by (13) and (14). Then the overall prediction
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for y∗ is given by

ŷ∗ = E(y∗|D) =
M

∑

m=1

wmy∗

m, (17)

σ̂∗2 = V ar(y∗|D) =
M

∑

m=1

wmσ∗2
m +

M
∑

m=1

wmy∗2
m − ŷ∗2. (18)

2.4 Curve clustering and model selection

The problem of curve clustering has been drawn attention recently. However, most of

the existing methods are essentially based on the shapes of the curves; see for example,

James and Sugar (2003). In this section, we will cluster the batches based on the

relationships between the response curves and the input covariates, not just the shapes

of the response curves. Gaffney and Smyth (2003) discussed a similar problem but

they assume a (functional) linear regression model. Here, we assume a nonlinear and

nonparametric model as we discussed in the previous sections.

Suppose that the data are generated according to a mixture of Gaussian process

functional regressions with K components, as defined in (4). The model can then

be fitted as in Section 2.2 and we denote the estimates of the parameters by Θ̂ =

{B̂k, θ̂k, γ̂k, k = 1, . . . , K} with γ̂K = 0. Thus, given an observed curve, y∗ say, its

corresponding functional input covariates x∗ and the batch-based covariates v∗ and

u∗, the posterior distribution of the latent variable z∗ = (z∗1 , . . . , z
∗

K)′ is given by

P (z∗k = 1|y∗) =
π∗

kp(y∗|B̂k, θ̂k,x
∗)

∑K
j=1 π∗

kp(y∗|B̂j, θ̂j,x∗)
,

where

π∗

k =
exp{v∗

′

γ̂k}
1 +

∑K−1
j=1 exp{v∗

′

γ̂j}
.

The curve can be classed as belonging to the k∗-th cluster if P (z∗k = 1|y∗) takes its

maximum value at k = k∗ for k = 1, . . . , K.
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An important but difficult problem in cluster analysis is to choose the number of

clusters, i.e., the value of K. In this paper, we use Bayes factors. Since its value is

difficult to calculate exactly, we use its approximate form, BIC (Schwarz, 1978). If

we recall that L(·) is the log-likelihood function as defined in (10) and let Θ̂ be the

maximum likelihood estimate, the BIC value is given by

BIC = −2L(Θ̂) + G log(N),

where G is the total number of parameters and N = N1 + · · ·+ NM is the sample size.

An alternative approach is to assume that K is a random number, whose value can

be estimated from its posterior distribution. In this case, a reverse jump algorithm can

be used (Green, 1995). However, since the number of unknown parameters involved

in each component is usually large, and the conditional density functions are quite

complicated particularly for the parameters involved in the covariance structure, the

computation is likely to be tedious. We will not discuss this approach in this paper.

3 Examples

In this section we demonstrate our methods with some simulated data and real data.

3.1 Simulation study for prediction and multiple-step-ahead

forecasting

We first consider a mixture model with two components, where the mean functions are

µm1(t) = 0.5 sin((0.5t)3) and µm2(t) = −3.0 exp(−t2/8)/
√

2π+0.7, while the covariance
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functions are

C(xi, xj) = v1 exp
(

− 1

2
w1(xi − xj)

2
)

+ a1xixj + v0δij, (19)

with θ1 = (1.0, 0.0, 0.2, 0.0025)′ and θ2 = (0.5, 0.0, 0.25, 0.0025)′ respectively, where

θ = (w1, a1, v1, v0)
′. The data points t = ti are 50 equally spaced points between -

4 and 4. The functional covariate x for each batch is a sample of another Gaussian

process on (−4, 4). The mixing coefficients are given by (5) with γ1 = 2.0. Sixty curves

are generated and are presented in Figure 1(b), where vm = 2.0 for batches 1 to 30

(i.e. m = 1, . . . , 30) and vm = −1 for batches 31 to 60 (i.e. m = 31, . . . , 60).

3.1.1 Prediction

In this simulated example, we have bivariate functional covariates (t, x(t)), with the

mean structure depending on t and the covariance structure depending on (t, x(t)).

Four models are compared: mixture of GPFRs (models (4) and (5), denoted by mix-

gpfr), single GPFR (K = 1, denoted by gpfr), mixture of mean models (model (2)

includes mean structure only, denoted by mix-mean) and mixture of GP models (model

(2) includes a constant mean and covariance structure modelled by a Gaussian process

regression model, denoted by mix-gp). To assess the performance of these models, dif-

ferent types of prediction are calculated and compared with the real data. An example

is shown in Figure 2, where the first two columns correspond to Type I prediction as

discussed in Section 2.3, i.e., we have observed some data in a new batch. However,

the first column corresponds to the problem of interpolation, in which we randomly

select half of the generated data in the whole range (−4, 4) as training data, and the

rest are used as test data; the second column concerns extrapolation, in which we se-
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lect the data generated in the range (−4, 0) as training data, and predict the curve

located in the range (0, 4). The third column corresponds to Type II prediction: there

are no training data observed for this new batch and we need to predict a completely

new curve. In Figure 2, the solid line stands for the real simulated curve, the dashed

line is the prediction and the dotted lines are pointwise 95% confidence bands. We

also calculated the values of root of mean squared errors (rmse) and the correlation

coefficient between the real data and the prediction. A simulation study with 50 repli-

cations was conducted, and the results are reported in Table 1. From Figure 2 and

Table 1, we have the following findings. First, for the mixture data, a single GPFR

model gives uniformly poor results when compared to a mixture of GPFR models. It

is therefore essential to consider mixture models if we think that there are mixture

structures underlying the data. We will give a further discussion in Section 3.2 when

we consider model selection. Secondly, comparing the cases modelling both mean and

covariance structures (mix-gpfr), with cases modelling mean structure only (mix-mean)

and cases modelling covariance structure only (mix-gp), we find that mix-gpfr performs

uniformly better than the others. For the problem of interpolation, mix-gp also gives

a quite good result although not as good as mix-gpfr, and both of them perform much

better than mix-mean. For the problem of extrapolation, mix-gpfr still performs better

than mix-mean, but mix-gp usually gives bad results, especially when the test data

point for prediction moves away from the training data (see Figure 2(k) and the values

of rmse and r in Table 1). This finding coincides with the results for the related single

models discussed in Shi et al. (2006).
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3.1.2 Multiple-step-ahead forecasting

As discussed in Shi et al. (2006), the GPFR model is particular useful in multiple-

step-ahead forecasting. We conduct a simulation study to assess the performance of

mixture models here. We still use the data simulated in the previous subsection, but

will use the data collected up to time ti, say, to predict the value y(ti+ν) in ν-step-ahead

forecasting. Sixty batches of mixture data are simulated as training data. To predict

y(ti+ν), we use y(t) at t = ti as an additional covariate, i.e., we have three-dimensional

covariates (ti+ν , xi+ν , yi), where ti is used in the mean structure and the others are used

in the covariance structure. For comparison, four models as discussed in the previous

subsection are applied to the same data-set.

A simulation study with 100 replications was conducted, and the results related to

1−, 3− and 6-step-ahead forecasts are reported in Table 1. The result of one typical

replication is presented in Figure 3. Multiple-step-ahead forecasting is similar to the

prediction problem of extrapolation, and the simulation results here are consistent

with the results discussed in the previous subsection. First of all, mix-gpfr gives a

much better result than a single GPFR, and is consistently better than mix-mean and

mix-gp. When ν is small, as in 1-step-ahead forecasting, mix-gp still gives a reasonably

good result and is better than mix-mean, although not as good as mix-gpfr. However,

when ν is large, as in 6-step-ahead forecasting, mix-mean is better than mix-gp.

3.2 Clustering and model selection

We now consider the problem of curve clustering. We first calculate the posterior

distribution of z and then classify the curve by using the largest posterior probability.
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We consider a mixture of two Gaussian processes which have mean functions µ(t) =

exp(t/5) − 1.5 and µ(t) = 0.8atan(t), respectively. The covariance functions are given

by (19), and the mean components and 60 sample curves are given in Figure 4. From

Figure 4(a), the two mean components are quite similar and, thus, so are the shapes of

all the curves. Three methods, mix-gpfr, mix-mean and mix-gp, are used to train the

data and produce a clustering. The error rate for these three methods are 2%, 13.5%

and 31.5%, respectively. Here, the mix-mean model clusters the curves according to

their shapes, while the mix-gpfr model makes clusters based on the functional regression

relationship between the response curves and the two-dimensional functional covariates

(t, x(t)). It is therefore not surprising that the performance of mix-gpfr is much better

than that of mix-mean in this example. For the sample curves shown in Figure 1(b),

mix-mean gives a better result with an error rate of only 1.5%, since the shapes of

the two components are more distinguishable than in this example. However, mix-gpfr

gives a even better result, with zero error rate.

The BIC approach is used for model selection in this paper. For the data discussed

in the previous subsection and the previous paragraph, BIC takes the smallest value

at k = 2. For the more complicated example shown in Figure 5(a), which contains 90

curves with three components, the values of BIC are given in Figure 5(b). It indicates

that BIC works well for model selection of functional data. Curve clustering is also

conducted for this example. The error rates for mix-gpfr, mix-mean and mix-gp are

0.5%, 35.5% and 11%, respectively. Figure 5(a) shows that the third component is

hardly recognised from their shapes, which is why about one-third of the curves are

misclassified by mix-mean.
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3.3 Modelling of standing-up manoeuvres

Our application involves the analysis of the standing-up manoeuvre in paraplegia, con-

sidering the body supportive forces as a potential feedback source in functional electri-

cal stimulation (FES)-assisted standing-up. The analysis investigates the significance

of arm, feet and seat reaction signals for the reconstruction of the human body centre-

of-mass (COM) trajectory. The motion kinematics, reaction forces and other quantities

were measured for modelling; for more details see Kamnik et al. (1999, 2005). Here

we model the vertical trajectory of the body COM as output, and select 8 input vari-

ables, such as the forces and torques under the patient’s feet, under the arm support

handle and under the seat while the body is in contact with it. In one standing-up,

output and inputs are recorded for a few hundred time-steps. The experiment was

repeated several times for each patient. Since the time scales are different for different

standings-up, some registration methods are used (Ramsay and Silverman, 1997). This

data set has been analysed by Shi et al (2006). In this paper, we are interested in the

vertical trajectories of the body COM after registration for 40 standings-up, 5 for each

of 8 patients.

As discussed before, there is severe heterogeneity because of the different circum-

stances of different patients. The allocation model uses the patient’s height, weight

and standing-up strategy as vm, and the mean structure uses the patient’s height as

um. All eight functional covariates are used in modelling the covariance structure. We

first use the mixture of GPFR models with two components, and compare it with the

results obtained by using a single GPFR model (K = 1). We use the data collected

from seven of the eight patients as training data, and then use them to predict the
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standing-up curves of the eighth patient as completely new curves (Type II predic-

tion). We calculate predictions for all eight patients in turn, and the results are given

in Table 2. The mixture model gives better results than the single model except for

patient ‘ak’. On average, the mixture model reduces rmse by about 13% compared to

the single GPFR model. As an example, Figures 6(a) and 6(b) show the predictions

and the true values for patient ‘mk’ obtained by using the mixture model and the single

model respectively.

The values of BIC are shown in Figure 6(c). It shows that the two-component

mixture model has the smallest BIC value. When we use the patient’s height, weight

and standing-up strategy as covariates in the allocation model, patients ‘ak’, ‘mk’,

‘sb’ and ‘tm’ are clustered in one group and the others are in the other group. The

scatter-plot of their weights and heights is given in Figure 6(d). It is interesting to

note that the patients in the cluster one are relatively thin, while the patients in the

other cluster are relatively heavy comparing to their heights.

We have data collected from only eight patients. If more data were available, we

would have more information for clustering and would be able to give better predictions

for the patients like ‘ak’.

4 Discussion

In model (2), the mean structure µm(t) can be replaced by µm(x) if we have some

knowledge about the mean relationship between the response curve and the covariates

x, for example a linear regression µ(x) = h′(x)β as used in Kennedy and O’Hagan

(2001) with a vector of known functions h(·), or a varying-coefficient linear model
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µ(x) =
∑

j gj(β
′x)xj with unknown functions gj(·) (see for example Fan, Yao and

Cai, 2003). However, it is usually difficult to justify such mean structures. In this

case, we can use the nonparametric model defined in (2), whose mean structure µm(t)

depends on some non-functional covariates um only. The mean structure in this model

is usually easy to understand and justify. For our paraplegia example, the functional

covariates are forces and torques, etc, and the output is the trajectory of body COM.

Since the relationship between those functional variables is unknown, it is difficult to

justify any form of mean structure µm(x). However, the meaning of µm(t) in (2) is

clear. For example, if we include only a one-dimensional covariate um of the patient’s

sex, then the mean structure just gives the point-wise averages of all the curves for

men and women respectively. The regression relationship between the response curve

y and the functional covariates x will be described mainly by the covariance structure

adjusted by the men’s or the women’s mean curve. The model therefore involves a very

weak assumption and can be used in a wide range as a nonparametric and nonlinear

approach.

As discussed in Section 3, the mixture model gives much better prediction uniformly

than the related single model if there is heterogeneity among curves, which is the

case for most of the real data sets. We also discussed a model-based method for the

problem of curve clustering, which is conducted based on the relationship between the

response curve and the set of the covariate curves nonparametrically. This method

differs from most of the existing methods which are based on the shape of the curves.

The simulation results given in the last section showed the advantage of our method.

Model selection is an interesting but difficult problem for a mixture model, espe-

cially for the models with very complicated forms. We use the BIC to select the number
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of mixture components. It works fine for the data discussed in this paper. It might

be worth a further research for the model with an unknown number of components

by using a reverse jump algorithm (Green, 1995) or by using a birth-death MCMC

algorithm (Stephens, 2000; Cappé, Robert and Rydén, 2003).
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Appendix

I. M-step

In M-step, we need to maximise Q(Θ;Θ(i)) with respect to γk, Bk and θk. Unfortu-

nately, there are no analytic solutions, therefore we use the following sub-algorithms.

(1) Maximise Q(Θ;Θ(i)) with respect to γk for k = 1, . . . , K − 1. It is equivalent

to maximising

L1(γ1, . . . ,γK−1) ,

M
∑

m=1

K
∑

k=1

αmk(Θ
(i)){vm

′γk − log
[

1 +
K−1
∑

j=1

exp{vm
′γj}

]

}

which is independent of Bk and θk. It is similar to the log-likelihood for a multinomial

logit model (αmk(Θ
(i))’s are corresponding to the observations) and can be maximised

by iteratively re-weighted least square algorithm.

(2) Maximise Q(Θ;Θ(i)) with respect to Bk and θk, k = 1, . . . , K. It is equivalent

to maximising

L2(B1, . . . ,BK ,θ1, . . . ,θK) ,

K
∑

k=1

M
∑

m=1

αmk(Θ
(i)) log p(ym|Bk,θk,xm).

We denote the covariance matrix by Cmk = (Cij
mk), i, j = 1, . . . , Nm, whose element
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Cij
mk is calculated by (7), i.e.,

Cij
mk = vk

1 exp
(

− 1

2

Q
∑

q=1

wk
q (xmiq − xmjq)

2
)

+ ak
1

Q
∑

q=1

xmiqxmjq + vk
0δij. (20)

Thus the density function of Nm-dimensional normal distribution is given by

p(ym|Bk,θk,xm) = (2π)−Nm/2|Cmk|−1/2

· exp
{

− 1

2
(ym − ΦmBkum)′C−1

mk(ym − ΦmBkum)
}

,

where Φm is an Nm × D matrix given by









Φ1(tm1) · · · ΦD(tm1)
...

. . .
...

Φ1(tmNm
) · · · ΦD(tmNm

)









.

Denoting by θkj ∈ θk any parameter involved in (20), after a straightforward cal-

culation we obtain

∂L2

∂θkj

=
M

∑

m=1

αmk(Θ
(i))

[

− 1

2
tr(Cmk

−1∂Cmk

∂θkj

)

+
1

2
(ym − ΦmBkum)′C−1

mk

∂Cmk

∂θkj

C−1
mk(ym − ΦmBkum)

]

, (21)

∂L2

∂vec(Bk)
=

M
∑

m=1

αmk(Θ
(i))(ym − ΦmBkum)′C−1

mk(um ⊗ Φ′

m)′, (22)

where, vec(A) denotes the stacked columns of A and ⊗ denotes Kronecker product.

Letting ∂L2/∂vec(Bk) = 0, we get, for k = 1, . . . , K,

vec(Bk) =

{

M
∑

m=1

αmk(Θ
(i))(um ⊗ Φ′

m)C−1
mk(um

′ ⊗ Φm)

}−1

·
{

M
∑

m=1

αmk(Θ
(i))(um ⊗ Φ′

m)C−1
mkym

}

, F (θk). (23)

Since explicit expression for optimising Q(Θ;Θ(i)) in θk does not exist, we use an

iterative procedure to complete Stage (2) as follows: for k = 1, . . . , K,
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(2.1) Update Bk by (23) given θk;

(2.2) Update θk by maximising L2 given Bk.

To speed up convergence, we usually repeat (2.1) and (2.2) for several times. In

(2.1), the gradient (21) is used such that the maximisation procedure is implemented

most efficiently.

II. Standard errors

Louis (1982) has provided a powerful numerical technique for computing the observed

information matrix and standard errors when the EM algorithm is used to find max-

imum likelihood estimates. We denote by Lm
c (Θ) the log-likelihood for the complete

data (ym, zm) of the m-th batch. Since our observed curves are independent, we have

Lc(Θ) =
∑M

m=1 Lm
c (Θ).

From (11), we have

∂Lm
c

∂γk

= (zmk − πmk)v
′

m, (24)

∂Lm
c

∂θkj

= zmk

[

− 1

2
tr(Cmk

−1∂Cmk

∂θkj

)

+
1

2
(ym − ΦmBkum)′C−1

mk

∂Cmk

∂θkj

C−1
mk(ym − ΦmBkum)

]

, (25)

∂Lm
c

∂vec(Bk)
= zmk(ym − ΦmBkum)′C−1

mk(um ⊗ Φ′

m)′. (26)

Note that θkj in (25) denotes any element of θk involved in (20).

Let Sm(Θ) be the gradient vectors of Lm
c (Θ) and Θ̂ be the maximum likelihood

estimates, then we have

Sm(Θ) = (
∂Lm

c

∂γ1

, . . . ,
∂Lm

c

∂γK−1

,
∂Lm

c

∂vec(B1)
, . . . ,

∂Lm
c

∂vec(BK)
,
∂Lm

c

∂θ1

, . . . ,
∂Lm

c

∂θK

)′,

and it is easy to get E ˆΘ
{Sm(Θ̂)} since E ˆΘ

{zmk} = αmk(Θ̂) from (12). The computa-

tion of E ˆΘ
{Sm(Θ̂)S ′

m(Θ̂)} is tedious but straightforward by using E ˆΘ
{z2

mk} = αmk(Θ̂)

27



and E ˆΘ
{zmkzmj} = 0 for k 6= j.

Furthermore, it follows from (24) - (26) that

∂2Lm
c

∂γk
2

= (π2
mk − πmk)vmvm

′,

∂2Lm
c

∂γk∂γj

= πmkπmjvmvm
′,

∂2Lm
c

∂[vec(Bk)]2
= −zmk(um ⊗ Φ′

m)C−1
mk(um ⊗ Φ′

m)′,

∂2Lm
c

∂vec(Bk)∂θkj

= zmk(ym − ΦmBkum)′C−1
mk

∂Cmk

∂θkj

C−1
mk(um ⊗ Φ′

m)′,

and

∂2Lm
c

∂θki∂θkj

= zmk

{

− 1

2
tr

[

Cmk
−1∂Cmk

∂θkj

Cmk
−1∂Cmk

∂θki

+ C−1
mk

∂2Cmk

∂θki∂θkj

]

+ (ym − ΦmBkum)′C−1
mk

∂Cmk

∂θki

C−1
mk

∂Cmk

∂θkj

C−1
mk(ym − ΦmBkum)

+
1

2
(ym − ΦmBkum)′C−1

mk

∂2Cmk

∂θki∂θkj

C−1
mk(ym − ΦmBkum)

}

.

The other second-order derivatives, such as

∂2Lm
c

∂vec(Bk)∂γj

,
∂2Lm

c

∂γk∂θj

,
∂2Lm

c

∂vec(Bk)∂vec(Bj)
(j 6= k),

∂2Lm
c

∂vec(Bk)∂θj

(j 6= k),
∂2Lm

c

∂θk∂θj

(j 6= k)

are all zero.

Therefore, setting Tm(Θ) being the negatives of the second order derivative matri-

ces of Lm
c (Θ), it is straightforward to compute E ˆΘ

{Tm(Θ̂)} thanks to E ˆΘ
{zmk} =

αmk(Θ̂).

From Louis (1982) the observed information matrix can be computed as

IY =
M

∑

m=1

E ˆΘ
{Tm(Θ̂)} −

M
∑

m=1

E ˆΘ
{Sm(Θ̂)S ′

m(Θ̂)}

− 2
M

∑

l<m

E ˆΘ
{Sl(Θ̂)}E ˆΘ

{Sm(Θ̂)}′.

The observed information matrix IY can then be inverted to obtain the standard

errors.
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Table 1: Simulation study: values of rmse and r

Prediction

Type I Type II New curve

rmse r rmse r rmse r

mix-gpfr 0.0595 0.9871 0.2492 0.8390 0.3970 0.7680

gpfr 0.1229 0.9425 0.4124 0.6442 0.4575 0.6082

mix-mean 0.3809 0.6331 0.3786 0.7775 0.4023 0.7557

mix-gp 0.1926 0.8564 0.4729 0.1402 0.5018 0.4219

ν-step ahead forcasting

1-step 3-step 6-step

rmse r rmse r rmse r

mix-gpfr 0.0712 0.9844 0.1081 0.9589 0.2128 0.8735

gpfr 0.1080 0.9648 0.2355 0.7873 0.3799 0.5567

mix-mean 0.4291 0.5483 0.4106 0.6388 0.4568 0.6727

mix-gp 0.1288 0.9504 0.3744 0.2722 0.4411 0.2281

Table 2: Paraplegia data: values of rmse and r for prediction

subject mix-gpfr gpfr

rmse r rmse r

Average 0.2458 0.9868 0.2815 0.9828

ak 0.3172 0.9852 0.2125 0.9812

bj 0.2949 0.9889 0.3810 0.9837

mk 0.1008 0.9925 0.2450 0.9913

mt 0.3030 0.9896 0.2661 0.9890

sb 0.2799 0.9739 0.3363 0.9601

tm 0.1763 0.9911 0.2706 0.9815

zb 0.1517 0.9954 0.1836 0.9915

zj 0.3431 0.9774 0.3573 0.9841
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Figure 1: The sample curves. (a) Solid line—the true mean curve; dotted line—the

curve with random errors; dashed line—the curve with errors having GP covariance

structure depending on x. (b) Sample curves of mixture with two components.
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(a) mix-gpfr, rmse=.0620
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(c) mix-gpfr, rmse=.2888
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(d) gpfr, rmse=.0983
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(f) gpfr, rmse=.3655
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(g) mix-mean, rmse=.3346
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(h) mix-mean, rmse=.6615
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(i) mix-mean, rmse=.3055
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(l) mix-gp, rmse=.3536

Figure 2: Prediction: solid line is the real curve, dashed line is prediction and dotted

lines are its 95% confidence bands, where the first column is corresponding to the prob-

lem of interpolation, the second is for extrapolation and the third is for a completely

new curve.
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(b) 3-, mix-gpfr, rmse=.1306

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

(c) 6-, mix-gpfr, rmse=.2603

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

(d) 1-, gpfr, rmse=.1428
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(e) 3-, gpfr, rmse=.4220
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(f) 6-, gpfr, rmse=.6334
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(g) 1-, mix-mean, rmse=.5103
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(h) 3-, mix-mean, rmse=.4851
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(i) 6-, mix-mean, rmse=.4515
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(j) 1-, mix-gp, rmse=.1423
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(k) 3-, mix-gp, rmse=.4948
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(l) 6-, mix-gp, rmse=.6154

Figure 3: ν-step ahead forcasting: solid line is the real curve, dashed line is prediction

and dotted lines are its 95% confidence bands, where the first column is corresponding

to the 1-step ahead forcasting, and the second and third are for 3- and 6-step ahead

forcasting respectively.
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(b) 60 sample curves

Figure 4: The mean curves and sample curves of a mixture model with two components
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(a) 90 sample curves
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Figure 5: The sample curves with three components and the values of BIC
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(d)

Figure 6: Paraplegia data. (a)-(b) The predictions for patient ‘mk’ by using a mix-gpfr

and a single GPFR model: solid line is the real observation, the dashed line is the

prediction and the dotted lines are 95% confidence bands. (c) The values of BIC. (d)

Height and weight for each patient.
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