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Abstract

Meta-analysis of multi-arm trials has been used increasingly in recent years, the aims of
which are to combine evidence from all possible similar studies and draw inferences about
the effectiveness of multiple compared-treatments. Antiplatelet therapy is a pharmacologic
therapy which aims to inhibit platelet activation and aggregation in the setting of arterial
thrombosis. Throughout the thesis we use binary data from antiplatelet therapy to apply
the model and sensitivity analysis. The normal approximation model using empirical logistic
transform has been employed to compare different treatments in multi-arm trials, allowing
studies of both direct and indirect comparisons. The issue of direct-indirect comparison is
studied in detail, borrowing the strength from the indirect comparisons and making infer-
ences about appropriately chosen parameters. Additionally, a hierarchical structure of the
model addresses the problem of heterogeneity among different studies. However the model
requires a large sample size of each individual study. When the sample size is small, an
exact logistic regression model is introduced. Both unconditional and conditional maximum
likelihood approaches are performed to make inferences for the logistic regression model.
We use Gaussian-Hermite quadrature to approximate the integral involved in the likelihood

functions. Both approaches have been examined to different cases in the simulation study.

Studies with statistically significant results (positive results) are potentially more likely to
be submitted or selected more rapidly than studies with non-significant results (negative
results). This leads to false-positive results or an incorrect, usually over-optimistic, conclu-
sion, a problem known as selection bias in the meta-analysis. A funnel plot is a graphical
tool which is used to detect selection bias in this research. We apply the idea of a sensitivity
analysis by defining a selection model to the available data of a meta-analysis, by allowing
different amounts of selection bias in the model and investigate how sensitive the main inter-
est parameter is when compared to the estiamtes of the standard model. We also examine

the sensitivity analysis by the simulation study.
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Chapter 1

Introduction

1.1 A brief history and basic concepts of meta-analysis

There has been a massive growth in the number of randomised clinical trials (RCTs) since
the first RCT was introduced in the well-known streptomycin trial in 1946 (see the disscus-
sion in Hill, 1990). The results of RCTs have been spread over many reports and thousands
of medical journals. The available results would be impossible to read individually and dif-
ficult to summarize. In making some of this information more readily available, an attempt
is made to pull together the existing evidence in a form that can be used by researchers
or statisticians; this is called systematic review. The aim of systematic reviews is to find
and assess for inclusion all possible high quality studies addressing the clinical question of
the review. There is an international network of clinicians and methodologists who have
formed the Cochrane Collaboration. It was founded in 1993 and named after the British
epidemiologist, Archie Cochrane. This organization is dedicated to the compilation and reg-
istration of RCTs, the combination of appropriate results and the dissemination of findings
through a regularly updated electronic database. What does systematic review achieve? It
reduces the large quantities of information to a manageable size. The results can often be
generalized to a wider population in a broader setting than would be possible from a single

study. Also, systematic reviews aim to reduce errors and tend to improve the reliability.
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Systematic reviews provide the research evidence input into the process of evidence-based
decision making. An important aspect of most reviews is the quantitative synthesis of re-
sults; thus meta-analysis is the statistical part of systematic review. Other names given to
meta-analysis include overview, quantitative overview, pooling, pooled analysis, integrative
research review, research integration, research consolidation, data synthesis, quantitative
synthesis, and combining studies (Jenicek, 1989). However, a meta-analysis is also possible
without doing a systematic review - some studies could be combined without any attempt
to be systematic about how the particular studies were chosen. The minimum requirement
to produce a meta-analysis is the availability of data from two or more studies, irrespective
of whether they are reviewed narratively or systematically (Jadad, 1998, page 83). We can
define meta-analysis as a statistical tool that summarizes evidence from multiple studies of
a particular topic and attempts to provide an estimate of true effect. The main purpose of
meta-analysis is to increase the precision of the conclusions of a review. With statistical per-
spective, it is able to detect treatment effects with greater power and estimate these effects
with greater precision than any single study. In this thesis, we use two meta-analyses from

systematic reviews of Antiplatelet Trialists’ Collaboration (Collaboration, 1994a,b).

Meta-analysis has been widely used in many areas. The term meta-analysis was first used
by Glass (1976) in education. He distinguished types of statistical analyses in social science
and termed the original analysis of a set of data ‘primary analysis’. Secondary analysis
is a re-analysis of data that has already been collected by another investigator. Some of
these analyses are conducted to reaffirm answers to questions raised in the primary anal-
ysis, whereas other secondary analyses attempt to answer new questions. In addition, he
defined other basic features of meta-analysis as it is known and used today. Hedges and
Olkin (1985) published their book ‘Statistical methods for meta-analysis’, which is the first
book in meta-analysis. The idea of meta-analysis can be traced back to Pearson (1904). He

developed a method for summarizing correlation coefficients for studies of typhoid vaccina-
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tion. Statistical techniques for combining study results were also used by Yates and Cochran
(1938) in agriculture. Their technique has led to an increase in development and application
of meta-analysis. One of the first meta-analyses in medicine in the modern era was intro-
duced by Chalmers et al. (1977). However, it was not until the mid-1980s that meta-analysis
started to be used frequently in the health care field when Yusuf et al. (1985) published their
meta-analysis and concluded that the long-term beta blockage following discharge from the

coronary care unit after a myocardiac infarction reduced mortality.

Over the last few decades, individual participant data (IPD) of systematic review for meta-
analysis has increased rapidly. Jennison and Turnbull (1990); Stewart and Parmar (1993)
and Oxman et al. (1995) concluded a number of advantages to IPD meta-analysis. In fact,
the disadvantages of performing an IPD meta-analysis are the costs in both time and money.
In biostatistics, Van Houwelingen (1997) interestingly listed meta-analysis among his night-
mares, which he hoped would not happen in the future. He suggested about analysing
summary measures from selective studies and he looked forward to a time when IPD from
all studies were available to be synthesized using appropriate random-effects models. Sim-
monds et al. (2005) argued that the process of systematic review, within which the majority
of meta-analyses are now undertaken, has to some extent reduced bias due to selective in-
clusion of studies, and analyses involving IPD continue to increase in number. Additionally,
the results of meta-analysis need to be reported properly. Mother et al. (1999) suggested the
guidelines for presenting the results of RCTs in meta-analysis, see more similar suggestions

in Mother et al. (2001); Bussuyt et al. (2003) and Von Elm and Egger (2004) .

Meta-analysis has been extended beyond medicine and health to cover various fields from
‘astronomy to zoology’ (Petticrew, 2001). It has been used in economics (Stanley and Jarrel,
1989, 1998; Stanley, 1998, 2001), and is beginning to be used in political science (Pinello,

1999). In industrial organizational psychology, there have been numerous applications of
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meta-analysis (Schmidt, 1988; Schmidt and Hunter, 1981, 1998). A good example of how
to explain a meta-analysis is ‘mixing apples and oranges’, introduced by Moayyedi (2004).
Meta-analysis has become important in research in almost every area. Nowadays, it would

probably be difficult to find a research area in which meta-analysis is unknown.

1.2 Measure of treatment effect

Before the results of studies can be considered for pooling in a meta-analysis, it is necessary to
decide a measure to use for evaluating the efficiency of one treatment relative to another. In
clinical trials, the control treatment (or control group) is a standard treatment or a placebo.
Various terms have been used for the measure including ‘relative efficacy’, ‘efficacy of the
(first) treatment’, and ‘treatment difference’, see e.g. Higgins and Whitehead (1996) and
Higgins et al. (2001). The term ‘treatment effect’ is preferred and will be used throughout

this thesis.

1.2.1 Comparative binary outcome

Measures of outcome need to be calculated for each study in a meta-analysis before they can
be quantitatively combined. Outcomes of the data have been categorized into three groups:
binary data, continuous data and ordered categorical data. The data being used in this thesis,
described in Chapter 2, is a comparative binary outcome, where two possible outcomes
- diagnosis/not diagnosis- are compared. In this section, we shall give a measure of the
treatment effect, which is the log-odds ratio. The other measures can see from Sutton et al.
(2000, page 17); for example, mean difference and effect size. To describe the log-odds ratio,
suppose that two treatments denoted A and C in Table 2.1 of Chapter 2 represent ‘aspirin
plus dipyridamole’ and ‘control group’ respectively. Let m4 and 7w be the probabilities of
patients that have reocclusion (can be treated as failures) on treatments A and C respectively.

The odds ratio (OR) of patients that have reocclusion on treatment A relative to treatment
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C can be defined by ma(1—7¢)/mc(1—74). To interpret OR, if an odds ratio estimate is less
than one, it would indicate an improvement with treatment A. A ratio of greater than one
would imply that treatment A was less effective than the control treatment. For the purpose
of combining the studies, it is common to transform the data by taking the natural logarithm
of the odds ratio and work with the log-odds ratio, as this should provide a measure which

is approximately normally distributed. Thus the log-odds ratio (LOR) can be written by

LOR = log <M> | (1.1)

To(l —my)

The other measures that can be used for this type are relative risk (RR), ma/m¢, or the risk

difference (RD), ma — mc. Each measure has a different clinical meaning.

1.3 Significance problems in meta-analysis

In the first section, we saw how beneficial meta-analysis is and how it has been used in sev-
eral areas. In the second section, we defined the outcome measure. In meta-analysis, each
study involved is different from all the others. Such differences cause statistical problems
or difficulties in deciding the appropriateness of pooling. Several problems have arisen in
meta-analysis, for example, aggregating studies that include different measuring techniques,
different definitions of variables, and subjects that are too dissimilar results in meta-analyses
that are uninterpretable because they are from poorly designed studies (Hedges and Olkin,
1985). Thus, if meta-analysis is used or analysed improperly, it can lead to erroneous conclu-
sions regarding to treatment effect. Here we will focus on two major problems, heterogeneity

and selection bias, described as follows.

1.3.1 Heterogeniety

Heterogeneity may be defined as the variation that arises due to differences across studies

in populations, interventions, outcomes, and designs. Even when all studies are measuring
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the same underlying average effect, the results may vary across studies because of random
errors. What causes the heterogeneity in a meta-analysis? Bailey (1987) suggested the
possible causes of heterogeneity can be categorized as (1) due to chance; (2) spurious, due
to the scale used to measure the treatment effect; (3) due to treatment characteristics;
(4) due to individual data; (5) characteristics of the design and conduct of the studies;
(6) unexplainable, if none of the above account for it. How do we know whether there is
heterogeneity or not? A chi-squared test is traditionally undertaken to determine whether
there is statistically significant evidence against a null hypothesis of no heterogeneity or
not. The null hypothesis is that the true treatment effects are the same in all studies,
Hy : 6, = 09 = ... = oy versus the alternative that at least one of the treatment effects
differs from the remainder. The ¢;’s are the underlying true treatment effects corresponding
to the ith study, which is defined in (1.1) for ¢ = 1,..., M where M is a number of studies

being combined in a meta-analysis. One test statistic is defined by

S e - E el

“- ; ol Zf\il wp
where T} is the treatment effect estimate of §; and w; is the weight in the sth study. The
weight is usually the reciprocal of the variance of the outcome estimate. We omit the detail
here, more discussion and an example can be found in Sutton et al. (2000, page 39). The
statistic QQ is approximately distributed as a x? distribution on M — 1 degrees of freedom
under the null hypothesis Hy. If the null hypothesis is not significant then there is assumed
to be no heterogeneity between studies. An analysis may be performed by a fixed effect
model where the treatment effect is considered to be the same for all studies. The standard
error estimate in each study is based on the sampling variation of the study. The model
may provide a useful summary of the results. However, the fixed effect models are specific
to the particular studies included in the meta-analysis and may not be realistic. Different
studies with differing designs will not necessarily estimate the same quantity (Matthews,

2005, page 134). In contrast to the above hypothesis, if the null hypothesis is rejected then
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the random effect model would be more appropriate. The model allows the between-study

variability to be accounted for the overall estimate and, more particularly, its standard error.

One of the controversies surrounding meta-analysis has concerned the choices between a fixed
effect model and a random effect model for providing an overall estimate of the treatment
effect. Many authors have exploited the heterogeneity and the fixed-random effect model.
The popular DerSimonian-Laird approach to random-effects meta-analysis uses a simple
estimate of within-study variance, and does not incorporate uncertainty in the variance
estimate when making inference on the mean of the random-effects distribution (DerSimonian
and Laird, 1986). According to the use of test QQ, when the sample sizes in each study are very
large, the null hypothesis may be rejected even if the individual treatment effect estimates
are not very different (Shadish and Haddock, 1987). If the number of combined studies is
small then the statistical power of tests are, in most cases, very low (Boissel et al., 1989). The
alternative way to deal with heterogeneity is to use a one-way analysis of variance (ANOVA)
to investigate heterogeneity between and within groups of studies, where the groups are
categorized by study characteristics (Hedges and Olkin, 1985, page 12). Since the formal
Q statistic (in most cases) has a low power, there are a number of graphical informal tests:
a plot of normalized scores, a forest plot, a Radial plot (Galbraith diagram) and a L’Abbé
plot (Sutton et al., 2000, chapter 7). To assess heterogeneity, Thompson and Sharp (1999)
compared a number of methods used to investigate whether a particular covariate, with a
value defined for each study in the meta-analysis, explained any heterogeneity. The random-
effects method has also long been associated with the problems due to poor estimation of
among-study variance when there is little information (Hardy and Thompson, 1996; Ziegler
et al., 2001). Song et al. (2001) reviewed the methods used in meta-analysis for exploring
heterogeneity. Glasziou and Sanders (2002) addressed the cause of heterogeneity in a system
review. Recently, Hedges and Pigott (2001) and Jackson (2006) discussed theoretically the

power of the test for heterogeneity. In this thesis, we assume all treatment effects in the
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model to be random effects to avoid the problem of heterogeneity and also we do not believe
that the results from different studies and different designs can have the same treatment

effect.

1.3.2 Selection bias

It has long been accepted that studies or researches with statistically significant results
(positive results) are potentially more likely to be written up, submitted, selected or pub-
lished more rapidly than studies with non-significant results (negative results), which leads
to false-positive results. In meta-analysis, combining only the identified published studies
uncritically may lead to an incorrect, usually over-optimistic conclusion. This problem is
known as publication bias or selection bias. For example, several studies (Greenwald, 1975;
Coursol and Wagner, 1986; Sommer, 1987) have surveyed authors, and found that, generally,
studies with non-significant results are less likely to be submitted for publication compared
to those with statistically significant results. Various tools such as the funnel plot, the rank
correlation test, the linear regression test and trim and fill to identify publication bias are

briefly described below.

Funnel plots are a primary visual tool for the investigation of publication bias in meta-
analysis. They are simple scatter plots of the treatment effects, estimated from individual
studies against a measure of study size. The axis of the treatment effect can be log-odds
ratio, log risk ratio or risk difference. The other axis can be one of these choices: the stan-
dard error, the inverse of standard error, the variance, the inverse of variance, the sample
size, log sample size. They can be used in different circumstances (see Sterne and Egger,
2001). Generally, the treatment effect estimates from individual studies are often plotted
against their standard errors (or the inverse of the standard error), instead of the corre-
sponding sample size. The log-odds ratio and standard error are the best choices in most

cases (Rothstein et al., 2005, page 86). The name ‘funnel plot’ is based on the fact that the
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precision in the estimation of the underlying treatment effect increases as the sample size of
the studies increases. In this thesis, the measure of study size is plotted on the horizontal axis
and the treatment effect estimate on the vertical axis. The results from smaller studies will
scatter widely on the right-hand side of the graph, with the spread narrowing among larger
studies. In the absence of bias, the plot will resemble a symmetrical funnel. Asymmetry
in the funnel plots may indicate publication bias in meta-analysis. Funnel plots were first
introduced in educational research and psychology by Light and Pillemer (1984). In 1995,
Egger and Davey Smith (1995) used funnel plots for a meta-analysis that might have alerted
investigators to the unreliability of small studies on the effect of magnesium treatment for
myocardial infarction that found no or little evidence that magnesium treatment reduced

mortality.

The ‘rank correlation test’, described by Begg and Mazumdar (1994), examined the asso-
ciation between the treatment effect estimates and their variances, to exploit the fact that
publication bias will tend to induce a correlation between the two factors, and constructs
the rank-ordered sample on the basis of one of them. The test is a distribution-free method,
which involves no modelling assumptions, but it suffers from a lack of power, and so the
possibility of publication bias cannot be ruled out even when the test is non-significant. To
test the asymmetry of a funnel plot, Egger et al. (1997) suggested a method, called the ‘lin-

ear regression test’ based on a regression analysis of Galbraith’s radial plot (Galbraith, 1988).

To address the problem of publication bias, the ‘trim and fill’ method was developed by
Duval and Tweedie (2000a,b) to adjust a meta-analysis for the impact of missing studies.
The method relies on the scrutiny of one side of a funnel plot for asymmetry, assumed to be
due to publication bias. It appears to give results that match the subjective visual assess-
ment of a funnel plot. This method is based on a strong assumption of symmetry. Copas

and Shi (2001, 2002) argued that some parameters linked to selection bias are inestimable
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since the number of unselected studies is impossible to know. They proposed a sensitivity
analysis with which different patterns of selection bias can be tested against the fit of the
funnel plot. In a similar way, they discussed the sensitivity analysis for the meta-analysis
of 2 x 2 tables using the exact conditional distributions (Shi and Copas, 2002). A Markov

chain Monte carlo EM algorithm was used to calculate maximum likelihood estimates.

Group dose measures in epidemiological studies have been another problem for meta-analysis.
Shi and Copas (2004) proposed a model that allows for an arbitrarily aggregated dose level,
and indicated that the resulting estimates and standard errors can be quite different from

those given by the usual method.

1.4 Multi-arm trials

Most meta-analysis has focused on summarizing treatment effect measures based on the
comparison of two treatments ( called ‘arms’, sometimes also called ‘interventions’ or ‘ex-
posures’). In this comparison, two groups of individual studies are exposed to two different
treatments. Standard two-arm RCTs are frequently used in clinical research due in part
to its relative simplicity of design and interpretation. At its most basic, one power, one
significance level and one magnitude of difference are analyzed for two-arm comparisons.
Conclusions are straightforward: either the two arms are shown to be different or they are
not. The implementation for the model is not complicated. When more than two arms are
included in meta-analysis, complexity ensues. For example, suppose that two treatments
A and C are considered in meta-analysis and the treatment C is a control group. A new
treatment B is included which can be compared with the control group (C) or a standard
active treatment (A). We can obtain the effectiveness of treatment A versus C, treatment B
versus C and treatment A versus B. These types of dataset are called multi-arm trials al-
though some authors call it mized treatment comparison (MTC) (Lu and Ades, 2004, 2006).

Eddy et al. (1992) said of mixed comparisons, ‘when there are several interventions that
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can be applied to a particular problem, the available evidence can compare different pairs of
interventions’. In this thesis, we focus on meta-analysis for multi-arm trials. Two data sets
of meta-analysis comparing three arms are given in Tables 2.1 and 2.2 of Chapter 2. We will

use both data sets to demonstrate the method we propose.

Some issues have arisen in meta-analysis as follows.

e Direct-indirect comparison: direct comparison exists in treatment comparison but it
might not provide enough information for a statistical analysis. We may need to
‘borrow strength’ from an indirect comparison (Higgins and Whitehead, 1996). This

issue will be described in detail in Chapter 3.

e The consistency of multi-arm trials should be considered, particularly, with indirect

comparison (Lu and Ades, 2006).

e Analyses in multi-arm trials need a large number of studies to achieve the good results

(Green et al., 1997, Chapter 4).

1.4.1 Methods of meta-analysis

We have presented an overview of meta-analysis in the first section and described particular
problems such as heterogeneity and selection bias in Section 1.3. In this section, we will
review the methods that have been used in meta-analysis of two-arm and multi-arm com-

parisons.

Pagliaro et al. (1992) used RCTs, comparing beta-blockers or sclerotherapy with a nonactive
treatment (control group) to assess the effectiveness of those treatments in the prevention of
first bleeding and the reduction of mortality in patients with cirrhosis and esophagogastric
varices. The Mantel-Haenszel-Peto method is applied for statistical evaluation of hetero-

geneity and for pooling of the results. They estimated the treatment effects of beta-blockers
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and the control group, sclerotherapy and the control group separately. The results show
that no heterogeneity was found and the incidence of bleeding in the use of beta-blockers

was significantly reduced.

Indirect comparison has been an important issue of two and multi-arm comparisons. Higgins
and Whitehead (1996) presented a random effect meta-analysis for binary data and intro-
duced an idea of ‘borrowing strength’ from an indirect comparison. A three-arm comparison
was also considered in the meta-analysis to improve the inference with both heterogeneity
and the treatment difference. Two approaches, namely the general parameter approach and
the exact binomial approach, were used to estimate parameters of interest in a meta-analysis.
We apply the idea of ‘borrowing strength’ in the thesis. Bucher et al. (1997) presented a
model for making indirect comparisons of the magnitude of treatment effects that preserved
the randomization of the originally assigned patient group. They illustrated the model with
an example that compared two experimental prophylactic regimens against the standard
prophylaxis for the prevention of pneumocystis carinii pneumonia in HIV infected patients.
Similarly, Song et al. (2003) examined the validity of adjusted indirect comparisons by using
data from 44 published meta-analyses (from 28 systematic reviews) of RCTs. Lumley (2002)
used ‘incoherence’ in networks of pairwise comparisons to estimate the treatment differences

of indirect comparisons. His model is

Yije ~ N (i = pj + mi + i + &gy 0 ); i ~ N(0,7°), & ~ N(0,w?).

The Yj;j, is the treatment difference of treatment ¢ and j in the kth randomized trial and its

2

standard error is o7;,. The parameters y; and j; represent the true average effects of the

2 represent the

treatment ¢ and j respectively. Random effects n;, and 7;, with variance 7
difference between the average effects of treatments 7 and j and their effects in the study;
they capture the heterogeniety of treatment effect. The ; represents the change in the

effect of treatment ¢+ when it is compared with treatment 7 and captures the inconsistency.
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However, the network needs a large number of different treatment comparisons and it does
not guarantee that the conclusions are reliable and generalizable. There is progress in this
area: see e.g. Hasselblad (1998); Party et al. (2003); Yazdanpanah et al. (2004) and Glenny
et al. (2005) along with texts of Eddy et al. (1992); Whitehead (2002).

Many authors have considered a Bayesian approach to meta-analysis. Domenici et al. (1999)
constructed a hierarchical Bayesian grouped random-effect model to synthesis existing evi-
dence from RCTs of which treatments were most effective and of quantifying the remaining
uncertainty about treatment effectiveness. They applied their models to migraine headache
treatments to incorporate explicitly the relationship between the different classes of treat-
ments and creating a common scale by using a latent variable to combine information from
studies that had a difference in results. Ades (2003) introduced the idea of a ‘chain of evi-
dence’ structure to mixed treatment comparisons by using the Bayesian Markov Chain Monte
Carlo (MCMC) method to fit his models. Lu and Ades (2004) proposed a range of Bayesian
hierarchical models using the MCMC to represent meta-analysis of multi-arm trials. They
extended the Bayesian hierarchical model for two-arm comparisons proposed by Smith et al.
(1995) to a general model for multi-arm trials of K-arm comparisons. As mentioned ear-
lier, the consistency of structure evidence of multi-arm trials should be taken into account.
Lu and Ades (2006) examined inconsistency using a Bayesian hierarchical model with fixed
effects or random effects for fitting multi-arm trials. It is made under the assumption that
the available evidence sources were consistent in estimating all treatment contrasts. There
is a series of articles attempting to investigate evidence consistency in a variety of different
evidence structures, see e.g. Ades and Cliffe (2002); Ades (2003); Welton and Ades (2005).
Some issues about the use of Bayesian methods in meta-analysis are related to sensitivity
of prior distribution, estimation of posterior distribution, and comparison of classical and

Bayesian approaches (Sutton et al., 2000, page 179).
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Chootrakool and Shi (2008) propose normal approximation models using an empirical logistic
transform to compare different treatments in multi-arm trials, allowing studies of both direct
and indirect comparisons. Additionally a hierarchical structure is introduced in the model
to address the problem of heterogeneity among different studies. The proposed models are

performed with the antiplatelet therapy data.

1.5 Gaussian quadrature approximation

Our approaches in this thesis involve calculation of integrals in the likelihood. We will use
Gaussian quadrature approximation to estimate those integrals throughout the thesis. This
approximation is a well-known and efficient technique for numerically evaluating integrals of
the type f_ll f(z) dr and has been used in many statistical applications. By using Gaussian
quadrature, see Abramowitz and Stegun (1972), an approximation of the definite integral of

a function f(z) can be given by

[ s Y (e) (1.2

where x,, is a particular node with weight w,, and [ is the number of nodes and weights. An
[-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule
constructed to yield an exact result for the polynomials of degree 2/ — 1, by a suitable choice
of the [ points and weights. The domain of integration for such a rule is conventionally taken
as [-1, 1]. However, the Gaussian quadrature in (1.2) can be expressed in a slightly more
general way by introducing a positive weight function ¢ into the integrand and allowing an

interval other than [-1, 1]. That is

[ s@)s@)s, (13)
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where the interval (a,b) and the weight function g(x) can be several choices. For instance,
if the interval (a,b) = (—1,1) and g(x) = (1 — 2?)"/? then this quadrature is called the
Chebyshev-Gauss quadrature. The details of other choices of (a,b) and g(x) can be found in
Abramowitz and Stegun (1972, page 875) and Scheid (1988, page 136).

1.5.1 Gauss-Hermite integration

If the interval (a,b) in (1.3) is equal to (—oco, 0o) and the weight function g(x) = e *” then
the quadrature is called Gauss-Hermite Quadrature. Gauss-Hermite quadrature is often
used for numerical integration in statistics because of its relation to a normal density. The

quadrature is defined in term of an integral of the form

/ Z F@)e"da. (1.4)

Using Gauss-Hermite quadrature, the integral (1.4) is approximated by Zln:1 wy f(xy,), where
the nodes x,, are roots of the [th order Hermite polynomial and the w, are suitably corre-
sponding weights. Tables of (z,,w,) for [ = 1,2...,10,12,16,20 are given by Abramowitz
and Stegun (1972, page 924) and for [ > 20, computation formulae are given by Golub and
Welsch (1969). Suppose that a parameter ¢ is a random effect and approximately distributed

by N(u,7?) and an integral of Gauss-Hermite quadrature can be in the form of

/ " 1088 1, 7)o, (15)

where ¢(3; 1, 72) is the density function of a normal distribution: e~ (~#)°/27* /(27)1/2 The
sampling nodes are then at d,, = p +2'/?7z, and the weights are modified to w,//7. Using
the approximation of Gauss-Hermite quadrature, the integral (1.5) is approximated by

!

/_00 F(8)@(0 : pu, 74)d6 =~ Z %f(ujL 22 z,). (1.6)

n=1
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Similarly, if the integral (1.5) involves a multivariate normal distribution of Ny (u, £2),

/ " F(8)6(8: p, 2)ds. (L.7)

Then, this integral can be approximated by

o0 l1 lk:
/ F(8)p(8; p, 2)dS ~ 77> " wl) .Y " wbf (p, + \/591/2dn) .

n1:1 nkzl

The sampling nodes are at p + v/202'%d,, and d,, = (555111), ceey Iﬂg?)

Liu and Pierce (1994) considered Gauss-Hermite quadrature in numerical integration and
also examined its effectiveness in Laplace approximation. Crouch and Spiegelman (1990)

evaluated the integral form (1.4) to the logistic normal model.

1.6 Outline of the thesis

Earlier in this chapter, we provided an overview of meta-analysis for multi-arm trials and
existing methods to make inferences on the treatment effect. Gaussian quadrature approx-
imation has also been described. As reviewed in Section 1.4.1, most existing methods for
meta-analysis of multi-arm trials use the logistic regression model with unconditional like-
lihood approach, see e.g. Lu and Ades (2004, 2006). In this thesis, we propose the normal
approximation model using empirical logistic transform (e.g. empirical log-odds ratio model)
when the sample size is relatively large and also introduce the logistic regression model with
conditional likelihood approach. The trial effects are eliminated in both models, thus our
models give a precise estimate and make the computation more stable. More details are
given in Chapter 3 and Chapter 4. A main important objective of the thesis is to use a

sensitivity analysis with the models by allowing different amounts of selection bias.
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Chapter 2 gives a brief introduction to antiplatelet therapy, which has been used for patients
with a history of coronary artery disease, heart attacks, angina (chest pain) and peripheral
artery disease. Two data sets of RCTs: antiplatelet therapy with maintenance of vascular
graft or arterial patency (W1) and antiplatelet therapy with reduction in venous thrombosis

and pulmonary embolism (W2), are presented in this chapter.

Chapter 3 first introduces statistically the structure of multi- arm trials. We propose normal
approximation models using empirical logistic transform to make inferences on treatment
effects of multi-arm comparison. The treatment effect and the trial effect are also explained
in detail. The indirect comparison plays an important role in multi-arm trials, particularly
if there is little or no evidence from a direct comparison provided in meta-analysis. Our
models allow an indirect comparison by using the idea of ‘borrowing strength’ from indirect
comparisons. Additionally, we address the correlation structure of the covariance matrix.

The proposed models in this chapter are applied to the W1 data.

Chapter 4 employs the logistic regression model for the exact binomial distribution. Two
alternative approaches, based on unconditional and conditional likelihoods, are performed
to estimate the unknown parameters in the model. All treatment effects of the model are
assumed to be random and they are normally distributed. This causes the likelihood func-
tion to involve integrals. We use Gaussian-Hermite quadrature to approximate the integral.

The logistic regression models for both approaches are illustrated with the W2 data.

Chapter 5 investigates the performance of the maximum likelihood estimation (MLE) for
the normal approximation model and the logistic regression model using unconditional and
conditional approaches with the simulated data. In comparison of the different cases, we
exploit two scenarios to generate the data. The simulated data is used to draw inferences on

various different models in order to analyse their MLEs. We specially focus an attention on
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MLESs for the logistic regression model using the unconditional and conditional approaches.

Chapter 6 begins by describing the funnel plot to identify selection bias in multi-arm trials.
We use the normal approximation model for the W1 data as a standard model in this chap-
ter. Our main purpose here is to develop inferences about parameters of interest. We employ
the idea of a sensitivity analysis by using a selection model to the normal approximation
model, allowing different amounts of selection bias. We then analyze how the parameter of
interest changes when compared to the results of normal approximation model. Goodness-
of-fit tests are used to check whether taking the selection model into account is appropriate
or not for the treatment effect estimates. We also examine the performance of the method

for sensitivity analysis by the simulation study.

Finally, Chapter 7 extends the work of Chapter 6 to the logistic regression model using the
conditional method. The idea of a selection model in Chapter 6 is adapted to the probability
of selection in the likelihood function. This chapter is structured in a similar way to the

preceding one.
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Chapter 2

Antiplatelet data

2.1 Overview of antiplatelet therapy

Platelets are remnants of cells circulating in the blood that are necessary for blood clots to
form. Platelets initiate the formation of blood clots by clumping together, a process called
platelet aggregation, presented in Figure 2.1. Clumps of platelets are further bound together
by a protein (fibrin) formed from clotting factors present in the blood. The clumps of
platelets and fibrin make up the blood clot. Blood clots are important because they restrict
the amount of bleeding when we get cut. However, if a blood clot forms inside an artery, it
can block the flow of blood to the tissue that the artery supplies and can damage the tissue.
For example, a blood clot that forms in a coronary artery supplying blood to the heart
muscle can cause a heart attack, and a blood clot that forms in an artery supplying blood
to the brain can cause a stroke. Antiplatelet drugs are a group of powerful medications that
help to prevent the formation of blood clots. They are effective in the arterial circulation,
where anticoagulants have little effect. Aspirin is the most widely used antiplatelet drug and
is in a group of medications called salicylates. Aspirin is cheap and relatively safe, despite
a possible side effect of gastric irritation or bleeding. Aspirin is also given to patients with
coronary heart disease to reduce the risk of a heart attack. It remains the most commonly

used long-term antiplatelet therapy. Other antiplatelet drugs have been introduced such as

19



Chapter 2. Antiplatelet data
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Figure 2.1: Platelet aggregation

ticlopidine and clopidogrel. These have a similar antiplatelet effect of blocking the clotting
pathway, though they do this in a slightly different way to aspirin. They seem to have fewer
side effects of gastric discomfort or bleeding. Ticlopidine or clopidogrel are prescribed, in
the short term, with aspirin for patients undergoing stent implantation with angioplasty,
to reduce the extra risk of blood clotting after the procedure. Dipyridamole is often used
with other drugs to reduce the risk of blood clots. It was originally introduced in 1959
as an anti-anginal medication: it has coronary vasodilator properties through increasing
coronary blood flow without affecting myocardial oxygen consumption. Its effectiveness as
an antithrombotic agent was subsequently demonstrated in the rabbit (Emmons et al., 1965).
Antiplatelet drugs may be prescribed for patients with a history of: coronary artery disease,
heart attacks, angina (chest pain), and peripheral artery disease (PAD). They are often

prescribed after angioplasty and stent placement and after heart bypass surgery.

Throughout the thesis, we use two collections of antiplatelet data: antiplatelet therapy with
maintenance of vascular graft or arterial patency (W1) given in Table 2.1, and antiplatelet
therapy with reduction in venous thrombosis and pulmonary embolism (W2) given in Table

2.2. The W1 data will be applied to the multi-arm trials model using the normal approxi-
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mation approach in Chapter 3 and also will be used with a sensitivity analysis in Chapter
6. The multi-arm trials model using exact binomial distribution will be undertaken with the
W2 data in Chapter 4 and Chapter 7. Additionally in Chapter 5, the W2 data will be used

for generating data to compare the performance of estimations.

2.2 Antiplatelet data: maintaining vascular patency
(W1)

After coronary artery revascularisation, whether by coronary artery bypass grafting or by
percutaneous transluminal coronary angioplasty, angiographic studies show substantial rates
of reocclusion (Gillum, 1987). For example, about one fifth of coronary artery bypass grafts
occlude during the first postoperative year (Fuster and Chesebro, 1986) and a few per cent
per year occlude thereafter (Campeau et al., 1984). These occlusions are often subclinical,
though some may produce clinical signs of myocardial infarction. Occlusion or reocclusion
is also seen after peripheral artery revascularisation, though many such occlusions are also
subclinical. Experimental and clinical evidence suggests that antiplatelet therapy may help
prevent vascular graft or arterial occlusions, particularly during the period soon after vascu-

lar procedures, before any intimal damage has healed (Pirk et al., 1990; Bonchek et al., 1982).

Collaboration (1994a) analyzed 46 RCTs of antiplatelet therapy versus the control group
and 14 RCTs comparing one antiplatelet regimen with another by setting RCTs that could
have been available by March 1990 and in which vascular graft or arterial patency was to
be studied systematically. Several treatments are involved in RCTs such as high dose as-
pirin, medium aspirin, aspirin plus dipyridamole, aspirin alone, sulphinpyrazone, ticlopidine
and the control group. The objective is to determine the efficacy of antiplatelet therapy
in maintaining vascular patency in patients. The total number of about 8000 patients at

varying degrees of risk of vascular occulusion (by virtue of disease or of having some vascular
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procedure) were in trials of antiplatelet therapy versus control and 4000 such patients were

in trials directly comparing different antiplatelet regimens.

A forest plot (see the detail in Lewis and Clarke, 2001) was used to present the results of
the meta-analysis. The treatment effect estimate of each study (odds ratio) and respective
confidence interval were plotted on one set of axes. They concluded that antiplatelet ther-
apy (aspirin plus dipyridamole (A) or aspirin alone (B)) produced a highly significant (2p <
0.00001) reduction in vascular occlusion in a wide range of patients comparing to the control
group (C). The odds of vascular graft or arterial occlusion were reduced by about 40% while

treatment continued.

Collaboration (1994a) used a forest plot in their systematic review. We will re-analyse
the data by using a normal approximation model based on empirical logistic transform in
Chapter 3. The problem of selection bias will be addressed in Chapter 6. The data used in
this thesis consists of 31 RCTs of three-arm trials. We shall call this data set “W1’. The
studies compare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and the
control group (C). Six trials compare aspirin plus dipyridamole, aspirin alone and the control
group (i.e. comparing all A, B and C), four trials compare aspirin plus dipyridamole and
aspirin alone (i.e. comparing A and B), thirteen trials compare aspirin plus dipyridamole
and the control group (i.e. comparing A and C), and seven trials compare aspirin alone and
control group (i.e. comparing B and C). The W1 data is given in Table 2.1. The ‘event’ in
the table represents the number of patients who have reocclusion on those treatments and

the ‘total’ represents the number of patients in total to enter in those groups.
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2.3 Antiplatelet data: reduction in venous thrombosis
and pulmonary embolism (W2)

During prolonged general anaesthesia or any other period of limited mobility thrombus for-
mation may be initiated in the deep veins of the legs. Specific tests disclose deep venous
thrombosis in about a quarter of all patients who have had general surgery and in about
half of those who have had orthopaedic surgery (Kakkar, 1981). Most such thromboses are
subclinical and resolve completely when mobility is restored (though a few produce per-
manent valvular damage and chronic venous insufficiency), but some may embolise to the
lungs, producing slight, substantial, or fatal effects. Venous thrombosis and pulmonary em-
bolism remain an important cause of morbidity and mortality both in surgical patients and
in immobilised medical patients. Various thromboprophylactic treatments have therefore
been devised to prevent or limit thromboembolism (Dalen et al., 1986). An overview of ran-
domised trials of perioperative subcutaneous heparin showed that among surgical patients
such treatment can roughly halve the risk not only of deep venous thrombosis but, more
importantly, of pulmonary embolism. Subcutaneous heparin is now widely recommended for
surgical or medical patients at high risk of venous occlusion, but antiplatelet therapy still is

not (Gent M., 1986; Collins et al., 1988).

Collaboration (1994b) analysed 53 trials (total 8400 patients) of an average of two weeks
of antiplatelet therapy versus control in general or orthopaedic surgery; nine trials (600 pa-
tients) of antiplatelet therapy versus control in other types of immobility; 18 trials (1000
patients) of one antiplatelet regimen versus another. Many treatments are involved in RCTs
such as high dose aspirin, medium aspirin, aspirin plus dipyridamole, aspirin alone, aspirin
plus hydroxychloroquine, ticlopidine and the control group. The objective was to deter-
mine the efficacy of antiplatelet therapy as prophylaxis against deep venous thrombosis or

pulmonary embolism in surgical and high risk medical patients. It had previously been
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supposed that antiplatelet therapy did not influence venous thromboembolism, and many
surgeons and physicians do not use it routinely for thromboprophylaxis, even for patients

who are at substantial risk of deep venous thrombosis or pulmonary embolism.

Collaboration (1994b) used a forest plot to present the results of the meta-analysis. They
concluded that antiplatelet therapy - either alone or, for greater effect, in addition to other
proved forms of thromboprophylaxis (such as subcutaneous heparin) - should be considered.
Also antiplatelet therapy produced a highly significant (2p < 0.00001) reduction in deep

venous thrombosis by about 67%.

As shown in Table 2.2, the sample sizes for many studies are quite small. An exact logistic
regression model will therefore be used with both unconditional likelihood approach, see the
details in Chapter 4. In the thesis, we will investigate 27 RCTs from systematic reviews of
Antiplatelet Trialists’ Collaboration (Collaboration, 1994b) in total. We shall call this data
set ‘W2’. The studies compare three treatments: aspirin plus dipyridamole (A), aspirin alone
(B) and control group (C), where seven trials compare aspirin plus dipyridamole, aspirin
alone and control group (i.e. comparing all A, B and C), ten trials compare aspirin plus
dipyridamole and control group (i.e. comparing A and C) and ten trials compare aspirin alone
and control group (i.e. comparing B and C) . The W2 data is given in Table 2.2. The ‘event’
in the table represents the number of patients in whom deep venous thrombosis was detected
by systematic fibrinogen scans or venography, or both, after general and orthopaedic surgery
and in high risk medical patients. The ‘total’ represents the number of patients controlled

in each group.
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Table 2.1: The W1 data: 31 RCTs of aspirin data

Study number Number of patients
Aspirin + Dipyridamole (A) Aspirin (B) Control (C)
event /total event/total event&total
1 15/49 10/47 18/51
2 35/162 37/155 47/153
3 83/368 85/373 114/371
4 23/100 16/100 39/100
5 6/16 2/16 12/17
6 0/100 6/100 12/100
7 20/60 22/64
8 26/313 27/317
9 10/41 6/40
10 8/55 15/55
11 33/160 37/160
12 37/202 81/205
13 4/18 9/30
14 17/62 20/63
15 8/61 24/64
16 13/47 27/46
17 21/34 14/35
18 11/72 15/68
19 6/187 13/189
20 86/286 86/263
21 4/33 15/32
22 15/50 12/50
23 7/22 19/31
24 15/132 13/67
%5 15/71 16/71
2% 6/29 15/31
27 7/68 17/69
28 24/215 47/213
29 19/148 28/150
30 6/19 18/25
31 2/47 11/45
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Table 2.2: The W2 data: 27 RCTs of aspirin data

Study number Number of patients
Aspirin + Dipyridamole (A) Aspirin (B) Control (C)
event /total event/total event&total
1 3/31 7730 13/35
2 6/12 6/9 4/9
3 3/30 0/32 13/34
4 0/100 4/100 5/100
5 6/18 8/16 8/25
6 1/11 2/10 4/11
7 0/11 2/14 1/14
8 13/75 35/75
9 12/85 24/75
10 3/38 14/66
11 1/30 11/36
12 20/32 21/32
13 10/20 8/20
14 8/21 8/22
15 3/13 6/15
16 1/19 7/19
17 6/40 14/40
18 12/153 33/150
19 5/702 11/679
20 9/56 11/49
21 0/357 32/357
22 16/50 12/50
23 7/138 17/140
24 27/66 29/63
25 16,/44 20/44
26 7/26 4/25
27 11/58 23/59
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Chapter 3

Meta-analysis of multi-arm trials

using normal approximation approach

3.1 Introduction

As described in Chapter 1, in standard two-arm comparison, evidences from two treatments
have been combined directly in meta-analysis. In multi-arm trials, we aim to summarize
the studies providing more than two arms to estimate the overall treatment effects from the
pair-wise treatment comparison. Some studies in multi-arm trials might give useful infor-
mation on indirect comparison in a situation where the treatments have not been directly
compared to the control group. Treatment comparisons in meta-analysis have been divided
into two types (Glenny et al., 2005). One is to compare two treatments directly, called direct
comparison, or head-to-head comparison. The other is to use information from indirect com-
parisons. For example, from antiplatelet data given in Table 2.1 of Chapter 2, there are three
treatment comparisons available: treatments A, B and C; the control group of meta-analysis
is treatment C. Three groups of studies compare treatment A versus C, treatment B versus
C, and treatment A versus B, respectively. If our aim is to compare treatment A versus

B then the studies comparing treatment A versus C and treatment B versus C provide the
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indirect comparison for treatment A versus B. The direct and indirect comparisons for RCTs
in meta-analysis have been explored by several authors (Bucher et al., 1997; Lumley, 2002;
Song et al., 2003; Lu and Ades, 2004, 2006). This chapter proposes the model for multi-arm

trials approximated by a normal approximation model (Chootrakool and Shi, 2008).

The chapter is organized as follows. We begin by introducing the data structure of multi-
arm trials in Section 3.2. Section 3.3 discusses the normal approximation model using the
empirical logistic transform. The model on a log-odds scale is performed in Section 3.4, and
the direct and indirect comparisons are given. Section 3.5 describes the model on a log-odds
ratio scale including both comparisons. The maximum likelihood method and its properties
are illustrated in Section 3.6. We give the standard errors of MLEs in Section 3.7. In Section
3.8, the proposed models in the chapter are applied with the W1 data, given in Chapter 2.

The last section concludes the ideas of this chapter and gives some comments.

3.2 The data structure of multi-arm trials

Suppose that M RCTs of a meta-analysis make multi-arm comparisons between K + 1
treatments. The indices ¢ = 1,...,M and 57 = 0,1..., K stand for the studies and the
treatments respectively, where the index 7 = 0 stands for the control group. For the ith
study, let r;; represent the number of an unsuccessful outcome on treatment j and let n;;
denote the number of observation in the corresponding group. Let m;; be the probability of
an unsuccessful outcome of a patient given the treatment j (treated as a failure) in the ith

study. The r;; has a binomial distribution

Tij ~ Bin(ﬂij,nij); 1= ]_,...,M andj = 0,1,K (31)

Some studies might not have all the treatments available. For example, from the W1 data,

treatment C is not available in the studies 7 - 10. The data structure is analogous to an

28



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approach

incomplete-blocks design, which has been investigated by several authors: Scheff’e (1959,
page 161), Pocock (1989, page 121) and Hinkelmann and Kempthorne (1994, page 290). To
define a data structure of multi-arm trials, we shall introduce an index set .J; comprising the
treatments involved in the ith study. The data structure of multi-arm trials is represented
as

D = {(’I“ij, ni]-) =1, ..., M; 5 € Jz} (32)

3.3 Normal approximation model based on empirical
logistic transform

According to the binomial distribution (3.1), the mean and variance of r;; are n;;m; and
ni;jmij(1 — m;;) respectively. An important property of the binomial distribution is that
as the number of observation n;; increases, the degree of asymmetry in the distribution
decreases and also the binomial distribution becomes more closely approximated by the
normal distribution (Collett, 1991, page 20). Let 1)(x) be the function log (/1 — z) and let
d;; be the parameter of interest, given by d;; = ¢(m;;). From Cox (1970, page 31) if n;; is
large and ;; is not too near 0 or 1, we substitute m;; by r;;/n;; in ¢ (m;;). Then the §;; is
reasonably estimated by

Xij = 1(rij/nij) = log <L> : (3.3)

nij — ’I“i]‘

which is nearly normally distributed and we call X;; the empirical logistic transform of

(735, nij). As n;; approaches infinity, the asymptotic mean and variance are respectively
Tij nij

E(X;;) = log < ) and Var(X;;) = —r(n )
ig\1tij ij

1—71'2']'

Modifying the transformation, the empirical logistic transform X;; and Var(X;;) need modi-

fication only if r;; = 0 or n;; when the logistic transform in (3.3) is undefined. With extensive
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data, occasional extreme values of r;; are to be expected, even if on the whole the conditions
for large-sample theory apply. Haldane and Smith (1948) and Anscombe (1956) proposed a
transform defined by

rij +a
X = 1 v ). 3.4
Ja) = log (n ut ) (3.4

The idea is to choose the constant a so that the expected value of (3.4) is as nearly as possible
6;; = log(m;j/(1 — m;;)). As a result an appropriate choice of a is 1/2. We then have the
empirical logistic transform as

i +0.0
Xi; = log L (3.5)
nij—rij+0.5

The asymptotic mean and variance are respectively

Tij Ny +1

(Tij + 05) (’ni]‘ — ’I“ij + 05) )

E(Xij):log< ) and  Var(X;) = (3.6)

]-_7Tij

3.4 Empirical log-odds model

In clinical trials without a control treatment, it is impossible to be sure that any response
is due solely to the effect of the treatment and the importance of a new treatment can be
over-stated. Thus the control treatment may be the standard treatment (a positive control
treatment) or, if one does not exist, may be a negative control treatment, which can be a
placebo (a treatment which looks and tastes like the new drug but which does not contain
any active compound) (Petrie and Sabin, 2005, page 34). The control treatment correspond-
ing to each study shall be called the ‘baseline treatment’. In a meta-analysis, more than
one studies are combined so it is possible to have more than one baseline treatment in the
meta-analysis. In comparing in multi-arm trials, we can have only one control treatment

in a meta-analysis, thus we shall call the control treatment for a meta-analysis ‘control group’.
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This section presents the model using the empirical logistic transform and based on the
requirement of (r;;,n;;) that n;; is large (larger than 20) and r;; is not too small (near 0)
and not too close to n;;. We start with a special case of the model. Then the general model

will be explained including the direct and indirect comparisons.

3.4.1 Meta-analysis of multi-arm trials

We first define a model for a special case in which each of the M studies includes all K +
1 treatments. For this special case, the control group of meta-analysis and the baseline
treatment for all studies are treatment ‘0’. There is a direct comparison only in this meta-
analysis. Suppose that 7, and r;; have binomial distributions Bin(n;, m) and Bin(n,;, 7;;)
respectively for j = 1,..., K. The data structure is given in (3.2) where the set .J; for all M
studies is {0, ..., K'}. For the ith study, let X,y and X;; be the empirical logistic transforms
(or empirical log-odds) for (i, nio) and (r;;, n;;) respectively, as defined in (3.5). Based on
the discussion in Section 3.3, normal approximation models for X;y and X;; on the log-odds

scale can be defined by

Xio = o; + oi€ip, (3.7)

Xij = «; + 51’,0]’ + Oij€ij, ] = 1, Ceey K. (38)

They are called an empirical log-odds model. The parameters o2, and a?j are the variances
of X;o and Xj; respectively, approximated from (3.6). The parameters €;, and ¢;; are inde-
pendent, follow the standard normal distributions and correspond to the random sampling
errors of the models X,y and X;; respectively. The random sampling errors (o;o€;0 and o;;€;5)
are therefore independent and normally distributed as N (0, 0%) and N(0, 07;) respectively.

The «; in both models are the trial effects representing the difference across studies. The

d;,0; is a parameter of interest, which is the treatment effect between the control group and
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treatment j in the ith study. It is obtained from 6;; = d;; — d;o, called the log-odds ratio

between treatment j and the control group.

Trial effect

Two assumptions are usually made about the trial effect ;. The first one is that the trial
effects are assumed to be study-level effects, which means that the ;s are different param-
eters and are treated as nuisance parameters in the model. We need to include M different
unknown parameters in the model. The second one is that we may assume a model for the
a;’s. A special case is to assume that the trial effect is a fixed effect, defined by «; = ay.
Conversely, it may be assumed to be a random effect, given by a; ~ N(pa0,72,), Where
lao 18 the overall mean of the trial effect and 7,9 measures the magnitude of the variation
between the studies. To capture skewness and heavy tails in the distribution of the trial
effect, a mixture of normal distributions may be used, see Domenici et al. (1999). However,
in practice the trial effects in most meta-analysis would not satisfy any model since different
experiment designs and different data analysis models are used in different studies. Most of
the existing methods therefore used the first assumption. However, the number of unknown
parameters (for the trial effect) is the same as the number of studies if the first assumption
of the trial effect is used. This will result in some theoretical and computational problems.
The accuracy of the estimation depends on the sample size of each study not the overall
sample size of the pool in the meta-analysis. The estimates of some parameters may not be
consistent, see Lubin (1981). Due to the large number of parameters, the computation is

usually unstable. We therefore propose the empirical log-odds ratio model in Section 3.5.

Treatment effect
The treatment effect can be assumed to be a fixed effect or a random effect. The fixed effect
is defined as 6;0; = poj, where pig; is a fixed treatment effect between the control group

and treatment j for all studies. There are several different ways to deal with the random
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effects, for example, see DerSimonian and Laird (1986). The treatment effect is assumed to

be random and normally distributed as d;0; ~ N (40, 75;)

From the models (3.7) and (3.8), we shall assume that the trial effect follows the first as-
sumption and the treatment effect is a random effect, i.e. all the ;s are different parameters
and the treatment effect is a random effect N (j0;, 7'023-). The treatment effects d;; and 6; o
for j # k and j, k € {1,..., K} may be dependent. This is because they involve ;5 in the
same way; thus the covariance between the treatment effects ;0; and J; o are not equal to
zero (Cov(d;05,0i0k) 7 0). Let pji be the correlation coefficient between each pair (6; 05, d;0k)
for j # k and j,k € {1,..., K}. The treatment effects 9,;, for j = 1,..., K in the ith study

are therefore modelled by the following multivariate normal distribution,

2
5z‘,01 Ho1 To1 P127T01702  --- P1KTO1TOK
05,02 Ho2 P12T01702 o To2Tq
) 02 <o P2KT02TOK
~ MV N , . (3.9
2
030K HoK P1ETO1TOK  P2KT02TOK - - - Tok

The o is the overall mean effect between the control group and the treatment k. The 732,
is a measure of between-study heterogeneity of the treatment effect d;,. The correlation
coefficient p;; measures the amount of linear association between the d;o; and the d; oz. Also
the pjrTo;70k i the covariance between the treatment effects 0;9; and d;r. From (3.9), the
entries on the diagonal of the covariance matrix are often called the heterogeneity param-
eters of the treatment effects. The heterogeneity parameter measures the variation in the
treatment effect between studies. If there is a very little variation between studies then a
fixed effect may be appropriate for the treatment effect. The useful properties of the model

parameterisation are the correlation structure of the covariance matrix:

1. An important special case is that the heterogeneity parameters of the treatment effects

are assumed to be the same, called homogeneity of variances. The correlation coeffi-
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cients between each pair (0;;,d;01), for j # k, and j,k € {1,..., K} are equal and
take the value 1/2 because the treatment effects ; o; and 0; o involve log (mo/1 — 7o)

in the same way. The covariance matrix in (3.9) for this assumption is

L p p
p 1 ... p

2 , where p=1/2.
pp 1

2. The above assumption may not be reasonable in some applications. We thus allow the
heterogeneity parameters of the treatment effects to be different for each treatment
effect, called heterogeneity of variances. The covariance matrix will be in the standard

form as shown in (3.9).

3.4.2 Meta-analysis of multi-arm trials with both direct and indi-

rect comparisons

In some circumstances, a meta-analysis may contain different information to the special
case. For example, some studies might compare fewer than K + 1 treatments, or some
baseline treatments may be different, or both cases could occur simultaneously. We shall
propose a general model adapted from the special case described in the previous section.
Let b(i) denote the baseline treatment corresponding to the ith study, which can be the
control group or any other treatments. As mentioned earlier about indirect comparison, in
a situation that the treatments in some studies can not be compared directly to the control
group, we need to use evidence from the external studies. To make it clear, if b(i) = 0 then
the direct comparison is involved in this study. Conversely, if b(i) # 0 then the study makes
indirect comparison. Let J;) = J;\ {b(i)} represent the set of treatments involved in the ith

study but excluding the baseline treatment b(7). Let k; and k; + 1 denote the number of
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treatments in the sets .J;) and J; respectively. The ry;) and r;; are binomially distributed
as Bin(nay), mipe)) and Bin(ng;, m;;) for j € Ji; respectively. The empirical log-odds models

for the general case in the ith study are defined as

Xivy = Qi+ Oip(i)€in(i) (3.10)

Xij = o; + (51',1,@)]‘ + 0ij€i5, j e J(Z'). (3.11)

These models can be used for both comparisons. According to above discussion, let D and [
be sets of studies that make the direct and indirect comparisons respectively. The assump-
tions of the trial effect and the treatment effect are similar to the special case (assumed to be
different parameters and random effect respectively). The treatment effect 6;,;); in (3.11)
can be direct treatment effect if 7 € D or indirect treatment effect if 7+ € I: they are defined
as follows.

di0j ~ N(piog, 75;) ifie D,
Oib(i)j = ’ (3.12)

6i,0j - 6i,0b(i) ~ N(,U’Oj — Hob(i)s 7'02]' + Tgb(i) — 2pjb(i)7'0j7'0b(i)) ifeel.
where pjy;y is the correlation coefficient between d; o; and d; gp(;). For example, from the W1
data, suppose the treatment A, B, C represent aspirin plus dipyridamole, aspirin alone and
control group respectively. The baseline treatment for the studies 7-10 is B thus the indirect

treatment effect can be written as
8i.aB = 0iac — 0ipc ~ N(tac — o, Tac + The — 2pABTAcTBC), i =T, ..., 10.

Next, we shall consider the treatment effect in a matrix form, of which will be in the form of
an index vector and the treatment effect model from the special case. From the treatment
effect model (3.9), let d; and g, represent the vectors of (8;05,7 = 1,..., K)" and (poj,j =

1,..., K)" respectively where the superscript ¢ stands for matrix transposition and let £2
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represent the K X K covariance matrix. The model (3.9) can be written as

62"[) ~ MVN([J,U, Q[)) (313)

This is called the basic model of random treatment effect. Let F;; be the index vector of

length K consisting of elements 0 and 1 corresponding to d;(;);, given by

0,...,.0 ,. 1 ,...,0) ifieD,
F;; = R o (3.14)
O,..., =1,...,.1 ,...,0) ifiel
N ~—
b(i)th Jth

Now, the random effect ¢;;); can be written in the form of (3.13) and (3.14):
5i,b(i)j — Fijéi,[) ~ N(Fij[,llo, FZJQOFZ) (315)

As before, the covariance between the treatment effects 0;53;); and d; ), for 7 # k and

J, k € Ji) may be dependent. For the ith study, let F; be the following k; x K matrix
Fi= (Fij)kixx, for j € J, (3.16)
where Fy; is as defined in (3.14). Let §; denote the vector (0;pz:);,J € J))" then we have
8; = Fibio ~ MVN(p;, £2;), (3.17)

where

w, =Fipg and 2, = F,QF. (3.18)

Referring to the assumptions of covariance matrix £2; in the previous subsection, the corre-
lation structure of §; can be considered accordingly. More discussion will be given in Section

3.8.
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3.5 Empirical log-odds ratio model

To avoid the problem of many nuisance parameters and inconsistent estimate, the trial effects
can be eliminated from the empirical log-odds models by using the empirical log-odds model
on the log-odds ratio scale. Those models in Section 3.4.1 and 3.4.2 are considered here as

following subsections.

3.5.1 Meta-analysis of multi-arm trials

Let Y;o; be the empirical log-odds ratio between (r;;,n;;) for j = 1,..., K and (740, 7).
This can be written as Y;o; = X;; — Xjp. According to the empirical log-odds models (3.7)

and (3.8) in the special case, they can be defined on the log-odds ratio scale as
}/i,Oj == 62’,0]' + 04,05€4,05 j =1... s K. (319)

We shall call this an empirical log-odds ratio model. Notice that the trial effect is eliminated

2

in the model. The d;; is a random treatment effect defined in (3.9). The variance o7; is

—

obtained from a summation of 0% and ¢. For notational convenience, let e;; denote a

2
Z‘]'
random sampling error o, ;€;0; for the model Y;o; and normally distributed as N(0, aioj).
The model can be written as Y;o; = d;0; + €i0;- The e;o; and e; o, are not independent for

j#kandjke{l,...,K}, derived as

COU(ei’()j, 61"0]9) = COU(XZ']' — XiO;Xik — ng) = V(M’(Xig) = UiZO' (320)
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The random sampling errors e; o; are distributed as a multivariate normal distribution, given

by
€301 0 01'2,01 O - Oh
€i,02 0 01'20 03,02 ce Uz'20
~avn | T , (3.21)
€i,0K 0 01'20 01'20 e 0-22,0[(
where 07, = Var(Yio;|di0;) = 05 +03;. If we assume a random effect model for d;9; as given

in (3.9), the empirical log-odds ratio model for the ith study is the following multivariate

normal distribution:

2 2 2 2
Yi,Ol Ho1 Tor T 0p1 P12T01T02 + 05y .. P1KTo1ToK + Ojp
2 2 2 2
Yio02 MVN o2 P12T01 702 + 05 Too T 002 -+ P2KT02Tok + Ojp
~Y
)
2 2 2 2
Yior Mok PIKTO1ToK + Oj9 P2k To2Tok + Tjg - - - Tox + 0ok
(3.22)

The pigy is the overall mean effect between the control group and the treatment k obtaining
from the mean of the treatment effect. The term 73, + 0, is the variance of Y; or. The term

PikTojTok + 02y is the covariance between Y;; and Y or where j # k and j, k € {1,..., K}.

3.5.2 Meta-analysis of multi-arm trials with both direct and indi-

rect comparison

As in the previous subsection, let Y;;;); be the empirical logistic transform between (r;;, n;;)
and (7iy(i), nip(iy). The empirical log-odds models (3.10) and (3.11) can be defined on the

log-odds ratio scale by

Yipwi = Oipyi + Oipiyj €iprgs I € Jy- (3.23)
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oy
i

The variance of aib(i) ; 1s approximated by a/fb(\z.) +07;. The random treatment effect model for
dipgiy; is given in (3.15). As defined in the previous section, let e;,(;); represent the random
sampling error o;p;);€ip(:);- Lhe e;p;); can be given in the form of the index vector and
random sampling errors model. From (3.21), let e, be the vector (e;;,7 = 1,..., K)" and
let 3; o be the K x K covariance matrix. The model for random sampling errors given in

(3.21) can then be rewritten as
€0~ MVN(O, Zi,O)- (324)

We call it as a basic model of random sampling errors. Using the index matrix defined in

(3.14), the random sampling error ei,n(i)j 15 taken in the form of
eip(iy; = Fijeio ~ N(O, FijZi,OFfj). (3.25)
Let e; be the vector (e;4z);,7 € J))". From (3.21), we have
e; =F,e;p~ MVN(0, X)), (3.26)

where F; is given in (3.16) and X; = F; ¥, (F!. Similarly, let Y, be the vector (Y g;,7 =

1,...,K)" The basic model for empirical log-odds ratio model (3.22) can be defined as
Yi,O ~ MVN(II,O, QO + Zi,O); (327)
and the model (3.23) can be defined by

Yioiyi = FijYio ~ N(p;, Fyj QOF% + Fijzi,oFfj)- (3.28)
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Let Y; be the vector (Yjuu);, 7 € Ju))', which may be written as Y; = F;Y,,. In matrix

notation, the model (3.23) is
Y, =8, + e ~ MVN(w,, V), (3.29)

where §; and e; are given in (3.17) and (3.26) respectively. The p, is given in (3.18) and the

covariance matrix V; = £2, + X,.

3.6 Maximum likelihood estimation

From model (3.29), Y; is distributed as a multivariate normal distribution MV N (u,;, V;).

The probability density function for Y; is in the form

1
€
(2m)k/2 |V /2

p(Y;) = ~(Yi=p) VI (Yim )2, (3.30)
We aim to estimate the unknown parameters for the meta-analysis consisting of M studies.
Let 8 be the collection of all unknown parameters of pu and £2. Suppose that @ can take any
value within an admissible range ©. Let Y denote the collection Y; for ¢ = 1,..., M. The

likelihood function for the meta-analysis is defined as L(0|Y), taking the form

1
[T (272 [V,

=1

L(8]Y) = o ML (Y- ) VI (Y- ) /2. (3.31)

The method of maximum likelihood (ML) is to find the value @ within © which maximises

the likelihood functions of @. In other words
6 = arg maxg_,L(0]Y).

This is the maximum likelihood estimator of 8. The likelihood function L(0|Y) represents

the joint probability, or likelihood of observing data that has been collected in the meta-
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analysis. The term joint probability means a probability that combines the contributions
of all the studies in the meta-analysis. Let [, stand for the log-likelihood function in the
normal approximation model based on the empirical logistic transform. The MLE is usually
determined by maximizing the log-likelihood function 1,,(0Y) = log L(0]Y). Differentiating
[,(0]Y) with respect to 8, termed as a score function, gives

_ L6y

U(o) 50

By setting the score function to zero and solving for @, the MLE 0 can be obtained.

3.7 Standard error of parameter estimation

Following the estimation of the unknown parameters in the empirical log-odds ratio model,
suppose that m unknown parameters 6;,60,,...,0,, are in the set @ of a meta-analysis. The
m derivatives of the log-likelihood function with respect to 6y, 6-,..., and 6,, are called the
efficient scores, whose jth component is 91, (0]Y)/00; for j = 1,2,...,m. Now let (@) be
the m x m matrix of second partial derivatives of [,,(0]Y) ,where the (j, k)th entry of H(8)
is

0%1,(0]Y)

00,00y,

for j =1,2,...,mand k = 1,2,...,m. The observed Fisher information (Palmgren, 1981)
Z(0) with (j, k)th entry is given by

xO)s =~ (") (3.52)

for j = 1,2,...,m and k = 1,2,...,m. The observed Fisher information matrix Z(6)
plays a particularly important role in maximum likelihood estimation. The inverse of Z(80),
denoted by Z(0)~', is the asymptotic variance-covariance matriz of the maximum likelihood

estimates of the unknown parameters. Additionally, standard errors for MLEs can be found
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-~

approximately by removing the dependence of Z(€) on 0, i.e. Z(0) ~ Z(0). In other words,
the asymptotic standard error (s.e.) of é\] is the square root of the jth diagonal entry of
Z(6) !, given by

s.e.(0;) ~ \/T(6)7, (3.33)

for y = 1,2,...,m. We can also determine approximately the ellipsoidal confidence regions
for @ using

(6-0)'Z(0)(6—0) ~ 2.

From the standard error of é\j, 100(1-v)% confidence limits for the corresponding true value
0; are

é\j + 27/23.6.(@), (3.34)

where 2z, /5 is the upper /2 point of the standard normal distribution. By the proposition
of consistency (Bulmer, 1979), suppose that the estimator 0 = (é\l, c 5;) is the MLE for
0 = (0q,...,0,). Then the é\] are consistent for §; where j = 1,...,m. By the proposition
of asymptotic normality (Bulmer, 1979), the estimator 0 is approximately distributed as

6~ N(0,Z(0)").

3.8 Application to antiplatelet therapy data (W1)

In this section, we shall use the proposed model to the W1 data given in Table 2.1 of Chapter
2. According to this data, most of total number of patients are large (larger than 20), thus

the normal approximation model can be applied.

3.8.1 The model

From the W1 data, there are 31 studies (or RCTs) in total, investigating the use of aspirin
plus dipyridamole or aspirin alone in comparison with the control group. The studies com-

pare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and control group
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(C). Six studies compare A, B and C, four studies compare A and B, thirteen studies com-
pare A and C and seven studies compare B and C. For convenience, we partition the dataset

into four groups of studies,

Gy ={1,...,6}, Go={7,...,10}, G5 = {11,...,24} and G, = {25,...,31},

comparing treatment A versus B versus C, A versus B, A versus C and B versus C, respec-
tively. Let r;4, ;5 and ;o be the numbers of patients who have reocclusions on treatments
A, B and C respectively where the ith study is in G{UG,UG3, G1UG, UG, and G UG3UGY,
respectively. The total numbers of patients are n;4, n;p and n;c respectively. Let w4, m;g
and m;c be the probabilities of patients that have reocclusions on treatments A, B and C

respectively in the ¢th study. The r;4,r;p and r;c are thus binomially distributed as

TiA NBin(m-A,niA), iEG1UG2UG3,
TiB NBin(?TiB,niB), iEG1UG2UG4,
ric ~ Bin(mc, nic), 1€ GLUG3 UGy

Suppose that X;4, X;p and X, are the empirical logistic transforms for (r;a,n;a), (rip, nip)
and (r;c, nic) respectively and are formulated in (3.5). For example, the empirical logistic
transform of X 4 is defined by log(r;a+0.5)/(n;4 —1r;4+0.5). From the discussion in Section
3.3, the X4, X;p and X, have approximate normal distributions with means and variances
given in (3.6). For example, the X;4 has an approximate normal distribution with mean
log(mia/(1 — m;4)) and variance 0/2-2:1 = (nja +1)/((ria +0.5)(n;4 — 174 + 0.5)). The normal
approximation models using the empirical logistic transforms can therefore be applied with

the data.

The baseline treatment for G, G3 and G, is the control group, can be written as b(i) = C

for i € G; UG5 U G4. While the baseline treatment for Gy is the treatment B, b(i) = B for
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1 € G5. The meta-analysis involves the direct comparison in Gy, GG3 and G4 and indirect
comparison in GG5. The sets for both comparisons are D = {G1,G3,G} and T = {Gy}
respectively. First, by using the models (3.7) and (3.8), the empirical log-odds models for

each group can be given by

Xic = a; + oic€ic,
i € Gy, \ Xia = @; + i ac + 0ia€ia,

Xip = a; + 0; pc + 0iBé€in,

Xip = o, + 0;gé€ip,

1 € Go, X
Xia = o; + 0 ap + 0ia€ia,
)
, Xic = a; + oic€ic,
1€ Gg, {
Xia = 0 + 0 ac + Tia€ia,
;
, Xic = a; + oic€ic,
1 € Gy, {

Xip = o; + 0; pc + 0iB€iB.

The trial effects are assumed to be different and the treatment effects d; a4, d; pc and 6; ap
are assumed to be random as in (3.12). The €;4, €;5 and €;c are independent, following the
standard normal distributions and corresponding to the random sampling errors of X;4, X;g
and X,c respectively. All random sampling errors are therefore independent and normally

distributed as N(0,c0%,), N(0,02;) and N(0,0%), respectively.

Next, we will determine the basic model for the random treatment effect. Let §;¢ and g, rep-
resent the vectors (d; ac, 0 pc)’ and (pac, ppc)’ respectively and let £2y denote the 2 x 2 co-

variance matrix corresponding to ;. Thus, the model ;¢ is distributed as MV N (p,, £2),

i 73 TACT
AC VVN Hac , AC PTACTBC . (3.35)

2
5i,Bc HUBC PTACTBC TBc
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The pac and ppe are the overall mean effects between the control group C and treatments
A and B, respectively. The 73, and 7%, measure the between-study heterogeneities of the
treatment effects d; 4c and 6; pc respectively. For notational convenience, we let p be the
correlation coefficient between 6; 4 and §; pc. By using the index matrix given in (3.16),
the index matrix F; for G is the 2 x 2 identity matrix; the F; for G5, G3 and G4 are
(1,-1), (1,0) and (0, 1) respectively. The treatment effect for the ith study is defined as
0, =F;8,0 ~ MVN(F;u,, F;2,F!). The model §; for G; consisting of three arms which is
modelling by the basic model (3.35). The §; for G5 is given by

Siap = Fibio = 0;ac — 0i.pc ~ N(pac — e, Tac + The — 2pTAcTBC)- (3.36)

Similarly the 6; 4c and &; pc for G3 and G4 are normally distributed as N(puac,75.) and
N(upc, The) respectively. Now we have the treatmenet effect models for each group. As
mentioned before, we have 31 nuisance parameters in the models. To overcome the problem
of inconsistency, the empirical log-odds ratio models are suggested here in order to eliminate

the trial effects.

To present the empirical log-odds ratio models for the data, we first need to identify the
basic model for random sampling errors and empirical log-odds ratio models. Let e; be the
vector (e; ac, ez-,Bc)lt and let X; ; denote the 2 x 2 covariance matrix of e; . The basic model

e;0 is normally distributed as MV N (0, X, ), given by

2 2
€i,AC 0 0;.ac  Oic
~ MV N , ) (3.37)
2 2
€i.BC 0 Oic  OiBcC

To obtain the basic model for empirical log-odds ratio models, let Y; o be the vector (Y; ac, Vi pc)".
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Then, Y; is distributed as MV N (g, 20 + X p), i.e.

Yiac tac Tic + o} PTACTBC + OF

YiBc H1BC PTACTBC + Oy The + O-iQ,BC
By setting Yz = FiYi70, the YiS for Gl, GQ, G3 and G4 are (}/;7Ac,}/;730)t, Y;’,AB, Y;’,AC’ and
Yi o respectively. The §; for each group is the same as defined in the empirical log-odds
models. The random sampling error e; for each group is F;e;o ~ MV N(0,X;); where

X, =F,; %, F.. Specially, the log-odds ratio models are

Yiac = 0i,ac + €iac,

i€ G, (3.39)
Yi e = 0i,pc + €iBes

i € G, Yiap = 0iap + € aB, (3.40)

i € Gjs, Yiac = 0i,ac + €i,ac, (3.41)

1 € Gy, YiBc = di,c + €iBc. (3.42)

The trial effects are no longer in the models. The model (3.39) is normally distributed as
shown in (3.38). Additionally the empirical log-odds ratio models (3.40)-(3.42) for G5 - G4
are normally distributed as N (pac—ppe, TAp+0; 4p)s N(tac, Tic+07 ac) and N(ppe, Tho+

2 . s )
ai’Bc) respectively, where 735 = T3, + Tao — 2pTacTRC-

3.8.2 Maximum likelihood estimation

To make inferences, the maximum likelihood method is used to estimate the unknown pa-
rameters in the empirical log-odds ratio models (3.39) - (3.42). The aim is to estimate

the unknown parameters for the meta-analysis consisting of 31 studies. The log-likelihood
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function 1,,(0) for the empirical log-odds ratio models is performed as

> " logp(Viac, Yincl0) + > logp(Yianl8) + D logp(Yiacl®) + > logp(Yiscl6).

i€Gy i€Go 1€G3 1€Gy

The [,,(0) is the summation of the log-likelihoods from G to G4 where G4, G3 and G4 are in
the set D and Gy is in the set I. The p(Y; ac, Yipc|0), p(Yiap|@), p(Yiac|0) and p(Y; pc|0)
represent the joint probabilities of observing data that has been collected in G, G5, G35 and
G4 respectively. We used the function nime in the software R to calculate the MLEs (R
Development Core Team, 2007). As described in Section 3.4.1, there are two assumptions of
heterogeneity parameters: homogeneity and heterogeneity variances. Since there are only 4
studies in (9, in absence of additional information, we assume homogeneity of variance for
the model. The heterogeneity parameters for the models (3.39) - (3.42) are assumed to be
the same: 74 = Tgc = Tap = 7 and the correlation coefficient between the 64 and dpc
takes the value 1/2. The collection of unknown parameters is therefore @ = {yac, upc, 7°}-
For convenience, let 0, 0, and 53 stand for juac, e and 72 respectively. To estimate the
standard error of maximum likelihood estimator, let /;; stand for the related partition of the
second derivatives of the log likelihood function in terms of §; and ;. Using the equation

(3.32), the 3 x 3 observed Fisher information matrix Z(0) is written as

191 01 (0) l91 02 (0) l91 03 (0)
I(e) - 19291 (0) l9292 (0) l9293 (0) : (343)
16‘36’1 (0) 1936’1 (0) 1936’3 (0)

Standard errors can be calculated from the inverse matrix of Z(8).

3.8.3 Numerical results

The estimates of the unknown parameters pac, ppe and 7 are shown in Table 3.1.
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Table 3.1: The results for the empirical log-odds ratio models on the log-odds ratio (LOR)
and odds ratio (LO) scales

0B dac dBc
HAB TAB Hac TAC HBC TBC
LOR 0.108146 0.275320 -0.568930 0.275320 -0.677076 0.275320
(SD) (0.118645)  (0.136747) (0.161554) 0.136747) (0.150660) (0.136747)
95%CT  (-0.12,0.34) (0.007,0.54 (-0.88,-0.25) (0.007,0.54) (-0.97,-0.38)  (0.007,0.54)
OR 1.114210 0.566130 0.508100
95%CI  (0.88,1.40) (0.41,0.77) (0.37,0.68)

They are denoted by fiac, jigc and 7, respectively. Note that the estimate of j14p is obtained
from jiac — ipc. The overall means of the treatment effects A versus B, A versus C and
B versus C are 0.108146, -0.568930 and -0.677076 respectively and the variations between
studies in those comparisons are the same, 0.275320. Taking the inverse of the observed
Fisher information matrix (3.43), the asymptotic variance-covariance matrix of the unknown

parameters for the models (3.39) - (3.42) is

0.026110 0.013530  —0.0040
(0) " = 0.013530 0.022732 —0.001220 (3.44)
—0.0040 —0.001220 0.018778

From this matrix, the asymptotic variances of jiac, jigc and T are the entries on the diagonal
of the matrix, 0.26110, 0.022732 and 0.018778 respectively. As a result their asymptotic
standard errors are 0.161554, 0.150660 and 0.136747 respectively. The variance of jisp is

estimated from

Var(pag) = Var(fiac) + Var(iige) — 2p se(fiac)se(iipe)-

The standard error of this estimate is 0.118645. Using these results, approximate 95%
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confidence intervals on the log-odds-ratio scale for the estimators of pap, ptac,tpc and 7 are
(—0.12,0.34), (—0.88,—0.25), (—0.97,—0.38) and (0.007,0.54) respectively. All treatment
effects are estimated on the LOR scale. The overall means of the treatment effects da5, d4c
and dpc are 1.114210, 0.566130 and 0.508100 on the OR scale. The results indicate that
both treatment A and treatment B reduce the rates of reocclusion significantly by over 40%
compared to the control group. However the difference between treatment A and treatment
B is almost negligible although treatment B is slightly better than treatment A (improved
by about 11%). The confidence intervals for the true values, puap, ac and ppc on the OR
scale can be calculated for the related CI on the LOR scale, which are (0.88,1.40), (0.41,0.77)
and (0.37,0.68) respectively.

3.9 Discussion

This chapter has demonstrated the normal approximation model based on the empirical
logistic transform to multi-arm trials data. We first proposed the special case of empirical
log-odds model with each of M studies comprising all K + 1 treatments. The model did not
cover all possible cases of multi-arm trials, e.g. if baseline treatments in some studies are
different. Thus the general case of the empirical log-odds model was considered to model
any multi-arm trial data set, including the direct and indirect comparisons. The treatment
effect was defined in term of both comparisons using the basic model of random treatment
effect. The mean and variance of the model that involves the indirect comparison cannot be
estimated directly. Note that whenever there is no or insufficient evidence of direct compar-
ison from RCTs, the indirect comparison may provide useful or supplementary information
on the treatment effect. However the validity of the indirect comparisons depends on the
internal validity and similarity of the included studies, see Song et al. (2003); Lu and Ades
(2006). Additionally, we also described the assumptions of heterogeneity parameters — ho-
mogeneity and heterogeneity of variances - for the model. Generally, the assumption of

variance homogeneity has been most used , see e.g. Higgins and Whitehead (1996); Lu and
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Ades (2004, 2006).

In practice the trial effects in most meta-analysis would not satisfy any model (fixed effect
or random effect) since different experiment designs and different data analysis models are
used in different studies. Most of the existing methods assume that they are study-level
effect. We also use this assumpiton in this thesis. Additionally, the treatment effects are
assumed to be random because we do not believe that results from different studies and

different designs can have the same treatment effect.

From the empirical log-odds model mentioned above, the trial effects are different, thus the
number of unknown parameters (from the trial effect) are the same as the number of studies.
The estimation may be unstable as many parameters are involved in the model, especially
if the number of studies is large. The accuracy of estimation thus depends on the number of
individual observations from each study, e.g. if this number is large enough then the estimate
may be accurate. Also this may lead to a problem of inconsistent estimate. To avoid this
problem, we suggested the empirical log-odds ratio model to eliminate the trial effects from
the empirical log-odds model. There are at least three advantages of using the empirical
log-odds ratio model over other methods:(1) the model excludes the trial effects and give a
consistent estimate for treatment effect while the other methods (e.g. the empirical log-odds
model) may give an inconsistent estimate in some circumstances;(2) the approximation is
usually quite good if the number of individual observations is not too small (the number
of samples in a single study should usually be larger than 20); (3) the computation is very
efficient and very stable, it converges very fast for almost any starting point. It takes less

than 2 seconds to get the results.

From the application to the W1 data, the studies 7 — 10 (G3) involve the indirect treatment

effect 6; ap, obtained from 0; ac — 0; pc. As mentioned before, the correlation coefficients
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between the treatment effects under the assumption of variance heterogeneity are estimable
if enough information is provided in the indirect comparison. Since there is not enough
information in G thus the correlation coefficient between treatment effects d; 4c and 6; pc
cannot be estimated. The assumption of variance heterogeneity is not valid for the model.
Conversly, if the numbers of studies in G; and G5 were 24 and 12 respectively, the correlation
coefficient could be estimated by borrowing strength from indirect comparison (Higgins and
Whitehead, 1996). Collaboration (1994a) concluded that antiplatelet therapy (aspirin plus
dipyridamole (A) or aspirin alone (B)) produced a highly significant (2p < 0.00001) reduc-
tion in vascular occlusion in a wide range of patients. The odds of vascular graft or arterial
occlusion were reduced by about 40% while treatment continued. Our numerical results in

Table 3.1 are similar to those of Collaboration (1994a).

Even though the efficiency of computation for the empirical log-odds ratio model is good
and the model gives a consistent estimate comparing to other methods, the model requires
the large number of individual observations (larger than 20) and the probability of an un-
successful outcome m;; to be not too near zero or one. The MLEs of the model may not
be accurate when compared to the model with the exact binomial distribution. We shall

introduce the exact binomial model in the next chapter.
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Chapter 4

Meta-analysis of multi-arm trials

using binomial approach

4.1 Introduction

In the previous chapter, we proposed the normal approximation model using an empirical
logistic transform. The model requires a large number of individual observations n;; and the
probability of an unsuccessful outcome 7;; to be not too near zero or one. If the number of
individual observations is small, the model in Chapter 3 is not suitable. In this chapter, we
introduce an exact binomial model to fit the binary multi-arm trials data. There are two
alternative maximum likelihood approaches that can be used to make inferences for the un-
known parameters in the logistic regression model. These are the unconditional method and
conditional method. The logistic regression model has become increasingly popular with the
easy availability of appropriate computer routines. Many authors have described maximum
likelihood estimation procedures which turn out to be iterative, for example Cox (1970, page
61). Albert and Anderson (1984) dealt with the existence of maximum likelihood in logistic
regression models and proved on existence theorem by considering the possible pattern of

data points. The use of the conditional likelihood in logistic models is well established and
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routines for fitting it are provided by major statistical software (Pendergast et al., 1996).
Hirji (1994) proposed an efficient algorithm to generate the exact distribution for the bi-
variate logistic model with common and sub-unit-specific covariates and also presented the
exact unconditional and conditional distribution of the model. Bellio and Sartori (2003)
proposed the modified profile likelihood as an ideal extension of the conditional likelihood in
generalized linear models for binary data with the generic link function, and also suggested
that an important feature of the implementation was the standard outputs of routines for
the generalized linear models. With an application in biology, Zhao and Aragaki (2000) in-
vestigated a conditional likelihood approach of candidate genes and showed analytically the
consistency of this approach. There have been a large number of studies about unconditional
and conditional methods, for example, see Cox (1972); Prentice (1976); Tritchler (1984) and

Sartori (2003).

As mentioned in Chapter 1, most existing methods for meta-analysis of multi arm trials use
the logistic regression model with the unconditional approach. Thompson and Sharp (1999)
used the random effects logistic regression model with the unconditional method to explain
heterogeneity in meta-analysis of serum cholesterol reduction. Lu and Ades (2004) intro-
duced the Bayesian hierarchical model for multi-arm trials using the unconditional method
to estimate unknown parameters. More examples can be found in Lu and Ades (2006); Lu
et al. (2007). Using the unconditional maximum likelihood approach, note that if the num-
ber of studies is large and the number of individual observations is small then the estimate
may be biased or misleading (Cox and Snell, 1989, page 103). For example, if the individual
observations 1,y and n;; are equal to 1 then for large M, the estimate of unconditional max-
imum likelihood (m is close to 28; p(;y; (Cox and Snell, 1989, page 59). We thus introduce

the logistic regression model using the conditional approach in this chapter.
The structure of this chapter is arranged as follows. We introduce the logistic regression

54



Chapter 4. Meta-analysis of multi-arm trials using binomial approach

model for the direct and indirect comparisons in Section 4.2. Unconditional maximum
likelihood approach for the model including the standard error of MLEs are described in
Section 4.3. Similarly, conditional maximum likelihood approach for the model is presented in
Section 4.4. In Section 4.5, we illustrate the logistic regression model with the unconditional
and conditional approaches with the W2 data. We discuss the advantages and the limitations

of the two approaches in the final section.

4.2 Fitting the logistic regression model

This section illustrates how to fit the logistic regression model to the binary data related
to multi-arm trials including the direct and indirect comparisons. Logistic regression is a
regression model for a binomially distributed response/dependent variable. It is useful for
modelling the probability of an event occurring as a function of other factors. Logistic re-
gression is part of a category of statistical models called generalized linear models and uses
the logit as its link function. Logistic regression can be used only with two types of de-
pendent variables: one is a categorical dependent variable that has exactly two categories
(i.e. a binary or dichotomous variable). The other is a continuous dependent variable that
has values in the range 0 to 1 representing the probability values or the proportions. The
names for logistic regression used in various other application areas are logistic model or
logit model. Logistic regression is similar to linear regression in that we are interested in
the relationship of a group of independent variables with a response or dependent variable.
In linear regression, the ultimate objective for the study may be either estimation of the
coefficient values, or prediction of the response value. One significant difference between
logistic and linear models is that the linear model has a continuous response variable and

the logistic model uses a binary or dichotomous response.

All notations used in this chapter are the same as defined in Chapter 3 unless stated. Sup-

pose that the 7 and 7;; are binomially distributed, respectively as Bin(nib(i), Wib(i)) and
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Bin(n;j, my;) for i =1,..., M and j € J;). Logistic regression models for the ith study can
be defined by

log <ﬂ> = (4.1)

1 — )
T4 .
log (1 J ) = o;+ 5z’,b(i)ja ] € J(i). (4.2)

The assumptions of the trial effect and the treatment effect are the same as were assumed
in the empirical log-odds models: the o;’s are assumed to be different and the 0;,.;); are
assumed to be random as presented in (3.17). The above models can be used for both
treatment comparisons. From model (4.2), we call log m;;/(1 — m;;) the logistic transform of
probability m;;, or alternatively log odds m;; or logit m;;. Having considered the properties of
logit 7;;, the term 7;; /(1 —m;;) is the odds of an unsuccessful outcome from a patient treated
with treatment j and so logit 7;; is the log odds of an unsuccessful outcome. It is easily
seen that a value of m;; in the range (0, 1) corresponds to a value of logit m;; in (—o0, 00).
As my; — 0, logit mj; — —o0; as m;; — 1, logit m;; — oo and for m;; = 0.5, logit m;; =
0. After some rearrangement, the logistic regression models (4.1) and (4.2) have equivalent

formulations as

e%i eit0i (i)

There are two alternative ML approaches, the unconditional and conditional approaches,
that can be used to estimate the unknown parameters in a logistic regression model. They

will be performed in the following sections.

4.3 Unconditional maximum likelihood approach

Generally, unconditional ML estimation is prefered if the number of parameters in the model

is small relative to the number of studies in a meta-analysis (Kleinbaum, 1994, page 106).
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4.3.1 Probability functions

To demonstrate the unconditional ML estimation, let p(rg |a;) and p(rij|a, 6;4z);) denote
the probability functions associated with the distributions of 7| and rj|a;, 0; 5z); re-
spectively for i = 1,..., M and j € Jj;), defined as follows.

For the baseline treatment,

TVib(i) Pib(i) Nib(i) eQiTib(i)

T'ib(4) T'ib(4)
For the treatments j, j € Jj;
0 | M rij nij—rij _ Tij e (@it 0o )rii
p(rij|ai’ i’b(i)j) - Tij (1- ﬂ-ij) o (1+ e(ai+5i,b(i)j))nij ' (4.5)
Tij Tij

The combination in (4.4) represents the number of possible combinations of observations
nip) taken ry;) at a time. The () in the middle term of (4.4) is substituted from (4.3)
and (1 — 7;(;)) becomes 1/1 4+ e*. The combination in (4.5) can be considered in the same

way.

4.3.2 The unconditional likelihood

From the probability functions (4.4) and (4.5), the trial effects «;’s are study-level effects.
They are assumed to be different and also included in both probability functions. While
the 6; 4(); is a random effect, thus the p(ri;|cu, d;pgi);) involves the vector of random effects,
d;, given in (3.17). The standard method of handling a probability function which involves
random variables that have a fully specified probability is to integrate the probability function
with respect to the distribution of those variables. To deal with the random effects d;, let
r(; be the vector (r;;,j € Ji;))". We shall integrate the probability function p(r;;|d;) with

respect to ;. The p(r(;)) contains k; integrals, which is the number of treatments in the set
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Jiy, and is given by

/ TT 20180065 s, 2:)d8 (4.6)

l ]E‘](z
where ¢(6;; p;, £2;) is the probability density function of the normal distribution with mean

p; and covariance £2; defined in (3.17), given by

1 —( -y 2, (8- /2
( ) e (4.7)
The integral (4.6) can be calculated numerically; one way to do it is to use the Gauss-Hermite
method. To apply Gauss-Hermite approximation, the probability function p(rg) for the ith

study can be estimated by

k.

p(r —k; /2 Z wm o i: 7(1’21) H "ij ¢

1/2 Nij )

(aﬁ(#ﬁﬂgz‘l/zdi,n))ﬁj

(3

where the sampling nodes are at p,; + ﬂﬂ;ﬂdm and d;, = (xq(lll), . ,xq(l]fjl)) The vector

d;, depends on the number k;, which is the number of treatments comprising in the ith
study. The resulting function (4.8) does not depend on the §;. For most practical purposes,
lp, need not be greater than 20, although some authors suggest using even smaller values
(Collett, 1991, page 208). The assumptions of the heterogeneity parameters (variances for

d;) are similar to those described in Section 3.4.2 of Chapter 3.

As before, let @ be the collection of all unknown parameters for the meta-analysis including
all trial effets («y,...,an), p and 2 and let r; be the vector (r;;,j € J;). The likelihood

function for the ith study can be written as

0|rz H p rzy sz(i) |a2)p(r(z))7 (49)

jeJ;
where p(ry()|c;) and p(r(;)) are given in (4.4) and (4.8) respectively. Let I,; = log L(8|r;),
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standing for the unconditional log-likelihood function of the logistic regression model for the

ith study. The log-likelihood function of @ for the models (4.1) and (4.2) is given by

(0) =) L. (4.10)

Bear in mind that the number of «;’s is the same as the number of studies. The computation
of MLEs may be quite unstable if the number of studies is large while the sample size of
each study is small. As discussed at the beginning of this chapter, this may also result in a
biased or misleading estimate. We thus suggest using a conditional approach to eliminate

all nuisance parameters in Section 4.4.

4.3.3 Asymptotic variance-covariance matrix

In this section, we will show how to calculate the standard errors for the MLEs of the
logistic regression model using the unconditional approach. Since there are random effects
in the model, some integrals are involved in the likelihood function. The unconditional

log-likelihood function (4.10) can be written as

M M
1,(0) = Zlogp(rib(i))+210gp(ri),

M M
= ZlOgP(Tib(i)) +Zlog/ H p(rij|6:)p(di; p;, £2;)d8;. (4.11)
i=1 i=1 d: jei,

()
We let [; and [y stand for the first and second terms of the above log-likelihood function,
given by [,(0) = l; + l5. Three types of unknown parameters are involved in 6; the trial
effects, a;’s, the overall mean effects p's (for p), and the variances 7’s and the correlation
coefficients p’s in the covariance matrix 2. For convenience, we let 7 represent a parameter

(either 7 or p) involved in §2. There is no random effect involved in [;.

First, the second-order partial derivative 9%, /0c? can be calculated in the usual way; while
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the other terms are

0?1, B 0?1,
dov;  doyp OoyT

0, i#j and i,j€{l,...M}

Next, let us consider the second term of (4.11), for notational convinence, let P;(d;) represent

the function Hjej(i) p(rij|0;) in lo. Now the term [, takes the form

M M
(o, o oar  2) = 3 log /5 P6)6(8:)d6; = o,
i=1 i i=1

where ¢(d;) is the density of the multivariate normal distribution with mean g, and variance
matrix §2;, and ly; is a summand of the log-likelihood involving the integrals (log [§ P;(d:)$(d;)dd;).

The first-order partial derivatives relating to [, are shown as follows

ly _ . —l; OF;(8:)

20, ;e /51 B ¢(di)dg
ol A / 96(5;)
a5 e IDZ 61 d )
op 2 5. (%) on 9
o~ i 0(8,)
or Zz:;e /&Pl(él) or 6.

Similarly, the second-order partial derivatives are

gz; = i:l: et /61_ aZgzy(;i)M Dds — (e‘l% /6 1- agif2)¢(5i)d5i> , (4.12)
D (R A P (eI
- i o [ ) T s — (o /(sif’i(éi)aq;(fi)d(;i)Z a14)
aa:gf - i(el” /(Siﬂ(fsi)a;i(a?d - (el” Aiﬂ(éi)aqﬁa(ji)d&)y. (4.15)

2

Note that the second-order partial derivative 9%ly/dc;0c; is equal to zero. The second-order
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partial derivatives of 0%ly/0u;0p; and 9%l5/07;07; can be expressed in similar equations to
(4.13) and (4.14). The integrals in the first-order and second-order partial derivatives can

be approximated by Gaussian quadrature.

From the log-likelihood (4.11), the second-order partial derivatives for the observed Fisher

information matrix can be calculated as

Pl _ Pl 2L Pl Pl P, Pl
da? 0o da?’ ouz  ou2’ Opidp;  Opidp;’
Pl 0L Pl Pl Pl 0L

orz  or?’ or;,0r;  Oror;’ oudT oot
As set earlier, the second partial derivatives of 9%l,/0p* and 9*l,/0pdp (and 9%1,/070p)
can be calculated in similar equations to 9%,/07% and 0%l,/0udT respectively. Notice that
the second-order derivative of [; is only related in 9%l,/da?. We can partition the matrix of

second partial derivatives into a block matrix with null matrices in the off diagonals:

where #H,(0) and #,.,(0) are the second-order partial derivatives about o, and p, 7 and
p respectively. By multiplying #(0) by -1, the observed Fisher information matrix Z(6) is
obtained. The inverse of Z(f) is the asymptotic variance-covariance matrix of MLEs and

their standard errors are the square roots of the diagonal of Z(6) .

4.4 Conditional maximum likelihood approach

Conditional likelihood is widely used in logistic regression models with binary data. In
particular, this leads to accurate inferences for the parameters of interest and eliminates

all nuisance parameters (Kleinbaum, 1994). We shall define the conditional likelihood and
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describe the maximum likelihood estimation in this section.

4.4.1 Conditional likelihood

From the logistic regression models (4.1) and (4.2), the conditional likelihood r; given that

C; = ZjeJi rij = ¢; for the ith study, is given by

f(rild;)
Fjes mis = cildi)

FeilCr = ci:85) = f(xi] Y mij = ci365) = (4.16)

Jed;
The conditional likelihood reflects the probability of the observed data configuration relative
to the probability of all possible configurations of the given data. The numerator f(r;|d;) is
exactly the same as the unconditional likelihood obtained from (4.4) and (4.5) . The denom-
inator is what makes the conditional likelihood different from the unconditional likelihood;
it sums the joint probability for all possible configurations. To derive the equation (4.16),

the conditional likelihood r; given C; can be simplified as

g g
ey clOr)
Tij
f(ri]Ci = ¢i;6:) = ; (4.17)
1o Nij .
ZuiEui H]EJ(Z) 6(61 ”)
Ci = Dje Wi Wi

where u; = (u;;, j € Jg))' and

Uy = u;: 0 <y <nyj,j € Jgyand ¢ — nyp < Z Ui < ¢
VISUO)
Notice that this likelihood function does not involve any nuisance parameters «;’s and is
a function of §; alone. The removal of the trial effects from the conditional likelihood
is important because it means that when the conditional likelihood is used, estimates are

obtained only for the parameters of interest in the model and not for the «;’s.
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4.4.2 FEstimation

The conditional likelihood (4.17) has k; random effects so the likelihood f(r;|> ., 7ij = ¢i)

involves k; integrations:

f (] Zr” =¢) / I (] Zn] = ¢;; 0;)0(08;; w;, £2;)d6;, (4.18)

JjEJ; JEJ;

where ¢(d;; u;, £2;) is the probability density function of multivariate normal distribution
with mean g, and covariance §2;, given in (4.7). Similar to the discussion in the previous

section, we apply Gauss-Hermite approximation to (4.18) and obtain:
Iy Uiy
f(rz| Z’I“i]‘ = Ci) ~ 7T_ki/2 Z ’U);LII) Ce Z wg:l)f(rz| Z rij = G, 62',”), (419)
JEJ; ni=1 ng;=1 JET;

where f(r;] ZjEJi rij = ¢;;0;,) is obtained from (4.17) where the sampling nodes is d;, =
w, + \/QQ;/Qdi,n and d;,, = (dgl), e dgi)) Again, let @ be the collection of all unknown

parameters for the meta-analysis. The likelihood for the ith study L(@|r;) can be written as

L(O|r;) = rZ|Zr”_cl, i)

JEJ;

The log-likelihood function of the logistic regression models using the conditional approach

is
1.(0) = logL(@r) ZlogL O|r;), (4.20)

By maximising the conditional likelihood function over 8 we obtain an exact parameter

estimate for 8, called the conditional mazimum likelihood estimate. To calculate the standard
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error of their MLESs, the log-likelihood function (4.20) can be written as

l(0) = Zlog Fil > rig =),

JEJ;

M
=Y o /5 Ol Sy = 0 8)8(8:: s, 2,)d6 (4.21)
i=1 i

JEJ;

Let P;(d;) represent f(r;|>_,c; rij = ¢, d;) in the above equation. The second-order partial
derivatives of 82l./0u?, 0?1./01% and 0%./0udT are similar to the equations (4.13) - (4.15)
respectively. In a similar way to the previous section, the standard errors for the MLEs are

obtained.

4.5 Application to antiplatelet therapy data (W2)

From the W2 data given in Table 2.2 of Chapter 3, the number of individual observations is
small thus the empirical log-odds model is not appropriate. In this section, we shall apply
the logistic regression model using the unconditional and conditional approaches with the

W2 data.

4.5.1 Unconditional inference

From the W2 data, there are 27 studies investigating the use of aspirin plus dipyridamole or
aspirin alone in comparison with the control group. The studies compare three treatments:
aspirin plus dipyridamole (A), aspirin alone (B) and the control treatment (C). Seven studies
compare A, B and C, ten studies compare A and C and ten studies compare B and C. There
is no indirect comparison for this dataset, so the set D is {1,...,27}. The baseline treatment

for all studies is the control group (b(i) = 0).

The indices i = 1,...,27 and 57 = 0,1, 2 stand for the studies and the treatments C, A and

B, respectively. The data is partitioned into three groups: G; = {1,...,7},Gy = {8,...,17}
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and G5 = {18,...,27}. The sets J; and J; are given by

J; = {O, 1, 2}, J(i) = {1, 2} for i € Gy,
J;={0,1}, Jy={1} forie€ Gy, (4.22)

Let r;0,7;1 and r;5 be the numbers of patients who suffered reocclusions on treatments C, A
and B respectively, where the ith study is in G;UG,UG3, G UG, and G UG5, respectively.
The total numbers of patients are n;g, n;1 and n;. Let m;,m;; and w2 be the probabilities
that patients have reocclusions on treatments C, A and B respectively in the ith study. The

750, 751 and r; are binomially distributed as

rio "~ Bi’n(ﬂ'ig,nig), 1 € G1 U G2 U G3,
rip Bin(ml,nﬂ), 1€ G1 U GQ,

Tio Bin(mg,nig), 1€ Gy UGs.

The treatment effect models can be obtained in the same way to that described in Section

3.8 of Chapter 3. For example, the treatment effect §; for GGy is defined as

2
5z‘,01 Mot To1 PTo1T02

~ MVN , . (4.23)

2
5i,02 Ho2 PT01T02 TH2

Logistic regression models for the data can be fitted using the equations (4.1) and (4.2)
where b(i) = 0 and Jy;) is given in (4.22). Note that the trial effects are assumed to be
different in each study. To define the unconditional likelihood function, let r(; represent the
vector (741, 742). The probability functions p(rj) and p(r(;) are formulated from (4.4) and

(4.8) respectively.

From §; for Gy, the correlation coefficient p between d;9; and d; o is in the form 7¢ /71702,

where is obtained from ;5 ~ N(pg, 7). Note that o and 7@ are not estimable unless
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some other information is used. We shall consider the assumption of homogeneity vari-
ance here. Suppose that all heterogeneity parameters are the same: 75, = 790 = 7 and
the correlation coefficient takes the value 1/2. The unknown parameter 6 for the models is
{ag, g, ..., aor, o1, to2, 72 }. The log-likelihood function [,(8) is obtained from (4.10). By
maximizing the log-likelihood function, the MLEs can be estimated. Also we calculate their

standard errors from the observed Fisher information matrix given in Section 4.3.3.

The results for the treatment effects dg; and dpo are given in Table 4.1. The trial effects are
presented in Table 4.2. The overall means on the LOR scale for dg; and dge are -1.17849 (SD
0.08499) and -0.63700 (SD 0.03728), and the heterogeneity parameter is 0.0372 (SD 0.04752).
On the OR scale, the means are 0.30774 and 0.52800 respectively. Their confidence interval
can be calculated from the related CI on the LOR scale. We conclude that treatments aspirin
plus dipyridamole and aspirin only in antiplatelet therapy reduce deep venous thrombosis
by over 70% and 45% respectively. The average of both treatments reduce deep venous

thrombosis by over 55 %.

Table 4.1: The results of the treatment effects for the model using the unconditional method

do1 do2
Ho1 To1 Ho2 T02
LOR scale -1.17849 0.00372 -0.63700 0.00372
(SD) (0.08499) (0.04752) (0.03728) (0.04752)
95%CI (-1.33,-1.00) (-0.08,0.09) (-0.64,-0.62) (-0.08,0.09)
OR scale 0.30774 0.52800
95%CI (0.26,0.36) (0.52,0.53)
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Table 4.2: The trial effects of the model using the unconditional method

Study 15  -0.72387 1.20619 ~0.54688 ~3.01061 0.55283
(SD) (0.01021) (0.00934) (0.00993) (0.0117) (0.00926)
95%CI (-0.74,-0.70)  (1.18, 1.22)  (-0.56,-0.52) (-3.03,-2.98) ( 0.53,0.57)

Study ~ 6-10  -0.85773 -1.69947 -0.34480 -0.65231 ~1.29308
(SD) (0.01206) (0.01264) (0.00735) (0.00770) (0.01087)
95%CI (-0.88,-0.83)  (-1.72,-1.67) (-0.35,-0.33) (-0.66, -0.63) (-1.31,-1.27)

Study 11-15  -2.18147 1.68130 1.17724 0.68567 -0.14132
(SD) (0.01231) (0.00636) (0.00811) (0.00869) (0.01102)
95%CI (-2.20,-2.15)  (1.66,1.69)  (1.16,1.19)  (0.66,0.70)  (-0.16,-0.11)
Study 16-20  -1.53114 -0.57320 -0.33486 -4.24972 -1.05748
(SD) (0.01214) (0.00941) (0.00661) (0.01367) (0.01199)
95%CI (-1.55,-1.50)  (-0.59, -0.55) (-0.34,-0.32) (-4.27,-4.22)  (-1.08,-1.03)
Study 21-25  -3.01727 -0.11773 -2.23388 0.24853 0.04007
(SD) (0.01184) (0.00977) (0.01252) (0.00802) (0.00987)
95%CI (-3.04,-2.99)  (-0.13,-0.09) (-2.25,-2.20)  (0.23,0.26)  (0.02,0.05)
Study 26-27  -0.37573 -0.76995
(SD) (0.01277) (0.01098)
95%CI (-0.40,-0.35)  (-0.79,-0.74)

4.5.2 Conditional inference
The models and other parameters are similar to those defined in the unconditional method.

The function C; for the data can be defined by

Ci=rig+ry+re forie G1,
Ci=rip+ra for i € G, (4.24)

C; = rip + Tio for i € G.

Let r; denote the vector (r;, 71, 7:2). The conditional likelihood f(r;|C;) for the ith study is

given in (4.18). To handle the random treatment effect §;, the likelihood function is approx-
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imated by Gaussian-Hermite approximation as defined in (4.19). The unknown parameter
for the models is {101, fo2, 7} . By using the log-likelihood function (4.20), the results of the
models are given in Table 4.3. On the LOR scale, the overall mean effects for both treatment
effects are -0.87516 (SD 0.04340) and -0.39000 (SD 0.31160) while their variation between
studies is 0.37000 (SD 0.03900). Those means on the OR scale are 0.41679 and 0.67434.
As before their confidence intervals are obtained from the related CI on the LOR scale.
The results indicate that treatments aspirin plus dipyridamole and aspirin only produce a
reduction in deep venous thrombosis by over 55% and 30% respectively. The average of both

treatments in antiplatelet therapy reduces deep venous thrombosis by over 40 %.

As seen from Tables 4.1 and 4.3, the results from using the unconditional likelihood (on the
LOR scale) are smaller than from using conditional likelihood. Note that those results are
negative. That is to say that estimation with unconditional likelihood may cause underes-
timation or bias. Collaboration (1994b) summarized that antiplatelet therapy produced a
highly significant (2p < 0.00001 ) reduction in deep venous thrombosis of about 40%. The

results from the model using the conditional likelihood support this.

Table 4.3: The results of the treatment effects for the model using the conditional method

do1 o2
Ho1 T01 o2 T02
LOR scale -0.87516 0.37000 -0.39000 0.37000
(SD) (0.04340) (0.03900) (0.31 160) (0.03900)
95%CI (—0.96,—0.79) (0.29,0.44) (—1.00,0.22)
OR scale 0.41679 0.67434
95%CI (0.38,0.45) (0.36,1.24)
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4.6 Discussion

In Chapter 3, we presented the normal approximation model for a large number of individual
observations. In this chapter, we have introduced the logistic regression model for the exact
binomial distribution. Two types of comparisons, direct and indirect, can be used with the
model. Two alternative approaches for making inferences were presented. The unconditional
likelihood involves nuisance parameters (from the trial effects). If the number of studies (M)
is large, it may lead to inconsistent estimate. Cox and Snell (1989, page 103) concluded for
the unconditional likelihood that if the number of studies (M) is large and the number of
individual observations (n;;) is small then it makes estimation inaccurate and inconsistent.
Thus we introduced the conditional maximum likelihood approach for the model to elimi-
nate all nuisance parameters. In making a choice between the two approaches, we need to
consider the number of studies and the number of individual observations. However, the use
of this method can be expensive in term of the cost of computer running time, especially
if the number of individual observations is large. Simulation studies will be conducted in
the next chapter to compare these two approaches. Some other methods can be used in the
logistic regression model, for example, using a pseudo-loglikelihood, see Severini (1998); or

the modified profile likelihood, see Bellio and Sartori (2003).

Gaussian-Hermite quadrature was used to calculate the integral forms of the probabilities
including random effects in the likelihood functions for both approaches. The approximation
is reasonably effective for low-oder integrations (Crouch and Spiegelman, 1990). Implement-
ing Gaussian-Hermite approximation, we used the function ‘gauss.quad’ in the software R to
estimate MLEs for the model. The number of integrands depends on the number of treat-
ments involved in those studies. If this number is large then it makes the dimensionality
of the integral large and so it cannot be approximated accurately. Other approximations
such as Laplace approximation or Monte Carlo method can be used, see Ripatti and Palm-

gren (2000); Shi and Copas (2002). Laplace approximation could make the calculation of
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second-order derivatives for the observed Fisher information matrix easier than using Gaus-

sian approximation since there is no weight term in the approximation (Liu and Pierce, 1994).
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Simulation study

5.1 Introduction

We saw the normal approximation model used with an empirical logistic transform with the
W1 data in Chapter 3. Computation of the model is efficient and converges very fast for
almost any starting point. The approximation of the model is quite good if the number
of individual observations is large (Chootrakool and Shi, 2008). In Chapter 4, the logistic
regression model was introduced for the exact binomial distribution including the uncondi-
tional and conditional approaches to making inferences. We applied the logistic regression
model with the W2 data because some of the numbers of individual observations were not
large enough (less than 20) to use the normal approximation model. By comparing the results
from both approaches in Chapter 4, we concluded that the results from the unconditional
approach may be inconsistent. This bias can be eliminated by considering the conditional
approach to the logistic regression model (Prentice and Breslow, 1978; Lubin, 1981). Thus,
the conditional maximum likelihood estimate may be more accurate in a certain situation.
The theory of exact conditional logistic regression analysis (or exact inference) was first
proposed by Cox (1970) (McCarthy, 2007). The unconditional approach (or asymptotic in-

ference) is suitable for the small number of parameters in the model (Kleinbaum, 1994).
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In this chapter, we examine the performance of various inference methods from the normal
approximation model and the logistic regression model using the unconditional and condi-
tional methods. The main aim is to compare the unconditional and conditional methods of
the logistic regression model in different cases. We demonstrate the procedure for generat-
ing data in Section 5.2. The models that are used to make inferences in the simulation are
presented in Section 5.3. We discuss and compare some models in Section 5.4. Simulation
details and the results are given in Sections 5.5 and 5.6 respectively. Finally, Section 5.7

concludes and gives some discussions about the chapter.

5.2 Simulated data

In this section, we aim to generate the data set which will be used in the simulation study.
The basic data structure is the same as the W2 data. The baseline treatment for all studies is
the control group, which means there is only direct comparison here. The data is generated
from binomial distribution (3.1) with logistic regression models given in (4.1) and (4.2) where
b(i) = 0. The indices i = 1,..., M and j € Jj; represent the studies and the treatments,

respectively. The general scheme of generating the data is given as follows:
1. Give the numbers of individual observations n;y and n;;;
2. Generate the trial effect a;;
3. Generate the treatment effect 9, ;;

4. Calculate the probabilities m;p and m;;: substituting the generated trial effect and
the generated treatment effect into models (4.1) and (4.2), and the probabilities are

obtained;
5. Generate the 7, and r;; from binomial distribution (3.1) ;

6. Repeat steps 1-5 until the data is generated for all M studies.

72



Chapter 5.  Simulation study

Similar to the W2 data, we consider three treatments in the simulation study. Two scenarios

are employed here.

e S1: The values of o;’s are different. The treatment effects are d;9; ~ N(—1.0,0.2%)

and 6,05 ~ N(—0.30,0.052).

e S2: The values of a;’s are generated from a distribution N(—0.92,0.2%). The treatment

effects are d; 01 ~ N(—1.0,0.2%) and d; 99 ~ N(—0.30,0.05%).

Note that there is no association between the treatment effects d;9; and ;2. In S1, the
values of «;’s are quite different (this is the case we usually encounter in practice). In S2,

we assume «;’s come from a normal distribution.

5.3 The models

Eight different models related to the normal approximation model and the logistic regression
model will be considered. For convenience, let ‘M1’, ‘M2’ and ‘M3’ represent the empirical
log-odds ratio model and the logistic regression model using the unconditional and condi-
tional methods, respectively. The correlation coefficients between the treatment effects in
this section are assumed to be zero. This may be written as p;; = 0 where j # k and
g,k € Jg). Therefore, the covariance between the treatment effects is Cov(d;;, 04,) = 0. Let
‘F” and ‘R’ denote the fixed-treatment effect model and the random-treatment effect model,
respectively. For the logistic regression model, let ‘d’ and ‘N’ represent the different-trial

effect and the random-trial effect model, respectively.

5.3.1 The empirical log-odds ratio model

We compare the empirical log-odds ratio model with the fixed-treatment effect and the
random-treatment effect. The empirical log-odds ratio model is given in (3.29), and the

treatment effects are assumed to be random; this is model ‘M1-R’. By setting the variances
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of all the treatment effects in the ‘M1-R’ model equal to zero, then the model ‘M1-F’ is

obtained.

5.3.2 The logistic regression model

The logistic regression models given in (4.1) and (4.2) are applied here with different choices
of treatment effect (‘R’ or ‘F’) and trial effect (‘d” or ‘N’). The following logistic regression
models are used to make inferences with the unconditional maximum likelihood approach as

described in Chapter 4.

e M2-F-d: the treatment effects are fixed: d;; = j10; and the trial effects are different

parameters.

e M2-R-d: the treatment effects are assumed to be random and normally distributed

as 0;0; ~ N (poj, 7'02].) and the trial effects are different parameters.

e M2-F-NN: the treatment effects are fixed as above and the trial effect is assumed to
be random as N (pq0,72,). Hence, the probability function for the baseline treatment

p(ri0];) has a random effect a;. By integrating p(r;|c;) with respect to «;, we obtain

plr) = / Priols) (s praos 720) s, (5.1)

where p(rjp|a;) is defined in (4.4) where the trial effect is normally distributed. The
B(; fao, T2o) is the normal distribution with mean ji,9 and variance 72,. As discussed
in Chapter 4, the integral (5.1) can be calculated numerically by a Gauss-Hermite
approximation, taking the form

—1/2 N0

p(rio) = m

(ﬂaO‘F\[TaOdn)TzO
Z wn nio Y
1 _|_ 6 #aO‘i‘\[TaOd )) !

T30
where the sampling nodes are at fiq0 + V/27a0d, for n =1,...,1.
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e M2-R-N: the treatment effects and the trial effect are assumed to be random as
defined above. The probability function p(r;) here is the same as (5.2). The proba-
bility function p(r;j]a;, d;0j) involves two random effects of the trial effect a; and the

treatment effect d;;. The probability p(r;;) is given by

p(rij) = //p(riﬂ%’,5z‘,0j)¢(az';Mao,T§0)¢(5z‘,0j;MOj,ng)dCYidfsi,Oj, (5.3)

where ¢(au; fao, Tao) and ¢(0;,05; 110, 75;) are the probability density functions of normal

distributions for «; and 6;; respectively. As before, the p(r;;) can be approximated

’[’L” h l> ((ﬂa0+ﬂTa0dn1)+(l‘0j +ﬂ7'0jdn2))rij

S w®d Y w®

<1 —+ e(uao-l_ﬁmod”l)+(M0j+\/§7—0jdn2)>nij )
(5.4)

where the sampling nodes are at (ftag + vV/27a0dn, ) + (o + \/§Tojdn2) forni=1,...,1

and ny =1,..., 5.

For the conditional maximum likelihood approach, we consider the fixed-effect model (for
treatment effect) denoted by ‘M3-F’, and the random-effect model denoted by ‘M3-R’. We

do not need to consider the trial effects since they are eliminated.

5.4 Comparison of models

We shall compare three models, M1-R, M2-R-d and M3-R, in terms of limitations, compu-
tation and drawbacks. Those are the mostly used models in practice. Assuming that the
multi-arm trials data is similar to the special case given in Section 3.4.1. The treatment
effects for all models are assumed to be random and the trial effects are assumed to be
different parameters for the logistic regression model. The brief conclusions are summarized

in Table 5.1.
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Table 5.1: Conclusions of the models

Model Limitations Computation Drawbacks
Empirical log-odds ratio  n;p and n;; are large fast not accurate if
(M1-R) mio and 7;; are sample size is
not near 0 or 1 small
Logistic regression - medium biased estimate and
with unconditional method unstable computation
(M2-R-d) if n;o and n;; are small
and M is large
Logistic regression - slow time consuming
with conditional method if no,n;; and K are large
(M3-R)

Regarding the limitations of each model, if the number of individual observations n;, and
ni; is reasonable large (larger than 20) and the probability m;; is not near 0 or 1 then the
empirical log-odds ratio model is appropriate (Shi and Copas, 2002; Chootrakool and Shi,
2008). According to the discussion in Section 3.3 of Chapter 3, with the opposite conditions,
the empirical log-odds ratio model is not valid because the empirical logistic transforms
for (ri0,mi0) and (r;;,n,;;) are not approximately normally distributed. While the logistic
regression model can be used for the exact binomial distribution without any limitations.
The unconditional or conditional maximum likelihood approaches can be employed with the

logistic regression model for making inferences.

In term of computation, the empirical log-odds model is distributed as a multivariate normal
distribution. Its likelihood function is straightforward, as shown in (3.31). If the numbers of
studies (M) and/or treatments (K) are large, it will not affect the computation much com-
pared to the other models. Therefore, the computation of MLEs for the empirical log-odds
model is fast. For the logistic regression model, we use the Gaussian-Hermite approximation

to deal with random variables for both inference methods. This is one of the reasons to make
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the calculation for the logistic regression model take more time than the empirical log-odds
model. By comparing both inference methods, as described in Chapter 4, the numerator of
the conditional likelihood is exactly the same as the likelihood for the unconditional likeli-
hood but the denominator of the conditional likelihood requires summing u; terms, where

the u; are defined by

Ui:{uizoguijgnij, andci—nnguij§ci;j:1,...,K}.

J

This is often computationally prohibitive. The computation is tedious and slow, particu-
larly if n;o, n;; and K are large (Lubin, 1981; Prentice and Breslow, 1978). Consequently
the conditional maximum likelihood estimation is slower than the unconditional maximum

likelihood estimation.

To conclude the drawbacks, the estimate from the empirical log-odds model is not as accurate
as from the model using exact binomial distribution unless the sample size for each studies
is sufficiently large. The logistic regression model using the unconditional method includes
nuisance parameters; the model should be used with a small number of studies. The estimate
may be biased if the number of observations n;y and n;; are small and the number of studies
M is large (Lubin, 1981; Cox and Snell, 1989). As mentioned above, if n;, n;; and K are large
for the logistic regression model using the conditional method, it can be time consuming.
The main advantage of the conditional likelihood approach is that the likelihood depends

only on the parameter of interest.

5.5 Simulation details

If the sample size of each individual study is large, the empirical logistic transform model
is always the best choice. Here, we just compare the different models in two different cases:

small number of individual observations with a medium number of studies, and very small
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number of individual observations with a large number of studies. By using the scheme of
generating data in Section 5.2, we use the numbers of individual observations n;, and n;;

from the two original data sets as follows:

e 27 studies with small number of individual observations (n;, and n;; are the same as

for the W2 data but 7, and r;; are generated as discussed in Section 5.2 );

e 54 studies with very small number of individual observations. To construct this data
set, we double the data set from 27 to 54 studies but the number of each individual

study is halved from the W2 data.

For notational convenience, let ‘M = 27" and ‘M = 54’ represent two types of the simu-
lated data sets respectively. Following the steps given in Section 5.2, the trial effect and the
treatment effect are generated from the models S1 and S2. For each generated data set, the
eight models discussed in Section 5.3 are used. The estimates of treatment effects and other

parameters are calculated for each model.

We compute 1000 replications in our simulation study. The root mean squared error (r.m.s.e.)
is used to measure the performance for different models. Suppose that 6, is the true value
and é\z is the value of estimation obtained in the ith replication. The r.m.s.e for # is defined

as

~ Lo 1/2
r.m.s.e(f) = (n—r Z(GZ — 90)2> :

i=1
where n, is the number of replications, and n, = 1000 in our simulation study. The value of

r.m.s.e and the sample means of é\i’s are calculated. The results of the simulation study for

S1 and S2 are shown in Tables 5.2 and 5.3, and 5.4 and 5.5 (see the end of this chapter).
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5.6 Results

5.6.1

Scenario 1

(i). S1 with M = 27

Table 5.2 gives the simulation study results based on the data generated from S1

with M = 27. The sample size for each individual study is quite small. Note that

simulation model S1 is the logistic regression model with the different-trial effects and

random-treatment effects thus the models with random-treatment effects may give

good estimates. The true values from S1 are pg; = —1.0, 791 = 0.2, g2 = —0.3 and

To2 = 0.05. The trial effects in S1 are different. We compare eight different models, and

the

sample means and r.m.s.e.’s are reported in Table 5.2. The following conclusions

are our findings.

(a)

Overall, the sample means from model M3-R (the logistic regression model with
random-treatment effects by using the conditional likelihood) are the ones most
close to the true values. That is to say that the model gives the least bias. Also

the values of r.m.s.e for this model give the best performance.

Since the sample size for some studies is very small, as expected, the accuracy of
the estimates (sample means) from the empirical log-odds ratio models (M1) are
not good as the logistic regression models (M2 and M3) except the models with
random-trial effect by using the unconditional likelihood (M2-F-N and M2-R-N).
By comparing the unconditional and conditional methods for the logistic regres-
sion models with random-treatment effect, the estimates and the values of r.m.s.e
from M3-R give respectively the better results and performance than M2-R-d.

We shall use the quantile-quantile plot (or Q-Q plot) to test the normality of
the trial effect assumption we used in M2-F-N and M2-R-N. The Q-Q plot for
a;’s is shown in Figure 5.1. Some plotted values fall off on a straight-line. This

means that the trial effects do not follow the normal distribution. The normality
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assumption for the trial effect fails in models M2-F-N and M2-R-N. The simulation
study results given in Table 5.2 indicate that those two models perform badly

comparing to other models.

(ii). S1 with M = 54
The sample means from the models in Table 5.3 are based on the data generated from
S1 with M = 54. The sample size in each individual studies is very small but the
number of studies is large. The true values for g1, To1, o2 and 79 are the same as
S1 with M = 27. In addition, we shall compare the sample means and performance
from the models in Tables 5.2 (27 studies) and 5.3 (54 studies). The data generated
from S1 with M = 27 has small sample size of each individual study and medium
number of studies. While the data from S1 with M = 54 has very small sample size
of each individual study and large number of studies. We expect these results from
the comparison: (1) the empirical log-odds ratio models (M1) from M = 54 should
perform even worse than those from M = 27, because the sample size of individual
studies in M = 54 is even smaller; (2) the logistic regression model with unconditional
method (A2) from M = 54 may give inconsistent or biased estimates due to very small
sample size of individual studies and the large number of study in meta-analysis. The

results from our simulation study are summarized as follows.

(a) As expected, the model M3-R gives the best estimates.

(b) Similar to S1 with M = 27, the sample means from models M1 are least ac-
curate. In comparison models M1 from M = 27 and M = 54, the empirical
model with M = 54 has larger bias and less accuracy, this is because the normal

approximation is deteriorated for smaller sample size.

(c) The estimates from M3-R give the better estimates than M2-R-d. By comparing
models M2 and M3 from M = 27 and M = 54, as expected, models M2 from

M = 27 give the less bias than from M = 54. The performance of models M2
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from M = 27 is better than those from M = 54 except models M2-F-N and

M2-R-N.

Models M2-F-N and M2-R-N assume normality for the trial effect wrongly, the
models fail for the data. The Q-Q plot of the trial effects (from 54 studies) is
given in Figure 5.2. The plot does not support the normality of trial effects either.
Similar to S1 with M = 27, the trial effect cannot be assumed to be normally

distributed in models M2-F-N and M2-R-N.

5.6.2 Scenario 2

(i). S2 with M= 27

In Table 5.4, the means and r.m.s.e.’s of the models are obtained from simulation model

S2 with 27 studies; this is the logistic regression model with the random-trial effect

and random-treatment effects. The true values for S2 are oo = —0.92, 7,0 = 0.2,

o1 = —1.0, 791 = 0.2, pge = —0.3 and 792 = 0.05. Notice that this simulation

model assume a normal distribution for the trial effect. We expect the same results as

described in S1 with M = 27 but models M2-F-N and M2-R-N would perform better.

The simulation results are summarized as follows.

(a)

Again, the estimates from the empirical log-odds ratio model are least accurate;

because the sample size of each individual study is small as used in S1 with

M = 27.

By comparing the unconditional and conditional methods for the logistic regres-
sion models, the estimates and the values of r.m.s.e from M2-R-N give the better
results and performance than M3-R because the model M2-R-N is exactly the
same model as S2 although the performance of conditional likelihood method for

M3 is still very good.

(i). S2 with M= 54
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The estimates from the models are obtained from the data generated from S2 with
M = 54. The results from the simulation study are the same as S2 with M = 27. For
example, model M2-R-N gives the best estimates; means of models M1 give the most
bias. The summaries of comparisons between S1 with M = 27 and S1 with M = 54

are similar from as described in (ii) of Section 5.6.1.

5.7 Discussion

The simulation provides opportunities to analyse the data that are not available when using
the real data set alone. Generally, the results from the simulation give more robust and de-
pendable solutions. The empirical log-odds ratio model was proposed for a certain situation
in Chapter 3. In Chapter 4, we introduced the exact binomial model (logistic regression
model) for binary multi-arm trials data. We also expected that the conditional maximum
likelihood estimation of the model would be more accurate than the unconditional maximum
likelihood estimation because there were no nuisance parameters involved. In this chapter
we have examined the performance of estimation in those models in different situations.

Additionally we made some general conclusions on the comparisons of mostly used models.

The sample means and r.m.s.e.’s from the empirical log-odds ratio models (M1) between
M = 27 and M = 54 suggest that the models are suitable for large individual observations
only (Cox and Snell, 1989; Shi and Copas, 2002). The individual observations from 27 stud-
ies are larger than from 54 studies thus their MLEs are close to the true values than from

54 studies.

For the logistic regression models using the unconditional method (M2), there are nuisance
parameters involved in the model. The accuracy of estimates depends on the number of in-
dividual observations and nuisance parameters. The estimates from M2 from the simulation

with 54 studies confirm that the use of the unconditional method leads to biased estimates

82



Chapter 5.  Simulation study

if the number of individual observations is small and the number of studies is large (Cox and

Snell, 1989; Hirji et al., 1987), although their standard errors are very small (Lubin, 1981).

The logistic regression models using the conditional method (M3) perform well in almost
all the cases. However, as described in Section 5.4, one obstacle of the conditional method
is the computational complexity. From simulation study results of M = 27 (from S1 and
S2), the large number of individual studies makes the estimation of models M3 difficult to
compute, see e.g. Prentice and Breslow (1978); Hirji et al. (1987). The number of individual
observations in M = 54 is small and the number of studies is large. The computation is not

heavy as for M = 27.

Overall, we have the following conclusions for meta-analysis of multi-arm trials. If the
sample size in each individual study is large enough (larger than 20), see Chootrakool and
Shi (2008), we shall use an empirical logistic transform model; otherwise we should use
an exact logistic regression model with conditional likelihood. However, in the case that
the number of studies is not very large but the sample size in each individual study is not
very small, the performance of conditional and unconditional likelihood approaches are quite
similar (Cox and Snell, 1989, page 103), we can use the unconditional likelihood approach

to reduce the computation burden.
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Figure 5.1: The Q-Q plot: the trial effects for M =27
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Figure 5.2: The Q-Q plot: the trial effects for M =54
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Table 5.2: Simulation study results based on the data generated from S1 with M = 27

a do1 do2
Model parameters a0 Tao Lho1 To1 o2 To2
(True value) -1.0 0.2 -0.3 0.05

1) M1-F

mean -0.90123 -0.28788

r.m.s.e 0.17720 0.10696
2) M1-R

mean -0.90360 0.08654 -0.28828 0.04605

r.m.s.e 0.17578 0.18135 0.10718 0.09132
3) M2-F-d

mean -1.00566 -0.30219

r.m.s.e 0.16261 0.11259
4)M2-R-d

mean -1.00931 0.02977 -0.31490 0.03803

r.m.s.e 0.16640 0.20307 0.27665 0.16084
5) M2-F-N

mean -0.67698 1.00675 -1.01345 -0.73103

r.m.s.e 0.20104 0.50908
6) M2-R-N

mean -0.92330 0.96800 -0.99082 0.04267 0.08951  0.03030

r.m.s.e 0.20110 0.29985 0.53850 0.53932
7) M3-F

mean -0.99176 -0.29990

r.m.s.e 0.16034 0.11168
8) M3-R

mean -1.00000 0.17030 -0.30141 0.03026

r.m.s.e 0.16245 0.20459 0.11229 0.14836
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Table 5.3: Simulation study results based on the data generated from S1 with M = 54
a do1 002
Model parameters a0 Tao Lho1 To1 o2 To2
(True value) -1.0 0.2 -0.3 0.05
1) M1-F
mean -0.78602 -0.26570
r.m.s.e 0.25923 0.13718
2) M1-R
mean -0.78706  0.02606 -0.26569 0.01536
r.m.s.e 0.25834 0.19311 0.13737  0.06792
3) M2-F-d
mean -1.02375 -0.31619
r.m.s.e 0.19243 0.16091
4) M2-R-d
mean -1.02501 0.02784 -0.30247 0.03933
r.m.s.e 0.19728 0.21311 0.25730 0.17855
5) M2-F-N
mean -0.92121 0.96196 -1.00059 -0.08400
r.m.s.e 0.19461 0.31555
6) M2-R-N
mean -0.92330 0.96800 -0.99082 0.04267 -0.08951  0.03038
r.m.s.e 0.21176  0.36846 0.31422  0.35829
7) M3-F
mean -0.98839 -0.30544
r.m.s.e 0.18460 0.15488
8) M3-R
mean -1.00021  0.25955 -0.30686  0.09526
r.m.s.e 0.18862 0.28027 0.15710  0.24840
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Table 5.4: Simulation study results based on the data generated from S2 with M = 27

a do1 do2
Model parameters a0 Tao Lho1 To1 o2 To2
(True value) -0.92 0.2 -1.0 0.2 -0.3 0.05
1) M1-F
mean -0.91355 -0.30170
r.m.s.e 0.15194 0.07769
2) M1-R
mean -0.91863 0.11031 -0.30098 0.02966
r.m.s.e 0.15035 0.07223 0.19608 0.06211
3) M2-F-d
mean -1.03935 -0.30879
r.m.s.e 0.16839 0.08244
4) M2-R-d
mean -1.04805 0.05279 -0.33293 0.04529
r.m.s.e 0.17288 0.23431 0.15533  0.09380
5) M2-F-N
mean -0.93680 0.19283 -1.02629 -0.36060
r.m.s.e 0.09379 0.10139 0.15523 0.16195
6) M2-R-N
mean -0.93793 0.11769 -1.04984 0.06497 -0.35672 0.00826
r.m.s.e 0.09579 0.17453 0.17591 0.38942 0.15960 0.17326
7) M3-F
mean -0.97811 -0.31870
r.m.s.e 0.16480 0.27833
8) M3-R
mean -0.91198 0.19711 -0.31237 0.11499
r.m.s.e 0.34845 0.30415 0.22113 0.27201
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Table 5.5: Simulation study results based on the data generated from S2 with M = 54

« do1 d02
Model parameters a0 Too o1 To1 o2 To2
(True value) -0.92 0.2 -1.0 0.2 -0.3 0.05
1) M1-F
mean -0.76590 -0.25500
r.m.s.e 0.27700 0.13429
2)M1-R
mean -0.76642 0.01049 -0.25519 0.01110
r.m.s.e 0.27647 0.19779 0.13428 0.06617
3)M2-F-d
mean -1.01269 -0.31020
r.m.s.e 0.19552 0.15237
4)M2-R-d
mean -1.01784 0.03457 -0.31176  0.02672
r.m.s.e 0.20172 0.22038 0.27105 0.13303
5)M2-F-N
mean -0.94138 0.15866 -0.97917 -0.30087
r.m.s.e 0.11654 0.16723 0.19263 0.23158
6)M2-R-N
mean -0.94216 0.15912 -1.00124 0.07353 -0.30892 0.01922
r.m.s.e 0.11721 0.17700 0.20349 0.33496 0.23695 0.29187
7) M3-F
mean -0.97882 -0.27944
r.m.s.e 0.18996 0.14711
8) M3-R
mean -1.00012 0.25748 -0.30244 0.11425
r.m.s.e 0.19574 0.28954 0.14917 0.26059
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Sensitivity analysis to bivariate

normal approximation model

In Chapter 3, we used the empirical log-odds ratio model for the W1 data without consid-
ering selection bias. In fact, we do not know how the studies in the W1 data were selected
in the meta-analysis. As explained in Chapter 1, various tools to detect selection bias can
be used in meta-analysis and in this thesis, we use the funnel plot. If studies with posi-
tive results were mostly selected in the meta-analysis then it could make the meta-analysis
positively biased. Conversely, if more studies with negative results were selected then the
meta-analysis would be negatively biased. In either case, the results may give us incorrect
results. To solve this problem, we will use a selection model to investigate the mechanism
of selection process. The empirical log-odds ratio model will be used as a standard meta-
analysis model in this chapter. The exact logistic regression model will be discussed in the

next chapter.
The funnel plot has been widely used to detect selection bias in medical research. Egger

et al. (1997) concluded from the investigation of the funnel plot with 37 meta-analyses that

the funnel plots provided a useful test for the likely presence of bias in meta-analyses, but
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the capacity to detect bias will be limited to a small number of studies in meta-analysis.
Copas and Shi (2000) used the funnel plot (the relative risk against the standard deviation)
to reanalyse the 37 published epidemiological studies of passive smoking and lung cancer
data and proposed a sensitivity analysis method to address the problem of selection bias.
Song et al. (2002) examined a funnel plot along with three other statistical methods: rank
correlation, regression analysis and Trim and Fill, to 28 meta-analyses from the Database of

Abstracts of Reviews of Effectiveness (DARE).

There are various approaches that a researcher confronting the problem of selection bias
may take. One is to apply a selection model for bias using a weight function to represent
the process of selection. Several classes of selection model have been proposed. Iyengar and
Greenhouse (1988) employed the selection model, or weighted distributions, to deal with
bias and corrected the results. They also suggested using families of weight functions to
model plausible biasing mechanisms to study the sensitivity analysis of inferences about the
treatment effects. A similar idea was studied in the area of education, see Hedges (1984).
Alternatively, the weight function of the selection model can be defined depending on the
treatment effect estimate and its standard error (Copas, 1999; Copas and Shi, 2001, 2002);
because some parameters are inestimable and a sensitivity analysis has to be conducted.
We will use the similar idea to address the problem of selection bias in meta-analysis for

multi-arm trials.

The chapter is outlined as follows. Section 6.1 describes how to detect selection bias in the
multi-arm trials model. Section 6.2 illustrates selection bias including the population and
selection models, and some mathematical consequences are also given. Section 6.3 presents
the likelihood of combined models between the empirical log-odds ratio models and the
selection models. Section 6.4 shows a goodness-of-fit test for the funnel plots of combined

models. The details of the procedure for sensitivity analysis are described in Section 6.5.
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Section 6.6 examines the use of sensitivity analysis with the simulated data. Some related
theorems and derivations applying to this chapter are proved in Section 6.7. Finally, some
comments are made in Section 6.8. Throughout the chapter, the W1 data will be used to

illustrate the idea and the model. There is no difficulty to extend to other data sets.

6.1 Identifying selection bias in multi-arm trials

The basic idea of funnel plot is to plot the estimated treatment effects from individual stud-
ies (e.g. empirical log-odds ratios) against their standard errors. If a set of studies is a good
sample of a meta-analysis, the funnel plot will be symmetrical between the negative and
positive on the treatment effect estimate axis. Asymmetry is a sign of selection bias (see
detailed discussion in Rothstein et al., chapter 4, 2005 ). In multi-arm trials data, there are
multiple-pairwise comparisons in RCTs. We thus need to consider the funnel plot in each
pairwise-comparison involved in those studies. By using the empirical log-odds ratio model
for the W1 data in Chapter 3, it would be convenient and reasonable to use the empirical
log-odds ratio and its standard error on the axes because these quantities are already avail-

able in the data set.

Recall that the W1 data is partitioned into four groups of studies: G; = {1,...,6},Gy =
{7,...,10},G3 = {11,...,24} and G4 = {25,...,31} where the studies in G, G2, G5 and
G4 compare treatments A versus B versus C, A versus B, A versus C, B versus C respectively.
Let Y; ac, Yi pc and Y; 4p be the empirical log-odds ratios between the treatments A versus
C, B versus C and A versus B, and let s; ac, S;pc and s; 4p be their respective standard
errors. To detect selection bias, we shall apply the funnel plot to the individual studies in
each group of multi-arm trials with the empirical log-odds ratio on the vertical axis and the
standard error on the horizontal axis. Note that the studies in G5 are not considered here

since there are only indirect comparisons in G.

91



Chapter 6. Sensitivity analysis to bivariate normal approximation model

For the W1 data, we consider the number of ‘event’ that the patients in whom reocclu-
sion on treatments (A, B and C) was detected. Thus, the negative value of, for example,
Yi ac means positive effect. For convenience, we multiplied the value -1 to all the empirical
log-odds ratios in our analysis. Thus, the larger positive value of Y; 4c means the more
positive effect of treatment A comparing to the control group C. The two funnel plots for
Gy: Y ac against s; ac and Y] po against s; ge, are displayed in Figures 6.1(a) and 6.1(b)
respectively. The funnel plots corresponding to G3 and G4 are given in Figures 6.1(c) and
6.1(d) respectively. There are strong tendencies in the funnel plots displayed in Figures
6.1(a) and 6.1(b). Also, signs of selection bias can be seen in the top right-hand corner of
both funnel plots — smaller studies (larger standard errors) give more positive results than
larger studies (smaller standard errors). Figure 6.1(c) shows a set of studies in G3 with no
evidence of selection bias. Plot 6.1(d) is asymmetrical with a suggestive lack of studies in the

bottom right-hand corner. It shows that small studies with negative results are missing in G.

From Figures 6.1(a), 6.1(b) and 6.1(d), the problem of selection bias has arisen in G and
G4. As a result, we suspect that there might be other small studies, comparing treatments
A, B and C and treatments B and C, respectively which have been carried out or published,

but which have not been selected in our meta-analysis.

6.2 Selection bias

The empirical log-odds ratio models for the W1 data are defined in (3.39) - (3.42) of Chap-
ter 3. All treatment effects are assumed to be random. The estimated treatment effects
(empirical log-odds ratios) Y; ac, Yi 5o, and Y; 4p, and their standard errors s; ac, i pc, and

si op are known from the meta-analysis.

92



Chapter 6. Sensitivity analysis to bivariate normal approximation model
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6.2.1 Assumption for population model

From the previous section, there is a presence of selection bias in GG; and G4. Recall the

empirical log-odds ratios models for G; and Gy:

Yiac = diac + 0iac€iac,

Yi e = 0i,Bc + 05 Bc€iBC,
YiBc = diBc + 0iBcEiBC- (6.2)

We will make some assumptions for both models to allow us to explore the selection process.
We assume that the models (6.1) and (6.2) represent the population of studies, comparing
treatment A versus B versus C and treatment B versus C respectively, that have been or
could be carried out. In theory, the empirical log-odds ratios are not dependent on their
standard errors (Copas and Shi, 2002). For example, Y; 4 and s; 4¢ are independent to each

other. From now on, the models (6.1) and (6.2) are our population models.

6.2.2 Selection model

We first define a selection model for studies in GGy via a latent variable Z;;. The ith study is

selected when Z;; is greater than zero. The latent variable Z;; is defined by

b
Ziyg = ay + j + &, (6.3)

)

where ¢; is a standard normal distribution N(0,1). By adding this selection model to the
population model (6.1), the random residuals (€; 4c,&;) and (€, e, &) are bivariate normal
distributions with both means equal to zero and both variances equal to one. Also their

correlations p; and g, are respectively as

corr(€,ac,&) = 01 and corr(€i,po, &) = 0.
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The latent variable Z; in (6.3) can be interpreted as the inclination for the selection.
The quantity ¢; is the average of the standard errors involved in the ¢th study, given by
(si,ac+si,pc)/2. Thus, larger study will have smaller value of ;. The parameter a; controls
the overall proportion of the studies selected; parameter b; controls how fast the probability
of selection increases as ; decreases. In practice, the parameters by, p; and gy are expected

to be positive. We will explain this later.

As mentioned earlier, the outcome (Y; 4¢, Yi pc) in the population model (6.1) will be se-
lected only if Z;; is greater than 0. In other words, a study comparing treatments A, B and
C will be selected in the meta-analysis if and only if the value of the random quantity Z;; is
positive. Therefore, the available data from G (the 6 studies from Table 1 of Chapter 2) can
be written as (Y; ac,Yipc)|Zin > 0 and the related density function for those observations

is p(Yi,ac, Yipe|Za > 0).

If the population and the selection models are independent then the correlations o; and g9
are zero. This will be the ordinary bivariate normal distribution of (Y; ¢, Y; pc). Also, it
indicates that the set of studies from the original model is a well-selected sample of the
meta-analysis (no selection bias in the model). If p; > 0 or g > 0 then the selected studies
will have Z;; > 0, and are more likely to have positive §; and positive €; ac or €; g, leading

to a positive bias value of (Y; ac, Yipc)-

We can define a selection model for studies in G4 similarly. Let Z;; be a latent variable, the

selection model is defined by

b
Ziy = ay + —— + &, (6.4)
Si,BC

where &; is normally distributed as N(0,1). The ith study in G, is selected when Z;, is
greater than zero. The random residual (¢; pc, &;) is a bivariate normal distribution with

both means equal to zero and both variances equal to one. The correlation between ¢€; pc
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and §; is p3. Notice that the denominator of by is the standard error of s; g because there

are only two arms in Gy4.

6.2.3 Relating mathematical consequences

Some related mathematical consequences for the population model (6.1) and the selection
model (6.3) for Z;; are given here. All proofs are given in Section 6.7. The equations below

can be derived in a similar way to the population model (6.2) and the selection model (6.4).

(i). The probability of selection
From the selection model (6.3), the marginal probability of selection can be calculated

as

p(Zin > Olp;) = & (m + ﬁ) | (6.5)

i
where @ is a standard normal cumulative distribution (see the proof of (6.5) in Theorem
6.7.1). If the parameters a; and by are fixed in the selection model then the probabil-
ity will depend only on the function ¢;. For example, if ¢; is small (small s; 4 and
si.pc, from a large study) then the probability of selection is close to 1. In contrast, it
makes the selection probability less than 1 for large ¢; (i.e. the small study). Thus, if b;

is positive then large studies (small ¢;) are more likely to be selected than small studies.

From (6.5), the selection probability is determined by both parameters a; and b;.
As mentioned in the previous section, the value of a; controls the overall level of
selection probability while b; controls how the chance of selection depends on the
study size. In practice, we need to restrict that by is greater than zero because the
results of large studies are usually required to report, no matter that the finding is
positive or negative (i.e have large selection probability). While the small studies with
negative results are easy to be ignored (either rejected by journals or constrained by

researchers themselves). It is important to note that a; and b; cannot be estimated
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(ii).

(ii).

from the available data because the unselected studies in the population model (6.1)

are unknown.

The probability of selection for a typical study
The probability of a study with the same observations as ith study being selected can

be calculated by

p(Zi > 0|(Yiac, Vipe)) = & (’“‘) , (6.6)

02i1
where p15;1 and o3, are given by
Yiac — pac

b _
H2i1 = (al + —1> + W12W221 , (67)
! YiBc — uBC

2 -1
02“ = Wi — W12W22 Wo1, (68)

where wii = (1), wia = (01/017, 033/02:), Wa1 = (013/V17, 021/V2:)" and wo is

2 2 2
U1 V12 Tac T 0iac  PTACTBC + Oic

2 2 2
(ST pPTACTBC + Ojc Tpe + 0; o

The proof of (6.6) is given in Theorem 6.7.2. The probability (6.6) is a measure to
determine that how much chance the outcome of ith study will be selected. The

equation (6.6) will give a larger selection probability for larger values of Y; 4c or Y] pc.

The means for selected studies

The means of the log-odds ratios for selected studies are

E 1 Zin > 0,0 | =

Yiac Hac 010;AC (
+ A
YiBc UBC 020iBC

ar + ﬁ) . (6.9)

Pi

The A(+) is Mill’s ratio ¢(-)/®(-), where ¢ and @ are the density and distribution

functions respectively, of the standard normal distribution (see the proof of (6.9) in

97



Chapter 6. Sensitivity analysis to bivariate normal approximation model

Theorem 6.7.3). The equation (6.9) gives the average of log-odds ratios for selected
studies from the population model, allowing different amounts of selection bias. This
average depends on the pair (a1, by) in the selection model (6.3). It is also an increasing
function of (0 ac,0i5c) and a decreasing function of ¢;. Since the second term in
(6.9) is larger than zero, the selected studies has a larger mean than overall mean
(tac, ). For smaller studies of (Y ac, Yi pc), it has even larger mean since Mill’s
ratio A(a; + by /p;) has larger values. Thus, the model can be used to model the data

shown in Figure 6.1.

. Variance of selected studies

From equation (6.9), the variance of the selected outcomes can be defined as

Yiac o7 ac(1+d oF T
Var Zi > 0,0, | = acl 101) ¢ . (6.10)

Y Bc Or 07 po(1 + d3y05)

b b b
d?lz)\<a1+—1> <01+—1+)\<CL1+—1>>.
Pi Pi Pi

The proof of (6.10) is given in Theorem 6.7.4. Now, we need to distinguish between

where

2 2 2 2 2 2 : -
(07 ac» 77 pe) and (57 4c» 57 po)- The 07 4o and 07 g are the variances of the population

models and may be written as
2 2
0iac = Var(Yiacldiac)  and o7 po = Var(Yipcldisco)-
2 2 . . . .
The parameters s; 4 and s; g are the variances of our meta-analysis, estimating from

s7 40 = Var(Yiac|Zi > 0) and s;pe = Var(Y;pc|Zia > 0).
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For example, 07 ¢, 07 g and 0; in (6.10) may be written, respectively, as

A s7
c BC
5 2 = ! and

2 2 2
o S e — o: = — O:v = S;m. 6.11
z,AC’ (1 dz191) i,BC (1 leQ2) iC Sic ( )

Note that the o7, and 07 g in equation (6.9) are replaced by (6.11).

6.3 Likelihood

In this section, we will calculate MLEs of all unknown parameters by assuming that the values
of (ar,b1) and (ag, be) are given. As the previous section, we still use the W1 data as our
illustrative example. The population models (6.1) and (6.2) are combined with the selection
models (6.3) and (6.4) for G; and G4 respectively; the empirical log odds ratio models for
Gy and G5 are the same (without selectivity) as defined in Chapter 3 (models (3.40) and
(3.41)). The log-likelihood function for the empirical log odds models with selection models

(with selectivity) can be written as

() ZlOgP Yiac,Yige)|Zia > 0) + ZlOgP Y; 45|0)
i€Gy 1€Go
+ Y " logp(Yiacl®) + > logp(YisclZi > 0). (6.12)
1€G3 1€Gy

As discussed in Chapter 3, the heterogeneity parameters are assumed to be the same: 73, =
Tho =745 = 72 and the correlation coefficient between the treatment effects §; 4c and 6; o

takes the value 1/2. The collection of all unknown parameters is

0= {MACaMBCaTQa 01, 02, 93} . (6.13)

The likelihoods p(Y; 45|0) and p(Y; 4c|@) are the same as given in Chapter 3. The log-
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likelihood function for Gy (the first term of (6.12)) can be written as

lg, = Zlogp((E,Ac,Yi,Bc)|Zi1>0)

i€Gy

= Z (logp(Zin > 0|(Yi,ac, Yipe)) +logp(Yiac, Yipe) — p(Zin > 0g;)) .
i€Gy

The formulae of p(Z;; > 0|(Yac,Yisc)) and p(Z;; > 0|p;) are given by Theorems 6.7.2
and 6.7.1 respectively. Note that (Y 4c, Y; pc) has a bivariate normal distribution shown in

(3.38), we therefore have

6
1
lg, = Z (—5 log(7? + UZAC)(T2 + JEBC)(l — R?) 4+ 1log D (j19i1 /02i1) — log P(ay + bl/gpi))

i—1
6
1 (Yiac — pac)®  2Ri(Yiac — pac)Yise — pse) . (Yipe — ipe)?
_22(1—1%2) 72 4 o2 B + 72 4+ 0?
i=1 i i,AC \/7'2 + 07 40 \/7'2 + 07 e i,BC
where
R - pr? + o

2 2 2 2
\/7' +Ji7AC\/T +Ui,BC

The H(f12i1/09i1) is obtained from the function p(Z;; > 0|(YVi ac, Yi.pc)) where po; and o3;
are given in (6.7) and (6.8) respectively. The @(a; + by/y;) is derived from p(Z;; > 0]p;).
The parameter R; is the correlation between Y; 4c and Y; gc. Its numerator pr? + 01'2,0 is the
covariance of Y; 4¢ and Yj p¢; the first term (pr?) is the covariance of di ac and 9; pe, and
the second (c%,) is the covariance of the random sampling errors from both models. In the
denominator of R;, the 7> + 07, and 7° + 07 . are the variances of the models Y; 4¢ and

Y Bc respectively. The o7 ., 07 g and oj are replaced by (6.11).
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Similarly, we can calculate the log-likelihood for studies in G4, which is

lo, = Y logp(Yipc|Zia > 0),

1€Gy

= Y (logp(Zin > 0 5c) +log p(Yine) — p(Zin > Olsine)) -
1€Gy

The formulae p(Y; pc|Ziz > 0) and p(Z;z > 0]Y; pc) can be expressed in the same way
as Theorems 6.7.2 and 6.7.1 respectively. The p(Y; pc) is a density function of normal

distribution. Therefore, the log-likelihood /¢, is

1 (Y pc — ppc)?
lg, = Z (5 log(? + UZBc) - 22+ o0, — log ®(ay + ba/si pc) + log(pain/o22) |
Z€G4 2,

where fig;o and o099 are E(Z;5|Y; pe) and Var(Z;p|Y; ge) respectively, given by

by (Yi,Bc — iBc)
= + + : ,
H2i2 a2 Si’BC 03 (7_2 + O'Z-Z’BC)I/Z
O2i2 = (1 - 93)1/2-

Also, the 07 g, in lg, is replaced by o7 g = 57 g (1 4 d7,03) where

b b b
dle:)\<Cl2+ 2 ><a2+ 2 +)\<a2+ 2 ))
Si,BC Si,BC Si,BC

From the log-likelihood functions lg, and lg,, the parameters (ai,by) and (ag,bs) are not

estimable because we do not know how many unpublished studies, comparing treatments A,
B and C and treatments B and C, may have been carried out. Therefore, these parameters
will be treated as free parameters in the sensitivity analysis. If the pairs (a1, b;) and (as, by)
are given then the MLE for @ can be estimated by maximizing the log-likelihood function

directly.

It would be of interest to test the overall means of the treatment effect. For example, to test

101



Chapter 6. Sensitivity analysis to bivariate normal approximation model

the hypothesis Hy : pac = 0 and Hy : piac # 0, we can use the following likelihood ratio
statistic:

2 (1(5) - Z@AO:O)) ~ X% under Hy, (6.14)

where @ is the MLE of @ and 8 —o is the MLE of @ with restriction pyqc = 0. The

2%:Ye)

hypothesis test for Hy : ppc = 0 can be considered in the same way.

6.4 Goodness of fit

In this section, we suppose that the pairs (a1, b;) and (a2, bo) are given in the selection models
(6.3) and (6.4) or the log-likelihood function (6.12). We will explain how to infer these pairs
in the next section. From the profile of the log-likelihood function in the previous section,
if a set of specific parameters (ay, by, as, by) is a possible set for the selection models (6.3)
and (6.4), then we need to check that the resulting models (combined models) from these
selection models give reasonable fits to the data in funnel plots. For a study in Gy, if a
selection model with a specific pair (aq, b;) is used, the mean of selected studies is given by
(6.9). If another pair (af,b}) is used, the difference of the means by selection model with

these two pairs is given by

Yiac . Yiac
E |Zzl > Oa(piaalabl —F |le > 07 Soi;alabl
YiBc YiBc
N 01 N Si,AC
~ 4+ (AMal) — Maq)) , (6.15)
02 Si,BC

where ¢* is constant (see the proof of (6.15) in Theorem 6.7.5) when (a}, b7) is close to (ay, by).
The equation (6.15) is a linear equation in terms of s; 4c and s; pc. This suggests that local
departures of the model in terms of (as,b;) will be similar to adding the linear term [ in

siac and [ in s; po to the expected value of (Y; ac, Yi pc). Therefore, testing that if there
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is another pair (af, b7) better than (a, by) is equivalent to test Hy : f; = 0 and 2 = 0 in the

following models.

Yiac = diac + Bisiac + 0iac€iac,
Yz‘,Bc = 5z‘,Bc + 528z',Bc + 05 BC€i,BC,
by
Zii = a+—+§&.

)

In a similar way to the selection model (6.4), the difference of the means with these two

pairs (ag, be) and (a3, b3) is

E(Yipc|Zip > 0,5 B¢, a5,b5) — E(Y; pc|Zia > 0, 85, o, az, b2)

~ "+ o3(A(al) — Aaz))siBe- (6.16)

The proof of (6.16) can be obtained in a similar way as Theorem 6.7.5. Similar idea to
(6.15), we add the term S5 in s; po to the expected value of Y; go. The refitted population

model (6.2) and its selection model can be written as

Yisce = 0ic + B3siBc + 0iBc€iBC,
by
Zi = Qa9 + + fz
Si,BC

The purpose here is to consider the fit tests for the combined models (Y; ac, Yi pc|Zin > 0)
and (Y; pc|Ziz > 0) at the same time in the meta-analysis. To test whether or not the set

(a}, b}, al, b}) is better than (aq, by, as, by), we use the likelihood ratio test

Hy:B3=0 versus H;: B8 #0,

where B is the vector (/31, fa, 33). If the null hypothesis is accepted it means that the se-

lection models (6.3) and (6.4) have satisfactorily explained the linear relationships between
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(Yiac,Yise) and (s;,ac, sipc), and between Y; g and s; go. The other meaning is that the

set (ay, b1, az, bo) makes the funnel plots of combined models fit well.

To test a goodness-of-fit for any given (aq, by, az, b2), the log-likelihood function (6.12) can be
extended by adding the term (35, 4c to j14c and the term 355; e to p1pe in the log-likelihood

function lg,, and adding the term S33s; pc to ppc in the log-likelihood function lg,. Thus

1(6,8) = 16, (0, 8) + 1, (0) + la,(0) + 1;,(6. B), (6.17)

where I, (0) and Ig,(0) are the same as given in Chapter 3. The log-likelihood If; (8, B) is

given by

6

1 * *
> (=5 10800 + oZac)(r? + 21 = )+ 0 Blus o) ~ g a + 0 /)
i=1

2 2
T? + 0} 2 2 2 2
i,AC \/’7‘ —i—O’i,AC\/T —i—ainC

6
N Z 1 (Yi.Bc — pBc — B2siac)?
—~2(1 - R?) e

6
B Z 1 ((Yé,Ac — pac — Bisiac)?  2Ri(Yiac — pac — Pisiac)(Yipe — pBe — /623i,BC)>
2( )

Note that p3,, and o3, are similar as defined before but they are added the term (;s; 4¢ to
pac and the term 355 e to pupe. The log-likelihood [, (0, B) can be calculated similarly.

Then, the likelihood ratio statistic for the null hypothesis Hy : 8 = 0 is
2 (l*(b\,ﬁ) - l*(aﬁzo,ﬂ = 0)) ~ x4 under H, (6.18)

where (0, 8) is MLEs by maximizing (6.17) while (83_,,8 = 0) is the MLEs from (6.17)

with restriction 8 = 0.
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6.5 Sensitivity analysis

The idea of a sensitivity analysis is to use the selection models (6.3) and (6.4) to the popula-
tion models (6.1) and (6.2) respectively by allowing different amounts of selection probability
in the combined models (Y; ac, Y sc)|Zii > 0 and (Y; pc)|Ziz > 0, and investigate how sensi-
tive the main interest parameters are changed when compared to the results of the standard
model (without selectivity). The main parameters of interest in our meta-analysis are ¢
and ppc, which are the overall mean effects from the treatment effects §; 4 and 6; pc re-

spectively. The procedure of sensitivity analysis is given as follows

e Step 1
Determine the possible ranges of (aq,b;) and (as, by) for the selection models (6.3) and
(6.4) by using the marginal selection probabilities p(Z;; > 0|g;) and p(Z;2 > 0|s; pc)

respectively.

e Step 2
For each combination of (ay, by, as, by), we estimate jiac and jizc by maximizing (6.17)
and use the goodness-of-fit test to test how the meta-analysis model with selection

models fit in funnel plots. P-value will be calculated for each test.

e Step 3
We conduct a sensitivity analysis based on p-value of the goodness-of-fit test given in
step 2 and other quantities. For example, the overall estimates fisc and jigc obtaining
from the combined models with p-value < 0.05 should be discarded. We will discuss

the details for each step in the following subsections.

6.5.1 The possible range of (a1,b1) and (ag, bs) (Step 1)

As mentioned earlier, the parameters (a1, b;) and (as, be) cannot be estimated in the usual
way; they need to be given in the log-likelihood function. In this section, we shall identify

ranges of (ay,b;) and (ag, by) which cover all reasonable possibilities for the selection models
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(6.3) and (6.4) respectively. We use the selection model for G in the W1 data to demonstrate

how to choose such a range. Since the selection probability

p(Ziy > 0|@i,a1,b1) = P(ay + by /v;)

is a decreasing function of ¢;, we obtain

Pin(selection) = p(Zi > 0|@maz, a1, b1) and Pz (selection) = p(Z; > 0|@umin, a1, b1),

(6.19)
where Qe and @, are the maximum and minimum values of {y;,i = 1,...,6}. Thus, the
selection probability p(Z;; > 0|¢;, a1, by) can be written as

Pin(selection) < p(Z; > 0]p;, a1, b1) < Prpaz(selection). (6.20)
If we take a grid in the following area
0.01 < Pin(selection) < Ppq(selection) < 0.99. (6.21)

This should cover all reasonable possibilities of selection. Each pair of (Pin, Prae) 18 corre-

sponding to a pair of (a, by). For example, if (Pin, Pnaz) = (0.7,0.8) , we have

Prin = P(a1 + b1/ Pmaz) = 0.7 and Praz = P(a1 + b1/ Omin) = 0.8.

For the W1 data, the smallest and largest values of ¢ are 0.16718 and 0.97771 respectively

thus the pair (a1, by) is (0.4589681, 0.06397397)(as shown on row 2 of Table 6.1).

So the first step of sensitivity analysis is to take a grid in the area (6.21) and then transfer

them to a set of pairs (aq,b). The range of (as, bs) can be chosen similarly.
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In the following sections, we will report the detailed results of the following six typical pairs

in the area (6.21):
(0.8,0.7), (0.8,0.5),(0.7,0.4),(0.6,0.3),(0.4,0.1) and (0.2,0.01).

For these pairs, the related (ai,b;) for G; and (ag, by) for G4 in the W1 data are given in
Tables (6.1) and (6.2) respectively. The first row in the table is corresponding to the model

without assuming selection bias.

Table 6.1: The pairs (ay,b;) for the selection model (6.3)

Selection probability pairs a1 by

(1.0,1.0) 6.0 0.0
(0.80,0.70) 0.4589681 0.06397397
(0.80,0.50) -0.1735993  0.16972995
(0.70,0.40) -0.4137713  0.15684854
(0.60,0.30) -0.6848247 (0.15684854
(0.40,0.10) -1.4936369 0.20735823
(0.20,0.01) -2.6325990 0.29942516

Table 6.2: The pair of (as, be) for the selection model (6.4)
Selection probability pairs as by
(1.0,1.0) 6.0 0.0
(0.80,0.70) 0.33930785 0.1358371
(0.80,0.50) -0.49107105 0.3603908
(0.70,0.40) -0.70714903 0.3330395
(0.60,0.30) -0.97820244  0.3330395
( )
( )

0.40,0.10 -1.88149062  0.4402876
0.20,0.01 -3.19265952  0.6357751

From Table 6.1, we can interpret a selection from the population model (6.1). The pair
(a1,b1) = (0.4589681,0.06397397) (row 2 of Table 6.1) is calculated from the selection prob-
ability pair (0.80,0.70). This means that the marginal selection probability take 80% and
70% for the largest observed studies (smallest standard errors) and the smallest observed
studies (largest standard errors) respectively in the population model (6.1). Also 80% of the
largest studies will be selected but 70% of the smallest studies will be selected. Other pairs

can be interpreted in the same way.
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6.5.2 Estimation and goodness-of-fit test (Step 2)

In the sensitivity analysis, we consider the use of the pairs (aj,b;) and (ag, by) together to

select the studies from the population models (6.1) and (6.2) respectively. Each combination

of (aq,by,as,by) is corresponding to a particular selection model. The second step in our

sensitivity analysis is to calculate the relative statistical quantities (e.g. the p-value of

goodness-of-fit test) to judge if the underlying model is a reasonable choice. To do so, the

following quantities are calculated for each combination of (ay, by, as, by) for the W1 data.

1.

10.

11.

12.

13.

14.

HAc,

. p-value for testing Hy : piac = 0;
. lower limit of the 95% confidence interval for p4c;
. upper limit of the 95% confidence interval for pac;

. Pz (selection) for the selection model (6.3);

P,in(selection) for the selection model (6.3);

. estimated number of selected and unselected studies given for Gy by Y. {p(Zi > 0|¢;) };
- [UBC;

. p-value for testing Hy : pupc = 0;

lower limit of the 95% confidence interval for upc;
upper limit of the 95% confidence interval for ppc;
P4z (selection) for the selection model (6.4);
Pin(selection) for the selection model (6.4);

estimated number of selected and unselected studies given for G4 by Y. {p(Zi2 > O|si pc)} ;
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15. p-value for the fit for the funnel plot corresponding to the null hypothesis Hy : 8 = 0.

The 7th and 14th quantities present the overall severities of the selection models (6.3) and
(6.4) respectively. The 15th quantity gives the p-value of goodness-of-fit test discussed in
Section 6.4. For the W1 data, we listed the detailed results for seven typical combinations
in Table 6.3. The quantities in each row of the table are calculated from the combination
(a1, by, as, by) corresponding to the same row in Tables 6.1 and 6.2. The first row represents
the empirical log-odds ratio model without assuming selection bias. The conclusions for

Table 6.3 are as follows.

Table 6.3: The W1 data with selection model: summary of outputs

[, 1] ,2] , 3] ,4] o] [6] 7] 8]
[1,] 0.5689206  1.7901e-06  0.2386970 0.8991622 1.0 1.00 6 0.6770754
2,] 0.5438695  9.0884e-06  0.5311785 0.5565605 0.8  0.70 8 0.5802389
3,] 0.5203228  1.8689e-05  0.4642864 0.5763592 0.8  0.50 9 0.5270842
[4,]  0.5029442  3.5987e-05  0.4417334 0.5641550 0.7  0.40 12 0.4703732
[5,] 0.4840191  6.3934e-05  0.3825303 0.5855079 0.6  0.30 15 0.4085832
[6,] 0.4446604  2.1316e-04  0.4196116 0.4697092 0.4  0.10 37 0.2726371
[7,] 0.4134910  3.9836e-04  0.3018102 0.5251718 0.2 0.01 264 0.1496556

L 9] [, 10] [, 11] L12]  [13] [14] [ 15]

[1,] 7.8409e-07 0.294571394 1.0595794 1.0 1.00 7 0.02812794
[2,] 4.5603e-05 0.477201709 0.6832761 0.8 0.70 9  0.07719169
3,] 1.9897e-04 0.472615769 0.5815526 0.8 0.50 11  0.19807872
4,] 8.4598e-04 0.276823211 0.6639232 0.7 0.40 13 0.32012129
[5,] 3.4631e-03 0.318677969 0.4984884 0.6 0.30 17  0.54505213
6,] 3.3151e-02 0.183261054 0.3620131 0.4 0.10 42 0.93498257
[7,] 3.0103e-01 -0.004106355 0.3034176 0.2 0.01 292 0.55372482

(). The estimates of iac and fipe corresponding to different amounts of seleciton bias are
presented in columns 1 and 8 respectively. By using the asymptotic variance-covariance

matrix in Chapter 3, their standard errors from each row of i and jipc are

SD(fac) = {0.16848,0.00647,0.02859, 0.03123,0.05178, 0.01278, 0.05698},

109



Chapter 6. Sensitivity analysis to bivariate normal approximation model

(id).

(ii).

(iv).

SD(pgc) = {0.19515,0.05257,0.02779, 0.09875, 0.04587,0.0456, 0.07845}.

The lower and upper limits of the 95% confidence intervals for fisc and jigc are given

in columns 3 and 4, and columns 10 and 11 respectively.

The inferences of standard model are presented in the first row of the table. The
ftac and jigc of the standard models are 0.5689296 and 0.677075 respectively. The
test for the presence of selection bias is obtained from the likelihood test for the null
hypothesis Hy : 8 = 0. The p-value 0.02812794 in the first row confirms that there is
strong evidence to reject Hy, i.e, there is selection bias in G; and GG4. The p-value of the
goodness-of-fit test for the second row (0.077191) is close to 0.05 . This is the evidence
that fiic = 0.5689296 and 0.5438695, and that jigc = 0.677075 and 0.5802389 are

overestimated.

To consider the number of unselected studies for G; and G4 (columns 7 and 14), rows 2
- 7 show that the numbers of unselected studies (or the study populations of treatments
A vs B vs C and B vs C) increase while the estimates of fi4c and figc (columns 1 and
8) decrease gradually when reading downwards. However, the extreme number given

in row 7 indicates that the underline model is not acceptable.

The p-values of the null hypothesis Hy : fiac = 0 (column 2) are significant on all
rows while the p-value at row 7 (column 9) of the null hypothesis Hy : fipc = 0 is not

significant.

. To analyze a goodness-of-fit test for the meta-analysis, we consider the p-value of

Hy : B =0 (column 15). The p-values from rows 3 - 7 give good fits for the funnel plots
for the models (Y; ac, Yipc|Zi > 0) and (Y; po|Ziz > 0) while the others including the

standard estimates are overestimates.

. Overall, the models corresponding to row 1,2 and 7 are not acceptable. The others

are plausible. The fits of funnel plot for G given by different values of (ay, by, as, bo)
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15 2.0 25 3.0
| | |

empirical log odds ratio

1.0

average of standard errors

Figure 6.2: Funnel plot: Y; 4c against ¢; for G- the solid line represents the estimate
without selectivity fac = 0.5689296; the dashed lines represent the fitted values for
given (ay, by, asz, by) which (ay, by, as,bs, fiac) are equal to (0.458,0.063,0.339,0.135, 0.54),(-
0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.50).

(rows 2, 3 and 4 from Tables 6.1 and 6.2) are presented by the dashed lines in Figures
6.2 and 6.3 respectively. These curves are calculated from the equation (6.9) (mean
for selected studies). As described in Section 6.2.3, note that the smaller number of
studies of population model (6.1) (column 7) gives larger means as shown in columns
7. Two values of (aq, by, as, by) obtained from the selection probability pairs (0.80,0.50)
(row 3 in Tables 6.1 and 6.2) and (0.70,0.40) (row 4 in Tables 6.1 and 6.2) give good

fits while the first one (the first dashed line, near the solid line) is unacceptable.

Similarly, the fit of funnel plot for G4 given in Figure 6.4 is evaluated from jigc +

030;, oAz + by /s; pe). The fit for G4 in Figure 6.4 gives similar results as for Gj.
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Figure 6.3: Funnel plot: Y; 4c against ¢; for G- the solid line represents the estimate
without selectivity fipc = 0.6770754; the dashed lines represent the fitted values for
given (ay, by, as, by), which (ay, by, as,be, iac) are equal to (0.458,0.063,0.339,0.135, 0.58),(-
0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.47).
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Figure 6.4: Funnel plot: Y; po against s; pc for G4- the solid line represents the esti-
mate without selectivity fipc = 0.6770754; the dashed lines represent the fitted values for
given (ay, by, as, by), which (ay, by, as, b, jigc) are equal to (0.458,0.063,0.339,0.135, 0.58),(-
0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.47).
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6.5.3 Sensitivity analysis (Step 3)

The idea of sensitivity analysis is to calculate all the statistical quantities for any combi-
nations of (ay, by, as, by) transformed from a grid in (6.21) for G; and a similar grid for Gj.
Then, we can plot the estimates for example [i,c against the p-value of the goodness-of-fit
test. All the estimates with p-value less than a significant level (say 0.05) can be discarded.
The estimates corresponding to model with p-value around 0.5 can be treated as the most

plausible estimates. Some other quantities can also be used to find plausible estimates.

For the W1 data and all combinations of selection probability pairs presented in Tables 6.1
and 6.2, the plots of ji4¢ against p-value of Hy : 3 = 0 and jip¢ against p-value of Hy : 8 =0
are given in Figures 6.5 and 6.6 respectively. The plots indicate that the jixc and fipc can
be anything less than 0.55 and 0.60 respectively. The overall ji,¢ and jizc should come from
the models with p-value greater than 0.05 and plausible overall estimates should be the ones
from the models with p-value around 0.5. Therefore the plausible estimates for i o and

itgc should be around 0.47 and 0.40 respectively.

Bear in mind that we put a negative sign for all the empirical log-odds ratios in this chapter.
That means that the overall log-odds ratio having reocclusion for treatment A comparing to
the control group should be around -0.47 (OR = 0.625, i.e reduced the rates of reocclusion
37%). The estimate from the standard model (row 1 of Table 6.3) is -0.5689296 (OR =

0.566, reduced the rate of reocclusion by over 40%), which is overestimated.

Comparing treatment B and the control group, the overall log-odds ratio is around -0.40 (OR
= 0.67, reduced the rate of reocclusion 33%), while the model without assuming selection
bias gives the estimate of pupc -0.677075 (OR = 0.50, reduced the rate of reocclusion 50%),

which is clearly overestimated.

113



Chapter 6. Sensitivity analysis to bivariate normal approximation model

wn
n -
o
o]
o & Ooo So
@ 080 o
= o @g%O@ 0°
= @%0 o ©9 o Ogo
()
E 2B 5 0 p £ o
o o @ Qo
g o %8 @ P8
o S 0%
° og%“” 8
o o® o
° 5 o4 5 o
OO °
o
Q: —
o
o]
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
P-value

Figure 6.5: The W1 data: jiac against the p-value of Hy : 3 = 0.
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Figure 6.6: The W1 data: jipc against the p-value of Hy : 8 = 0.
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6.6 Simulation study

This section aims to examine a sensitivity analysis of the bias from the generated three-arm

data. The steps of the sensitivity analysis with the generated data are as follows.

1. The population data
We generate the three-arm data with 24 studies to represent the population data of
treatment A versus B versus C. Note that the simulation model is from the different-
trial effects and the treatment effects d; ac ~ N(0.90,0.10%) and §; g ~ N(0.60, 0.102).
The correlation coefficient between both treatment effects is assumed to be zero. This
implies that the covariance between both treatment effects is zero. The main parame-

ters pac and ppe obtained from the generated data are 0.96 and 0.62 respectively.

2. Make the selection bias
We shall select each study by the selection probability for a typical study given in
(6.6). The parameters g; and g, are selected from the pair (0.80,0.80). We choose the
values of (Pyq(selection), P, (selection)) as (0.90,0.10), (0.80,0.20) and (0.60,0.30)

then determine the values of (ay,b;) for the selection probability (6.6).

The requirement of selection for a study from the population model is that larger
studies are likely to be selected than smaller studies. Let P; be a probability of the

population data being selected. The probability of selection for the ith study is

P, =p(Zy > 0|(Yiac,Yipc)) =@ (M%l) , (6.22)

09241

where p15;1 and 03, are the same as (6.7) and (6.8). Let U; be a random number
generated from an uniform distribution U(0,1). The ith study from the population

data in (i) will be selected if P; is greater than U;.
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It is clear that the above steps would generate a set of studies with selection bias. We first
calculated the MLEs for pac and ppe by using the model without assuming selection bias.
The results are given in Table 6.4. The p-value in the table is the one for goodness-of-fit
test with Hy : 1 = 5 = 0. The p-value 0.06705 of the model (the last row of Table 6.4)
shows a good fit for funnel plots while the other p-values are significant at significance level
0.5. The funnel plots for Y; 4¢ against s; ac and Y; pc against s; pc corresponding to the
first two models in Table 6.4 are given in Figures 6.7(a)-(b) and 6.8 (a)-(b). All funnel plots
show signs of selection bias, i.e. some studies may be unselected. Thus, we shall use the

sensitivity for the first two models in Table 6.4.

The procedure of sensitivity analysis is as discussed in the previous section. To save space,
we present only the scatter plots of puic and ppce against their p-values of the goodness-
of-fit test Hy : 1 = P = 0, given in Figures 6.7(c)-(d) and 6.8 (c¢)-(d). The dashed line

in the plots represents the true mean effect of the standard model (from the simulated data).

Table 6.4: The simulated three-arm data: summary of outputs

01 02 Ppas(selection) P, (selection)  jiac [LBC p-value number of
(0.96)  (0.62) selected studies
0.8 0.8 0.90 0.10 1.34348 1.02130 0.03032 11
0.80 0.20 1.34701 0.96602 0.04459 9
0.60 0.30 1.39359 1.06687 0.06705 11

(). The estimates for g and ppe from the models without assuming selection bias ( see
Table 6.4) are overestimated comparing to their true mean effects and presented in the

blue and red solid circles in (¢) and (d) of all figures respectively.
(ii). By using the sensitivity analysis to those models, we can conclude as follows
(a) The estimates for pac and ppe with p-value less than 0.05 can be discarded, thus
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fiac and fipc corresponding to the first two rows of Table 6.4 can be anything

less than 1.33 and 0.98 , and 1.33 and 0.93 respectively.

(b) As described in Section 6.5, the most plausible estimates should come from the
model with p-value around 0.5. Therefore, the plausible estimates for ¢ and
ipe should be around 1.26 and 0.62, and 1.0 and 0.64 respectively. Notice these

estimates are quite close to the true mean effects of 14¢ and ppe (0.96 and 0.62).

Based on the simulation study, sensitivity analysis approach used in this thesis can be used
to adjust the over-estimates which the standard model usually give when there is selection

bias.

6.7 Some theorems of mathematical consequences

In this section, we will prove the statistical theorems presented in Section 6.2.3.

Theorem 6.7.1 (The probability of selection). Suppose that there is selection bias in G,
and the empirical log-odds ratio model (6.1) is assumed to be population model. The selection
model is defined as Z;; = ai + by/p; where a; and by control the marginal probability and
the @; 1s the average of the standard errors involved in the ith study. Then the probability of

being selected for the ith study is

b
p(Zi > 0]pi) = P(ga), where gy = ay + —1

Wi

Proof. The selection model Z;; is normally distributed with mean ¢;; and variance 1: Z;; ~
N(gi1,1) where g;; = a; + by /p;. The marginal probability of the selection model can be

written as

p(Zin > 0|e;) = p(Zin — gi1 > —gin) = P(gi1)- U

Theorem 6.7.2 (The probability of selection for a typical study (Y; ac, Yi sc)). From

the population model (6.1) and the selection model (6.3), the probability of being selected for
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Figure 6.7: The generated data with bias where o, = 0o = 0.8 corresponds to

(Ppin(selection), Ppqq(selection) =(0.90,0.10): (a) funnel plot of Y; 4 against s; ac; (b)
funnel plot of Y; gc against s; pe; (¢) fac against the p-value of Hy : 51 = [y = 0; (d) e
against the p-value of Hy : 1 = 55 =0
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Figure 6.8: The generated data with bias where o, = 0o = 0.8 corresponds to

(Ppin(selection), Pp,qq(selection) =(0.80,0.20): (a) funnel plot of Y; 4¢ against s; ac; (b)
funnel plot of Y; gc against s; pe; (¢) fac against the p-value of Hy : 51 = [y = 0; (d) e
against the p-value of Hy : 1 = 55 =0

119



Chapter 6. Sensitivity analysis to bivariate normal approximation model

a typical study (Y; ac,Yipc) is

p(Zi > 0|(Yiac,Yipc)) =9 <M2i1> ,

02;1

where psyn = E(Zu|(Yiac, Yipe)) and o3, = Var(Ziu|(Yiac, Yise)) are given in (6.7) and

(6.8) respectively.

Proof. The selection model Z;; is normally distributed as N(g;1,1) where g; = ay + by /¢;.
The outcome (Y; ¢, Yi pc) is normally distributed as presented in (3.38) of Chapter 3. The

variance-covariance matrix of (3.38) is

2 2 2
U1y V12 Tac T 0iac  PTACTBC + Oic

= . (6.23)

2 2 2
U1y Vo PTACcTBC + Oicc T + 05 e

The variance-covariance matrix between the selection model Z;; and the distribution (Y; ac, Yi sc)
is

Wi Wi2

Cov(Z, (Yiac, Yipe)) = :

Wai1 W2
where wy; = (1), wip = (Ql\/vli;QZ\/U%) y Wo1 = (le/vlz',&\/vm‘)t and wyy is given in
(6.23). From the property of conditional distribution, the conditional distribution of the
selection model (6.3) given (Y; ac,Yipc) is a multivariate normal distribution with mean

E(Zj|(Yiac,Yipe) and variance Var(Z|(Y; ac,Yisc)). The E(Zy|(Yiac,Yipc) can be

calculated as

1 | Yiac —pac

E(Zu|(Yiac,Yipc)) = git + WiaWoy, = [42i1.- (6.24)
Yi,BC — MBC
Likewise, Var(Z;1|(Yi ac, Yipc)) is formulated as
Var(Zu|(Yiac, Yipc)) = Wi — WiaWyy Wo = 0. (6.25)
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Hence, the probability of being selected for a typical study (Y; ac, Yisc) may be written as

) v _ _ Zi1|(Yi,ac,YiBe)—E(Zi1|(Yi,ac,Yise) E(Zi|(Yiac,YiBc))
p(Zin > 0,¢il(Yiac, Yipe)) =p ( N > ] (YZ_,AC,YZ_,BC))> ,

— ¢ E(Zi1|(Yi,ac,Yi,Bc))
VVar(Za|(Yiac,Yise)) )’

where E(Z|(Yi ac,Yipc)) and Var(Z;|(Yi ac, Yipc)) are given in (6.24) and (6.25) respec-
tively. O

Theorem 6.7.3 (The means for selected studies). From the population model (6.1) and

the selection model (6.3), the means for selected studies are

E 1 Zin > 0,0 | =

Yiac HAc 010, AC ( b, >
+ A )
YiBc UBC 0203 BC

Proof. The expected value of the conditional distribution (Y; ¢, Y; pc) given Z; is estimated

by

Hac 010iAC
E(Zu|(Yiac,Yipc)) = + (Zin — gin)- (6.26)

KUBC 020;BC
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The expected value of the conditional distribution (Y; ac, Y sc) given Z;; > 0 is

Yiac
E | Zin > 0, ¢

YiBc
:/ p(Yiac,Yipc)p((Yiac, Yise)| Zin > 0,0:)d(Yiac, Yise),

o0

fo I n( zAc,Yi,Bc)p((Yi acy Yipe), Zin)d(Yi ac, Yipe)dZ;
IO zl del

Y

fo [Z p(Yiac, Yise)p((Y;, AC,Y}BC)|Zz'1) (Zi1)d(Yiac, Yie)dZi
fo 1,1 del

Y

fo Zin) |25 p(Yiac, Y Bc)p((Yi Ao, Yipo)| Zn)d(Yiac, Yipe)dZi
fO zl del

Y

_ Iy p(Zn)E YzAc,Ych)|Zi1)dZﬂ

6.27
fo Zl del ’ ( )

Hac 0105, AC b
= + l A <a1 + —1> .

HBC 020i,BC
Inserting equation (6.26) in equation (6.27), results are obtained in the above formula. O
Theorem 6.7.4 (The variance of selected studies). From the population model (6.1)

and the selection model (6.3), the variance of selected studies is

Y; AC o? 1+ d? QZ a;
Var L, |ZZ1 > 0, i _ z,AC( il 1) iC :

Y Bc o 07 po(1+ d303)

where d% = Agi1)(gi1 + A(gi1))- and ga = ay + by /¢;.
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Proof. The variance from the above equation can be written as

Var(Yi aclZi > 0,¢;) Cov(Yi aclZn > 0,Y; pc|Zi > 0) (6.28)

Cov(Y; Bc|Zin > 0,Yiac|Zin > 0) Var(Y;pc|Zii > 0, ;)
We shall prove the entries on the diagonal first.

1. The entry on the diagonal Var(Y; 4c|Zi > 0, ;) can be written in the form
Var(YiaclZo > 0,¢;) = E(Y2c|Zo > 0,0:) — (BE(YiaclZa > 0,04))°.  (6.29)
The last term of (6.29) is calculated as

(E (Yi,aclZn >0, i) = (nac + Qlai,AC’)‘(gil))2 )

= Mic + 214000540\ (gin) + Q?UE,AC()\(QH))Q- (6.30)
The first term of equation (6.29) can calculate

E (Y2iclZi, o)) = EYiaclZi, i)+ (EYiac|Za,¢i))?, (6.31)

= UiQ,AC(l — 0}) + (pac + 010i.4c(Zi — ppe))?.
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The first term of (6.29) is an integral

E(YelZa > 0,¢:)

:/ YZAC’p(Yi,AdZiI >0, 9;)dY; ac,

o0

VR T mc,zﬂ)dzﬂdm,m
f[] zl; (pz del ’

_ o Y [ ol iAC|Zi1) (Zi1)dZ;ydY; ac
fO zla Pi del ’

_ fgoop(Zﬂ)foooo YZZACP( z‘Ac|Zz'1)de',Achz'1
IO zl; (pz del ,

- _Jor (YuclZin)dZin 6.32)
f[) 117 Pi del )
fo (07 4c(1 = 0]) + (MAC + 0105,4c(Zin — ppe))?)dZn
IO 117 Pi del ’
- UZZ,AC - Q% + /1’124(,‘ + 2,U/ACQlo'i,A(,‘)\(,UzBC’) + Q%U?,AC(MBC)\(MBC) —+ 1) (633)

Using the results from (6.30) in (6.32), the equation (6.33) is obtained. Substituting

equations (6.30) and (6.33) into the first term and the second term of (6.29) respectively
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gives

Var(Yiac|Zin > 0, ;) = O-iQ,AC + Q%U?,ACMBC)\(MBC) + Q%Uzz,AC()‘(MBC’))Qv

= U?,Ac(l + d3 07),

where d% = A(gi1)(gi1 + Mgi1)). In similar way, we have Var(Y; pc|Za > 0,¢;) =

07 po(1+d3 03).

Yiac

2. Considering the covariance of Var |Zi1 > 0,94 |, the Gy has the treat-

YiBc
ment C as the baseline treatment thus

Cov(Y; ac|Zin > 0,Yipc|Zin > 0) = Cov(Y; po|Zi > 0,Yiac|Zin > 0) =03, O

Theorem 6.7.5 (The difference of means). From the population model (6.1) and the
selection model (6.3), we assume that there is another pair (af,b}) for the selection model
which is better than (ai,by). The difference of the means by the selection model (6.3) with

the two pairs (ai,by) and (a},b}) is

Yiac Yiac
E ' |Zzl > Oa(piaa){ab){ - K ' |Z1,1 > 07 gpiaalabl
YiBc YiBc
% 01 " Si,AC
~ o+ (Ala}) = Aar))
02 Si,BC

where ¢* is constant where (a},b}) is close to (ay,by).
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Proof. The above equation can be written as

Yiac Yiac
E U120 > 0,05,a05,070 | - E 120> 0,00 01,0
YiBc YiBc
Hac 010iAC . s Hac 010iAC
= + Aal + 07 /i) — - May + bi/gi),
UBC 020;BC UBC 020iBC
. 015iAC . s
~ o+ Aai + b7 /i) — Aay + b1/ v;). (6.34)
025;BC

By using Theorem 6.7.4, we obtain 07 4o = 57 40/(1 + dj, 07) and 07 o = 57 go/ (1 + d7; 03).

We substitute o7 4 and 07 go by s7 4 and s7 g in the above equation. From Taylor series

flx+A) = f(z)+ Azf (z) + Aszf”(x) +...

By using the Teylor series, the functions A(a} + b} /¢;) and A(ay + b1/¢;) in (6.34) are given
by

Aat +bi/ei) = Aai) + —+ | =

2

Mar +bi/ei) = May) + L + <_.>2

Pi

Hence, the equation (6.34) is approximated by
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6.8 Discussion

An important role of meta-analysis is to combine information from different studies to sum-
marize an overall estimate of a treatment effect. Studies with a greater effect may be more
likely to be selected or published than studies with a less statistically significant effect.
Chapter 3 presented the empirical log-odds ratio model for the W1 data without considering
the problem of selection in the meta-analysis. In this chapter, we employed the sensitivity
analysis using the selection model to examine the selection bias and corrected the results
under the controlled assumptions for the model. We regard the selection model as a tool of

sensitivity analysis.

The funnel plot was used to test a selection bias in this thesis. For studies with the binary
outcomes, the standard error is the best measure of study size, while risk ratios or odds
ratios should be used for the measure of treatment effect. We plotted the empirical log-odds
ratios against their standard errors for the funnel plot. From the funnel plot 6.1(d), the
studies missed at the bottom right-hand corner can be treated as non-ignorable missing data
in meta-analysis, see e.g Little and Rubin (2002). Note that a funnel plot is a simple graph-
ical tool for the investigation of selection bias in meta-analysis. It cannot be claimed that
visually interpreted asymmetry of a plot always reflects selection bias. For example, studies
of lower quality may exaggerate the estimate of the treatment effects. Selection bias is only
one of a number of possible causes of funnel plot asymmetry. Other sources of asymmetry in
funnel plots may be true heterogeneity, data irregularities, artefact and chance (Egger et al.,

1987). These may give the low power of tests for the funnel plot asymmetry.

The basic idea of the selection model is that the probability of selection depends on both
the empirical log-odds ratio and its standard error. Also the model is made under the re-
quirement that larger studies are more likely to be selected than smaller studies. When

the number of studies is small, two problems arise for the selection model. There may be
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numerical problems in obtaining stable estimates of the parameters. More importantly, the
standard errors of estimates will be large, perhaps so large as to make any specific inferences
impossible or meaningless. In this case, we need to use an exact logistic regression model as

discussed in Chapter 4. The related selection model will be discussed in the next chapter.

In addition, the pairs (aq,b;) and (ag,bs) for the selection models Z;; and Z;; cannot be
estimated from the log-likelihood function in the usual way, because we do not know that
how many unselected studies are there in the population of treatment comparisons A vs B vs
C and B and C. Thus, we calculate those pairs from the given probabilities obtaining from
the largest studies and smallest studies in meta-analysis. These probabilities represent the
different amounts of selection bias for the models assuming the selection bias. The funnel
plot examines whether or not there is selection bias in meta-analysis but cannot tell that

how many of unselected studies are. Therefore, the sensitivity analysis is needed.

As discussed in Chapter 3, the assumption of variance homogeneity applies to all the treat-
ment effects, and the correlation coefficients between treatment effects are 1/2. If both
direct and indirect comparisons are in meta analysis and the number of indirect comparison
studies is sufficiently large then the correlation coefficient between those treatment effects is
estimable (Chootrakool and Shi, 2008). However it would make the model more complicated

in the sensitivity analysis.

If more than three treatments are compared in the meta-analysis, the sensitivity analysis can
be applied in the same way but each group of treatment comparisons should have enough
information (studies) if we would like to add the selection model in those studies (for bias-

suspected model).
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Chapter 7

Sensitivity analysis to logistic

regression model

7.1 Introduction

We have described how to inspect selection bias by a funnel plot and how to address the
selection bias by using of a sensitivity analysis for normal approximation model in Chapter
6. However, if the sample size for each study is very small, an exact binomial model should
be used. The multi-arm trials model based on the binomial approach for the binary data
was presented in Chapter 4. In this chapter, we extend the sensitivity analysis to the exact
logistic regression model when there is selection bias, i.e. studies with statistically significant
results might have been selected more predominantly. Regarding to discussion in Chapter
5, the conditional likelihood estimates for the logistic regression model usually gives a bet-
ter result, therefore a conditional method will be applied for the logistic regression model in

this chapter. We will use a simulated data to perform the sensitivity analysis in this chapter.

The simulated data is given in the first section. The rest of this chapter is arranged as follows.

The multi-arm trials model for the exact conditional distribution is given in Section 7.3. We
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present an inspection of selection bias for the data in Section 7.4. Section 7.5 performs
the conditional probability with selection using some formulae from Chapter 6. The log-
likelihood function of the model with selection is produced in Section 7.6. Section 7.7 and
7.8 illustrate goodness of fit and sensitivity analysis respectively. Finally, the conclusion and

some comments are given in Section 7.9.

7.2 Simulated data

In this chapter, we will employ the following simulated data to illustrate how sensitivity
analysis is used to address the problem of selection bias in meta-analysis with the logistic
regression model using conditional method. Essentially, the following steps of generating the
data and making the selection bias are similar to the steps in Section 6.6 from the previous

chapter. Those steps are

1. The population data
To generate the population data of treatment A versus B versus C, we generate three-
arm data for 14 studies. We assume the different-trial effects, and the treatment
effects 8; ac ~ N(0.40,0.10%) and 8; 5o ~ N(0.60,0.10%). Similar to Section 6.6, the

covariance between both treatment effects is assumed to be zero.

2. Make the selection bias
The parameters p; and g, and the selection probabilities (P, (selection), P, (selection))
are 0.5,0.5 and (0.90,0.30) respectively. We use these parameters in the selection model
Z;1 to determine the values of (aq, by). Following the step 2 of Section 6.6, we will obtain

the selected studies.

A group of selected studies obtaining from the above steps is supposed to be biased and
the number of studies in the meta-analysis is now 9. From here, nine selected studies are

used in our meta-analysis and the treatment C is the control group. We shall present the
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exact conditional distribution of logistic regression model for this meta-analysis in the next

section.

7.3 Multi-arm trials with the conditional probability

According to the selected studies of three-arm comparisons in the previous section, the r;¢,
ria and r;p are binomially distributed as Bin(ma,n;a), Bin(mp,nip) and Bin(mc, nic)
respectively for ¢+ = 1,...,9. If n;4, n;p and n,c are large and r;4, ;g or r;c are not equal
to nja, nig or n;c or zero. From the discussion in Section 3.3 of Chapter 3, we can define
normal approximation model (see discussion in Chapter 3). For example, the empirical log-

odds ratios between (r;4,n;4) and (r;c, nic), and (r;z,n;p) and (r;c, nic) are respectively

TiA—FO.E) niC—TiC—f—O.E)
Yiac = 1 : 7.1
AC 8 (’niA—TZ'A—FO.E) ric + 0.5 ) ( )
rig+05 nic—ric+05
Y; =1 . 7.2
BC 08 (’niB—TZ'B—FO.E) Tic+0.5 ) ( )
The logistic regression models for our meta-analysis can be defined as
log < Tic ) = (7.3)
1 —mic
Tij .
log | —— = o; + 6z',Cj; ] € J(i), (7.4)
1— Uy

where J;) = {A,B}. We allow the heterogeneity in the model. Both treatment effects
d;.ac and 0; pc are thus assumed to be random. We assume that there is no association
between two treatment effects then the covariance between them is zero. Let r; be the vector
(ria, rip) and the function C; represent r;4 + 7,5+ ric = ¢;. By using the conditional method

as illustrated in Chapter 4, the conditional probability r; given C; for our meta-analysis is
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given by
f(rildiac,0iBc) = f(rilria +rip +ric = ¢i,0i.4c,0i,Bc),
i B i e(5i,A07‘iA+5i,Bo7“iB)
TiA TiB Tic
= , (7.5)
n; nia niB
3 i© ! ¢ el0i, acuir+6; pouin)
u;
Ci — Uil — Us2 TiA TiB
where u; is the vector (u;1, us) and is in the boundary of
max (0, ¢; — nie) < uy < min(e,n;a) and max(0,¢; — n;p) < up < min(e, ng).  (7.6)

We use the homogeneity of variance for the model. Thus the heterogeneity parameters for
the treatment effects d; ac and §; pc are the same: 73,= 7p- = 72. As described in Chapter
4, we integrate the conditional probability function f(r;|d; ac,0; pc) with respect to 0; ac

and §; po respectively. The probability f(r;) now involves two integrals and is given by

f(r;) ://f(l‘z'|5i,Ac,5i,Bc)¢(5i,Ac;/LAC,T)¢(5i,Bc;MBC,T)dfsi,Acdfsi,Bca

where ¢(0; ac; prac, T) and ¢(0; pe; epe, T) are the probability density functions of normal
distribution for ¢; ac and d; gc respectively. By applying Gaussian-Hermite approximation,

the above probability is approximated as
I >
flri) 7! Z wl) Z w® £ (1|6, a0, 0i.5c), (7.7)

ni=1 na=1

where f(r;|0; ac,d;,pc) is given in (7.5) and the sampling nodes are at 6; sc = prac + V27d,,

and 9, pc = uBc+\/§Tdn2 formy=1,....1and ny =1,...,[.
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7.4 Detecting the selection bias

As illustrated in Section 6.1 of Chapter 6, the funnel plot was used to detect selection bias
for the W1 data. The plot of the empirical log-odds ratios against their standard errors from
each pairwise-comparison is considered for those groups (G, G3 and G4). Since this chapter
aims to use the sensitivity analysis for the conditional probability model, the values for the
sample size axis (standard errors) and means of the model cannot be calculated in the usual

way as used in Chapter 6.

To detect selection bias in this chapter, we will plot the empirical log-odds ratios on the
vertical axis and the estimated conditional standard errors on the horizontal axis, and use
the conditional mean instead of the conventional mean. As before, we consider the funnel
plot in each pairwise-comparison of meta-analysis, e.g by considering our three-arm simulated
data, the funnel plots are for treatment A versus C and B versus C . Here we need to estimate
the conditional variance and the conditional mean for the funnel plot. In probability theory,
the conditional variance is the variance of a conditional probability distribution. While
the conditional mean (also known as conditional expected value or conditional expectation)
is the expected value of a real random variable with respect to a conditional probability

distribution.

7.4.1 Conditional variance

To calculate the conditional variance, let v2 ;. and 25 be the conditional variances of Y; ac

given ¢;, and Y; pc given ¢; respectively corresponding to the ith study, may be written as
VzAC = Var(Yi ac|c;) and VEBC = Var(Y; gc|e),

Note that Y; 4c and Y; pc are empirical log-odds ratios for treatments A versus C and B

versus C and defined in (7.1) and (7.2) respectively. The above conditional variances can be
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estimated respectively by
Viac = E(Y2acle) = (E(Yiacle))” and vlpe = E(Yigcle) — (E(Yipcle)®,  (78)
where E represents the expectation operator.

7.4.2 Conditional mean

From (7.8), the E(Y; ac|c;) and E(Y; pc|c;) are the conditional means of ¥; 4¢ given ¢; and

Yi ac given c;, respectively. They can be calculated as

E(Y aclei) = Z(Yi,Ac-f(Tz'A|5z',Ac)) and E(Y pclc;) = Z(Yi,BC’-f(TiBMi,BC))- (7.9)

TiA TiB

The r;4 and r;5 are treated as discrete random variables and play the important role for
E(Y; aclci) and E(Y; ge|e;) respectivley. The conditional probability functions f(r;4|0; ac)
and f(r;p|d; pc) can be obtained from (7.5) and estimated in the same way as (7.7). For

example, by using (7.5) , f(r;4]0;,4¢) is given by

e5i,ACTiA
TiA ric
f(rialdiac) = ; (7.10)
nic niA 5
Z edi,ACUi1
Uq1
C; — Uzt TriA

where w;; is given in (7.6). The above equation is approximated by

!
fria) =~ m/2 Z wy f(734]05,4¢), (7.11)

n=1

where the sampling nodes are at d; ac = prac + V2rd, for n = 1,...,1. Notice that the

values of conditional means E(Y; 4c¢|c;) and E(Y; pclc;) depend on the ith study and are
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conditioned on the function ¢;; this will give the rough function of their funnel plots. From

(7.8), the conditional means of YfAC given ¢; and Ych given ¢; can be evaluated from

E(VZcle) =Y (Ve f(rialdiac)) and E(Ygole) =Y (Vige-f(ripldise)).  (7.12)

7.4.3 Funnel plot

From our meta-analysis (9 studies), the funnel plots Y; 4 against v; 4c and Y; g against
v; pc are shown in Figures 7.1 and 7.2 respectively. The conditional means E(Y; ac|c;) and
E(Y; pclci) are represented by the dashed line in both figures. As mentioned earlier, notice
that the conditional mean in both figures are not smooth functions when plotted against the
conditional variance. Plot 7.1 indicates that smaller studies (larger v; 4¢) give more positive
results than larger studies (smaller v; p) and this plot has a trend. Funnel plot 7.2 shows
a similar sign of selection bias to Figure 7.1. The problem of selection bias has arisen in
the meta-analysis. Therefore, we would assume here that there might be other small studies
comparing the treatments A, B and C, which have been carried out but which have not been

selected in the meta-analysis.

7.4.4 Standard error

The standard errors of Y; 4c and Y; pe in (7.8) for logistic regression model depend on
value of treatment effects. Now we shall calculate the standard error for the model without
treatment effect for the use later. Let ny; and no; represent the summations n;4 + n;c and
n;p+nic respectively. From the empirical log-odds ratios Y; 4¢ and Y; pc, and the conditional

probabilities f(r;a|d;.ac) and f(7;5|d; 5c), we obtain the following standard errors (see the
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Figure 7.1: The funnel plot:Y; 4o against v; 4o-the dashed lines represent the conditional
mean of Y; 4¢ given ¢;.

o
o | o
—
o
o | o
—
>
o
o
0
i
o
o
=
T T T T T
0.0 0.1 0.2 0.3 0.4

Figure 7.2: The funnel plot:Y; pc against v; po-the dashed lines represent the conditional
mean of Y; po given ¢;.
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details in Shi and Copas, 2002)

. 1/2

* _ Var(Yiacldiac =0,¢) = 1i , 7.13

Si,ac VVar(Yiacldiac ) <Cz(nlz_ci)niAniC’> )
n 1/2

* _ Var(Y;geldige =0,¢) = i ) 7.14

;. BC Vv ar(Yi,po|0i,c ci) (Ci(TLQi_Ci)niBniC) ( )

7.5 Selection bias

As seen from the preceding section, there is selection bias in our meta-analysis. We apply
the idea of the use of selection model from Chapter 6 in this section. We shall demonstrate
how we assume a population model and how a study from the model will be selected. They

are described as follows

1. Population model
We shall assume the logistic regression model with conditional probability (7.5) to be

a population model for treatment A versus B versus C.

2. Selection event
A selection of studies from the population model can be chosen to represent our meta-
analysis. To illustrate this selection, let S; be the event that a study from the pop-
ulation model will be selected. This is under the expectation that larger studies are
more likely to be selected than those smaller studies. Supposing that the event &;
has occurred then the population model with assuming S; happened can be written as

p(r;|S1, ¢;) (or called the combined model).

The combined model p(r;|S1, ¢;) can be derived as

p(Sh r; |Cz)

I'Z'S,Ci )
p( | 1 ) p(81|ci)

p(rilc)p(Silri, ¢;)
p(81|0i) ’

(7.15)
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where p(r;|c;) is the population model and given in (7.5) while p(S |r;, ¢;) and p(Si]|c;) are the
probability of selection (S; happened) for a typical study (r;) and the probability of selection
(S; happened). We need to define a selection model and calculate these probabilities. Note
that the random treatment effects d; 4 and 6; o are included in those probabilities. The

following details are for p(Si|r;, ¢;) and p(Si|c;) respectively.

(i). The probability of selection event happened for a typical study
Let ¢ be the function of probability of a typical study as the sth study being selected,
defined by

q(rildi ac, 0ic) = p(Si|ri, i, 6i ac, 0 Bo)- (7.16)
We need to define the above selection probability. Now let us revise the selection model
we used in Chapter 6 for normal approximation model. The normal approximaton
model and the selection model Z;; are given by

Yiac = 0i,ac + S} ac€iac (717)

_ * *
YiBc = 0i.Bc + S} pc€ipos

b
Zil = ay + j* + &, (7.18)

)

where s} 4o and s} g are the standard errors of Y; oo and Y; pc respectively. The
function ¢; is the average of standard errors in the ith study, can be written as
(s ac + sipc)/2- The random residuals (€] 4¢,&;) and (€] g, &) are bivariate nor-
mal distributions with both means equal to zero and both variances equal to one.

Their correlations are

*

corr(ez‘,AC, &) = o] and corr(ez"BC, £ = 05

If o7 and @} are zero then it shows that the r;4,7;5 and r;c from the meta-analysis

(or the outcome (Y; ¢, Yi gc)) have no effect on whether the study is selected or not.
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(ii).

This will be the model without assuming selection bias. On the other hand, if pj > 0

and o5 > 0 then the selected studies are biased by the large values of Y; 4¢ and Y] pc.

Following the discussion given in Chapter 6, we have the following formula:

q(ril0i a0, 0i8c) = P <@> , (7.19)

3
02i1

where @ is the standard normal cumulative distribution, and p3;; = E(Z1|(Y; a0, Yisc))
and 032 = Var(Zi|(Yiac, Yipce)) given in (6.7) and (6.8) respectively. For the logistic
regression models (7.3) and (7.4) with conditional approach (7.5), we will still adopt
the selection probability but s} s and sj g here are replaced by (7.13) and (7.14).
For simplifying the computation, as assumed earlier, there is no association between

the treatment effects d; a4c and d; po.

The selection model defined as above is reasonable. Actually, the only requirement
for selection probability is that it can model the phenomena shown in Figures 7.1 and
7.2, i.e. the large studies and the studies with positive results would tend to have
larger selection probabilities than others. Selection probability (7.19) would satisfy
the requirement. As discussed in Chapter 6, the parameters a; and b; are inestimable
and whether the meta-analysis model with a selection model fit to the data will be

checked by goodness-of-fit test and other statistical quantities in a sensitivity analysis.

The marginal selection probability
To estimate the probability of selection p(Si|¢;), let Q;; be the marginal selection

probability given d; 4c and 6; o and derived as

Qi1(0i,ac,0i,8c) = p(Si|ci,diac,0i,80),

= ZP(31|I‘i = W;, ¢, 6i,ac, 0i,0)P(Ti = Wilci, 0;, a0, 05, 5c ) T-20)

u;
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where p(Si|r; = w;, ¢;, 6, a0, 0i pc) is the probability of selection for a study including
three arms and given in (7.19), and p(r; = w;|¢;, 0; ac, d;,pc) is the conditional proba-
bility model of r; given ¢; and given in (7.7). Note that the vector u; is given in (7.6).

Thus, we have

Qi (di,ac, 0i,5C) Zq w;|0; a0, 6i,50) f(Wi|6i,ac, 0 pe).- (7.21)

u;

Equation (7.21) includes two random treatment effects. We shall integrate the marginal
selection probability Qi1 (d; ac, 0 pc) with respect to treatment effects §; 4c and 9; po

respectively. The overall marginal selection probability is

Qi = //Qi1(5i,Ac,5i,Bc)¢(5i,Ac;NAC,72)¢(5z‘,Bc;MBC,T2)d5i,Acd5i,Bc,

= //Zf(ui|5z',Ac,5i,BC)Q(ui|5z’,AC,5i,BC)¢(5i,AC)¢(5i,BC)d5i,Acd5i,Bc(7-22)

where ¢(0; ac) and @(0; pc) are the probability density functions of the normal distri-
butions N (pac, 72) and N(upe, 72) respectively. Notice that the function f(u;]d; ac, di.5c)
involves the random treatment effects so we need Guassian-Hermnite approximation
to estimate in the usual way. After integrating, the ();; is an unconditional probability
and does not depend on the d; 4 and d; po. Note that the estimate from marginal
selection probabily Q;; is close to @(a; + by/p;) (obtained from equations (7.17) and
(7.18)) (see the discussion from Shi and Copas, 2002).

7.6 Likelihood

The log-likelihood function of the conditional probability model with assuming selection

event happened can be written as

9
p(r, Sile;
- Zlogp(ri|81; CZ Zlog ( 81|IC|) )> (723)

=1
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The right-hand side of above equation is obtained from the probability property. The col-

lection of unknown parameters is

0= {MAC;MBC’;Ta QL QE} (7-24)

We need to handle with two random treatment effects d; 4c and 9; pc in the log-likelihood
function [(@). The probability p(r;, Si|c;) thus comprises two integrations which are with
respect to both treatment effects. While p(S;|¢;) is marginal selection probability given in
(7.21) and involved integrations as givne in (7.22). Then, the right- hand side of {(8) can be

derived as

9

Z (log p(r, Sile;) — log p(Sile;))

=1
9

=y (10g//10(1‘i,51|6i,5z’,AC,5i,BC)¢(5i,Ac)¢(5i,Bc)d5z’,Acd5z’,Bc - IOg(Qn)) :

i=1
By using equation (7.15) in the term p(r;, Si|c;, 0iac, 0i.Bc ), the log-likelihood function [(0)
is
9
Z (10g//f(1'z‘|5z‘,Ac, 5i,Bc)CI(I‘i|5z‘,AC, 5z‘,Bc)¢(5z‘,Ac)¢(5i,Bc)d5i,Acd5i,Bc - lOg(Qil))
o (7.25)
where f(r;|0; ac,di5c) and q(r;]|d; ac, di,pc) are given in the equations (7.5) and (7.19) re-

spectively. The ;1 in the last term is given in (7.22).

7.7 Goodness of fit

Suppose that the pair (a, by) is used in the selection process. To test whether the set (aq, by)
is a possible pair in the conditional probability model p(r;|S;, ¢;) or not, we adopt the test
based on the goodness-of-fit test in Chapter 6. The null hypothesis for the test is Hy: 8 =0

where 3 is the vector (/31, f2). We shall add the term 5132}10 to pac and ﬁgSZBC to upc for
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the treatment effects d; 4c and 6; pc. This can be set to

5ZAC ~ N(pac + 513;}10» 7'2) and 5:,130 ~ N(psc + 523:,30 7'2), (7.26)

where s7 4o and sj g are estimated from (7.13) and (7.14) respectively. After that, the

treatment effects in (7.26) are applied to the log-likelihood function [*(0, B), given by

9
Z (10g//f(ri|5ZAc, +Bc)A(ril0; a0y 07 pe)P(0i,a0)P(0i, BC ) ddi Acddi B —10g(Q§‘1)>, (7.27)
i—1

where
ho= //Zf(ui|5;'k,ACa5?,BC)Q(ui|5f,ACa5f,Bc)¢(5ZAc)¢(5f,Bc)d5i,ACd5i,BC- (7.28)

The likelihood ratio statistics for Hy : 3 = 0 is
2 (1(8,8) ~ "(B_,, 8 =0)) ~ 3 under H, (7.29)

where (6, 3) is MLEs by maximizing the log-likelihood function (7.27) while (aﬁzo,ﬁ =0)
is the MLEs from (7.27) with restriction 8 = 0. The interpretation of test is similar as
explained in Chapter 6. If the null hypothesis is accepted, it means that the pair (aq, b;) is

a plausible choice of the model p(r;|S1, ¢;) and makes the funnel plots fit well.

7.8 Sensitivity analysis

We use the similar idea in Section 6.5 to conduct a sensitivity analysis here. We allow
the conditional probability model p(r;|Si,¢;) to have different amounts of selection bias
depending on the pair (as,b;) in the selection model p(S;|r;, ¢;) or p(Si|e;). The steps of

sensitivity analysis are given as follows.

e Step 1: Determine the range of (ay,b;)
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We use three typical pairs: (0.99,0.80), (0.80,0.50) and (0.60,0.30), in the area of

0.01 < Pn(selection) < Pp..(selection) < 0.99,

where P, (selection) and P, (selection) are given in (6.19). By using three typical
pairs to identify the pair (a1, b;), the pairs relating to the selection probability pair
are given in Table 7.1. The model without assuming S; happened (standard model) is

obtained by using the first pair of Table 7.1 in the model p(r;|S, ;).

Table 7.1: The pairs of (ay, b;) for the selection model Z;;

Selection probability pairs a1 by

(1.0,1.0) 6.0 0.0
(0.99,0.80) 0.3793294 0.4492381
(0.80,0.50) -0.8844004 0.8594276
(0.60,0.30) -1.3416807 0.7942026

e Step 2: Estimation and goodness-of-fit test
We will use each combination (a;,b;) in Table 7.1 to calculate each of the following

quantities.
L. fiac;
2. p-value for testing Hy : pac = 0;
3. standard error of [iic;
4. lower limit of the 95% confidence interval for pac;
5. upper limit of the 95% confidence interval for pac;
6. fipc;
7. p-value for testing Hy : upc = 0;
8. standard error of [iic;

9. lower limit of the 95% confidence interval for ppc;
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10. upper limit of the 95% confidence interval for ppc;

11. Paz(selection) for the selection model Z;q;

12. Pin(selection) for the selection model Z;;

13. estimated number of selected and unselected studies given by > . {p(Zi > 0]¢;)};

14. p-value for the fit for the funnel plot corresponding to the null hypothesis Hy :

B =0.
Table 7.2: The bias-simulated data with selection: summary of outputs
[ 1] 2] [, 3] 4] [, 5] [, 6] [, 7]
0.5054664 0.0124615  0.014580  0.4768896 0.5340432 0.6369195 0.0014782
0.5050151 0.0124782  0.038970  0.4286339 0.5813963 0.6364665 0.0021454
0.3380378 0.0430073  0.135470  0.0725166 0.6035590 0.4668118 0.0062834
0.1314767 0.3789370  0.481100 -0.8114793 1.0744327 0.2589700 0.0879419
L8] 9] [, 10] [, 11] [, 12] [, 13] [, 14]
0.254810  0.1374919 1.1363471 1.00 1.00 9 0.0999526
0.021450  0.5948775 0.6789615 0.99 0.80 10 0.1446150
0.654800 -0.8165962 1.7502198 0.80 0.50 13 0.4337069
0.258900 -0.2484740 0.7664140 0.60 0.30 20 0.6969515

The MLEs for piac and ppe are presented in columns 1 and 6 respectively. By calculat-
ing the asymptotic variance-covariance matrix, described in Chapter 4, their standard
errors are shown in columns 3 and 8 respectively. Columns 4 and 5, and columns 9
and 10 are the lower and upper limits of the 95% confidence intervals for fi o and fipe

respectively. Note that the significance level in this section is 0.10.

(). The first row represents the results for the standard conditional probability model
without assuming selection event. The estimates for p4c and ppe are 0.5054664
and 0.6369195 respectively. The presence of selection bias can be detected from
the p-value of Hy : 8 = 0 (column 14). The p-value 0.0999526 shows that the

model is slightly biased.

. Considering the selection bias, the iac and fipe decrease gradually while the

estimated number of population studies (column 13) increases.
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Figure 7.3: izc against the p-value of Hy: 8 = 0

(iii). P-values of Hy : jiac = 0 (column 2) and Hy : jipc = 0 (column 7) are significant
in all rows.

(iv). Using the goodness-of-fit test, the p-value of Hy : 8 = 0 indicates that the model

with assuming the selection event has improved from reading downward.

e Step 3: Sensitivity analysis
The plots of jixc against the p-value of Hy : 8 = 0 and jipc against the p-value of
Hy : B = 0 are shown in Figures 7.3 and 7.4 respectively. The estimates for pa¢ and
ppe from our meta-analysis (9 studies) are presented in the blue and red solid dots in
Figures 7.3 and 7.4 respectively. By using our sensitivity analysis, the plots show that
fac and fige can be anything less than 0.45 and 0.50 respectively. Also their plausible

estimates with p-value 0.5 should be around 0.30 and 0.40 respectively.

To conclude, we can see the plausible estimates are acceptable comparing to the true values

(0.4 and 0.6) of pac and ppe in the population data of Section 7.2.
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Figure 7.4: [ipc against the p-value of Hy: 3 =0

7.9 Discussion

We first used the sensitivity analysis to the W2 data but there was no evidence of selection
bias. Consequently, we generated the three-arm data to be the population and made this
data bias from selection. In this chapter, we assume that there is no association between

both treatment effects d; 4c and d; pc .

In general, we extend the sensitivity analysis from the previous chapter to the conditional
probability model. We use the exact distribution of the data with the conditional method to
represent the population model and apply the formulae of the normal approximation model
with selection, expressed in Chapter 6, for the selection of the event S;. Thus, the probability
of being selected for a typical study q(r;|d; ac, 0 c) is obtained from p(Z;; > 0|Y; ac, Yi o).
As we have discussed in Section 7.5, this selection probability model is still relevant for

modelling selection bias such as appeared in Figures 7.1 and 7.2, and it can be used in a
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sensitivity analysis.

The test for the pair (aq, by) of the selection model is similar to the goodness-of-fit in Chapter
6. Since there are two random effects involved in the likelihood function, the estimation for
the log-likelihood function is complicated and takes long time. As before, Gaussian quadra-
ture has been used for integral estimation. Alternatively, we can use the other methods,
mentioned in Chapter 4 to estimate the integral. Shi and Copas (2002) used a Markov chain
Mote Carlo EM algorithm to estimate MLEs for the meta-analysis of 2 x 2 tables using

exact conditional distributions.

In this chapter, we discuss a model with three treatments. More treatment comparisons can
be applied to the sensitivity analysis here but the complexity of conditional model would
make the calculation difficult, particularly its denominator. In addition, we will have more

free parameters in the likelihood if multiple-selection models are exploited.
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Chapter 8

Conclusions and further development

8.1 Conclusions

Meta-analysis is a statistical tool that summarizes evidence from multiple studies of a par-
ticular topic and attempts to provide an estimate of true effect. The aims of meta-analysis
of multi-arm trials are to combine evidence from all possible similar studies and draw in-
ferences about the effectiveness of multiple compared-treatments. Throughout the thesis,
we have used two meta-analyses of multi-arm trials data (W1 and W2) to different model
strategies. If the number of individual studies (n;;) is large enough (larger than 20) and r;;
is not too small and not too close to n;;, for example from the W1 data then the normal
approximation model is appropriate. For the empirical log-odds model, the trial effects in
meta-analysis would not satisfy any model (fixed effect or random effect) because they are
pooled from different design models. Thus, the trial effects were assumed to be different.
This makes the logistic regression model include M (the number of studies in meta-analysis)
unknown parameters in the likelihood function and may cause the problem of many nuisance
parameters and inconsistent estimate. To avoid these problems, the empirical log-odds ra-
tios model can be proposed. We compare the small and large numbers of n;; for empirical
log-odds ratio model in simulation study of Chapter 5. The results show that the model are

suitable for large individual studies. However, if M is not too large; the empirical log-odds
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and empirical log-odds ratio models may give the similar results.

The logistic regression model can be employed to any multi-arm trials data. Two approaches,
unconditional and conditional are used to make inferences. The logistic regression models
are applied to the W2 data due to the small number of n;;. The logistic regression model
using the unconditional method includes nuisance parameters. The model should be used
with a small number of studies. The unconditional maximum likelihood estimate may be
biased if n;; is small and M is large (Lubin, 1981; Cox and Snell, 1989). The main advantage
of the conditional likelihood approach is that the likelihood depends only on the parameters
of interest. This gives a consistent estimates and the computation is stable. The results
from simulation study of Chapter 5 support our conclusions for the normal approximation

model and the logistic regression model using unconditional and conditional methods.

The empirical log-odds ratio models have been used for the W1 data in Chapter 3. However
we found that studies with positive results were more likely to be selected, it could therefore
lead to selection bias (positive bias). A sensitivity analysis by using a selection model has
been employed to examine the selection bias and corrected the results under the controlled
assumptions for the model. The selection model is regarded as a tool of sensitivity analysis.
The missing studies in funnel plot can be treated as non-ignorable missing data in meta-

analysis. Similarly, the sensitivity analysis is extended to the logistic regression model.

8.2 Further devolopment

We proposed unconditional and conditional likelihood for meta-analysis with the logistic re-
gression model in Chapters 4 and 5. Although conditional approach shows good performance
in theory and in our simulation studies, it is of interest to compare the method with some
other methods, for example, restricted maximum likelihood estimation (REML), penalized

quasi-likelihood (PQL) estimation.
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Gauss-Hermite quadrature approximation has been used to approximate the integral form
of probabilities including random effects in the likelihood function for the logistic regression
model. By using different number of nodes for approximation, the results from the model
were not much different. As mentioned in Chapter 4, the approximation is reasonably ef-
fective for low-order integrations depending on the number of treatments involved in those
studies. If this number is large then it makes the dimensionality of the integral large and
the approximation cannot give an accurate approximation. If there are more than three
treatments (two pairwise-comparisons) in multi-arm trials, we may need to use some other
methods, for example, Laplace approximation method or Monte Carlo EM algorithm, see

Ripatti and Palmgren (2000); Shi and Copas (2002).

In Chapter 5, we focus on comparing three methods used in this thesis with a special case that
there is no association between the treatment effects (p = 0) and the direct comparisons are
only involved. The parameter p is of interest. It is estimable if enough information is provided
for indirect comparison. It is worth a further study on this parameter, by a comprehensive
simulation study and analysis of more real data. From Chapter 7, the estimation of log-
likelihood function for the model with selection models is complicated and takes long time.
Alternatively, we can use a Markov chain Monte Carlo EM algorithm to estimate MLEs.
We used the method to the simulated data. Further, more real data can be applied to the

method.
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