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Abstra
tMeta-analysis of multi-arm trials has been used in
reasingly in re
ent years, the aims ofwhi
h are to 
ombine eviden
e from all possible similar studies and draw inferen
es aboutthe e�e
tiveness of multiple 
ompared-treatments. Antiplatelet therapy is a pharma
ologi
therapy whi
h aims to inhibit platelet a
tivation and aggregation in the setting of arterialthrombosis. Throughout the thesis we use binary data from antiplatelet therapy to applythe model and sensitivity analysis. The normal approximation model using empiri
al logisti
transform has been employed to 
ompare di�erent treatments in multi-arm trials, allowingstudies of both dire
t and indire
t 
omparisons. The issue of dire
t-indire
t 
omparison isstudied in detail, borrowing the strength from the indire
t 
omparisons and making infer-en
es about appropriately 
hosen parameters. Additionally, a hierar
hi
al stru
ture of themodel addresses the problem of heterogeneity among di�erent studies. However the modelrequires a large sample size of ea
h individual study. When the sample size is small, anexa
t logisti
 regression model is introdu
ed. Both un
onditional and 
onditional maximumlikelihood approa
hes are performed to make inferen
es for the logisti
 regression model.We use Gaussian-Hermite quadrature to approximate the integral involved in the likelihoodfun
tions. Both approa
hes have been examined to di�erent 
ases in the simulation study.Studies with statisti
ally signi�
ant results (positive results) are potentially more likely tobe submitted or sele
ted more rapidly than studies with non-signi�
ant results (negativeresults). This leads to false-positive results or an in
orre
t, usually over-optimisti
, 
on
lu-sion, a problem known as sele
tion bias in the meta-analysis. A funnel plot is a graphi
altool whi
h is used to dete
t sele
tion bias in this resear
h. We apply the idea of a sensitivityanalysis by de�ning a sele
tion model to the available data of a meta-analysis, by allowingdi�erent amounts of sele
tion bias in the model and investigate how sensitive the main inter-est parameter is when 
ompared to the estiamtes of the standard model. We also examinethe sensitivity analysis by the simulation study.ii
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Chapter 1
Introdu
tion
1.1 A brief history and basi
 
on
epts of meta-analysisThere has been a massive growth in the number of randomised 
lini
al trials (RCTs) sin
ethe �rst RCT was introdu
ed in the well-known streptomy
in trial in 1946 (see the diss
us-sion in Hill, 1990). The results of RCTs have been spread over many reports and thousandsof medi
al journals. The available results would be impossible to read individually and dif-�
ult to summarize. In making some of this information more readily available, an attemptis made to pull together the existing eviden
e in a form that 
an be used by resear
hersor statisti
ians; this is 
alled systemati
 review. The aim of systemati
 reviews is to �ndand assess for in
lusion all possible high quality studies addressing the 
lini
al question ofthe review. There is an international network of 
lini
ians and methodologists who haveformed the Co
hrane Collaboration. It was founded in 1993 and named after the Britishepidemiologist, Ar
hie Co
hrane. This organization is dedi
ated to the 
ompilation and reg-istration of RCTs, the 
ombination of appropriate results and the dissemination of �ndingsthrough a regularly updated ele
troni
 database. What does systemati
 review a
hieve? Itredu
es the large quantities of information to a manageable size. The results 
an often begeneralized to a wider population in a broader setting than would be possible from a singlestudy. Also, systemati
 reviews aim to redu
e errors and tend to improve the reliability.1



Chapter 1. Introdu
tionSystemati
 reviews provide the resear
h eviden
e input into the pro
ess of eviden
e-basedde
ision making. An important aspe
t of most reviews is the quantitative synthesis of re-sults; thus meta-analysis is the statisti
al part of systemati
 review. Other names given tometa-analysis in
lude overview, quantitative overview, pooling, pooled analysis, integrativeresear
h review, resear
h integration, resear
h 
onsolidation, data synthesis, quantitativesynthesis, and 
ombining studies (Jeni
ek, 1989). However, a meta-analysis is also possiblewithout doing a systemati
 review - some studies 
ould be 
ombined without any attemptto be systemati
 about how the parti
ular studies were 
hosen. The minimum requirementto produ
e a meta-analysis is the availability of data from two or more studies, irrespe
tiveof whether they are reviewed narratively or systemati
ally (Jadad, 1998, page 83). We 
ande�ne meta-analysis as a statisti
al tool that summarizes eviden
e from multiple studies ofa parti
ular topi
 and attempts to provide an estimate of true e�e
t. The main purpose ofmeta-analysis is to in
rease the pre
ision of the 
on
lusions of a review. With statisti
al per-spe
tive, it is able to dete
t treatment e�e
ts with greater power and estimate these e�e
tswith greater pre
ision than any single study. In this thesis, we use two meta-analyses fromsystemati
 reviews of Antiplatelet Trialists' Collaboration (Collaboration, 1994a,b).Meta-analysis has been widely used in many areas. The term meta-analysis was �rst usedby Glass (1976) in edu
ation. He distinguished types of statisti
al analyses in so
ial s
ien
eand termed the original analysis of a set of data `primary analysis'. Se
ondary analysisis a re-analysis of data that has already been 
olle
ted by another investigator. Some ofthese analyses are 
ondu
ted to reaÆrm answers to questions raised in the primary anal-ysis, whereas other se
ondary analyses attempt to answer new questions. In addition, hede�ned other basi
 features of meta-analysis as it is known and used today. Hedges andOlkin (1985) published their book `Statisti
al methods for meta-analysis', whi
h is the �rstbook in meta-analysis. The idea of meta-analysis 
an be tra
ed ba
k to Pearson (1904). Hedeveloped a method for summarizing 
orrelation 
oeÆ
ients for studies of typhoid va

ina-2



Chapter 1. Introdu
tiontion. Statisti
al te
hniques for 
ombining study results were also used by Yates and Co
hran(1938) in agri
ulture. Their te
hnique has led to an in
rease in development and appli
ationof meta-analysis. One of the �rst meta-analyses in medi
ine in the modern era was intro-du
ed by Chalmers et al. (1977). However, it was not until the mid-1980s that meta-analysisstarted to be used frequently in the health 
are �eld when Yusuf et al. (1985) published theirmeta-analysis and 
on
luded that the long-term beta blo
kage following dis
harge from the
oronary 
are unit after a myo
ardia
 infar
tion redu
ed mortality.Over the last few de
ades, individual parti
ipant data (IPD) of systemati
 review for meta-analysis has in
reased rapidly. Jennison and Turnbull (1990); Stewart and Parmar (1993)and Oxman et al. (1995) 
on
luded a number of advantages to IPD meta-analysis. In fa
t,the disadvantages of performing an IPD meta-analysis are the 
osts in both time and money.In biostatisti
s, Van Houwelingen (1997) interestingly listed meta-analysis among his night-mares, whi
h he hoped would not happen in the future. He suggested about analysingsummary measures from sele
tive studies and he looked forward to a time when IPD fromall studies were available to be synthesized using appropriate random-e�e
ts models. Sim-monds et al. (2005) argued that the pro
ess of systemati
 review, within whi
h the majorityof meta-analyses are now undertaken, has to some extent redu
ed bias due to sele
tive in-
lusion of studies, and analyses involving IPD 
ontinue to in
rease in number. Additionally,the results of meta-analysis need to be reported properly. Mother et al. (1999) suggested theguidelines for presenting the results of RCTs in meta-analysis, see more similar suggestionsin Mother et al. (2001); Bussuyt et al. (2003) and Von Elm and Egger (2004) .Meta-analysis has been extended beyond medi
ine and health to 
over various �elds from`astronomy to zoology' (Petti
rew, 2001). It has been used in e
onomi
s (Stanley and Jarrel,1989, 1998; Stanley, 1998, 2001), and is beginning to be used in politi
al s
ien
e (Pinello,1999). In industrial organizational psy
hology, there have been numerous appli
ations of3



Chapter 1. Introdu
tionmeta-analysis (S
hmidt, 1988; S
hmidt and Hunter, 1981, 1998). A good example of howto explain a meta-analysis is `mixing apples and oranges', introdu
ed by Moayyedi (2004).Meta-analysis has be
ome important in resear
h in almost every area. Nowadays, it wouldprobably be diÆ
ult to �nd a resear
h area in whi
h meta-analysis is unknown.1.2 Measure of treatment e�e
tBefore the results of studies 
an be 
onsidered for pooling in a meta-analysis, it is ne
essary tode
ide a measure to use for evaluating the eÆ
ien
y of one treatment relative to another. In
lini
al trials, the 
ontrol treatment (or 
ontrol group) is a standard treatment or a pla
ebo.Various terms have been used for the measure in
luding `relative eÆ
a
y', `eÆ
a
y of the(�rst) treatment', and `treatment di�eren
e', see e.g. Higgins and Whitehead (1996) andHiggins et al. (2001). The term `treatment e�e
t' is preferred and will be used throughoutthis thesis.1.2.1 Comparative binary out
omeMeasures of out
ome need to be 
al
ulated for ea
h study in a meta-analysis before they 
anbe quantitatively 
ombined. Out
omes of the data have been 
ategorized into three groups:binary data, 
ontinuous data and ordered 
ategori
al data. The data being used in this thesis,des
ribed in Chapter 2, is a 
omparative binary out
ome, where two possible out
omes- diagnosis/not diagnosis- are 
ompared. In this se
tion, we shall give a measure of thetreatment e�e
t, whi
h is the log-odds ratio. The other measures 
an see from Sutton et al.(2000, page 17); for example, mean di�eren
e and e�e
t size. To des
ribe the log-odds ratio,suppose that two treatments denoted A and C in Table 2.1 of Chapter 2 represent `aspirinplus dipyridamole' and `
ontrol group' respe
tively. Let �A and �C be the probabilities ofpatients that have reo

lusion (
an be treated as failures) on treatments A and C respe
tively.The odds ratio (OR) of patients that have reo

lusion on treatment A relative to treatment4
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tionC 
an be de�ned by �A(1��C)=�C(1��A). To interpret OR, if an odds ratio estimate is lessthan one, it would indi
ate an improvement with treatment A. A ratio of greater than onewould imply that treatment A was less e�e
tive than the 
ontrol treatment. For the purposeof 
ombining the studies, it is 
ommon to transform the data by taking the natural logarithmof the odds ratio and work with the log-odds ratio, as this should provide a measure whi
his approximately normally distributed. Thus the log-odds ratio (LOR) 
an be written byLOR = log��A(1� �C)�C(1� �A)� : (1.1)The other measures that 
an be used for this type are relative risk (RR), �A=�C , or the riskdi�eren
e (RD), �A � �C . Ea
h measure has a di�erent 
lini
al meaning.1.3 Signi�
an
e problems in meta-analysisIn the �rst se
tion, we saw how bene�
ial meta-analysis is and how it has been used in sev-eral areas. In the se
ond se
tion, we de�ned the out
ome measure. In meta-analysis, ea
hstudy involved is di�erent from all the others. Su
h di�eren
es 
ause statisti
al problemsor diÆ
ulties in de
iding the appropriateness of pooling. Several problems have arisen inmeta-analysis, for example, aggregating studies that in
lude di�erent measuring te
hniques,di�erent de�nitions of variables, and subje
ts that are too dissimilar results in meta-analysesthat are uninterpretable be
ause they are from poorly designed studies (Hedges and Olkin,1985). Thus, if meta-analysis is used or analysed improperly, it 
an lead to erroneous 
on
lu-sions regarding to treatment e�e
t. Here we will fo
us on two major problems, heterogeneityand sele
tion bias, des
ribed as follows.1.3.1 HeterogenietyHeterogeneity may be de�ned as the variation that arises due to di�eren
es a
ross studiesin populations, interventions, out
omes, and designs. Even when all studies are measuring5
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tionthe same underlying average e�e
t, the results may vary a
ross studies be
ause of randomerrors. What 
auses the heterogeneity in a meta-analysis? Bailey (1987) suggested thepossible 
auses of heterogeneity 
an be 
ategorized as (1) due to 
han
e; (2) spurious, dueto the s
ale used to measure the treatment e�e
t; (3) due to treatment 
hara
teristi
s;(4) due to individual data; (5) 
hara
teristi
s of the design and 
ondu
t of the studies;(6) unexplainable, if none of the above a

ount for it. How do we know whether there isheterogeneity or not? A 
hi-squared test is traditionally undertaken to determine whetherthere is statisti
ally signi�
ant eviden
e against a null hypothesis of no heterogeneity ornot. The null hypothesis is that the true treatment e�e
ts are the same in all studies,H0 : Æ1 = Æ2 = : : : = ÆM versus the alternative that at least one of the treatment e�e
tsdi�ers from the remainder. The Æi's are the underlying true treatment e�e
ts 
orrespondingto the ith study, whi
h is de�ned in (1.1) for i = 1; : : : ;M where M is a number of studiesbeing 
ombined in a meta-analysis. One test statisti
 is de�ned byQ = MXi=1 wiT 2i � (PMi=1wiTi)2PMi=1wi ;where Ti is the treatment e�e
t estimate of Æi and wi is the weight in the ith study. Theweight is usually the re
ipro
al of the varian
e of the out
ome estimate. We omit the detailhere, more dis
ussion and an example 
an be found in Sutton et al. (2000, page 39). Thestatisti
 Q is approximately distributed as a �2 distribution on M � 1 degrees of freedomunder the null hypothesis H0. If the null hypothesis is not signi�
ant then there is assumedto be no heterogeneity between studies. An analysis may be performed by a �xed e�e
tmodel where the treatment e�e
t is 
onsidered to be the same for all studies. The standarderror estimate in ea
h study is based on the sampling variation of the study. The modelmay provide a useful summary of the results. However, the �xed e�e
t models are spe
i�
to the parti
ular studies in
luded in the meta-analysis and may not be realisti
. Di�erentstudies with di�ering designs will not ne
essarily estimate the same quantity (Matthews,2005, page 134). In 
ontrast to the above hypothesis, if the null hypothesis is reje
ted then6
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tionthe random e�e
t model would be more appropriate. The model allows the between-studyvariability to be a

ounted for the overall estimate and, more parti
ularly, its standard error.One of the 
ontroversies surrounding meta-analysis has 
on
erned the 
hoi
es between a �xede�e
t model and a random e�e
t model for providing an overall estimate of the treatmente�e
t. Many authors have exploited the heterogeneity and the �xed-random e�e
t model.The popular DerSimonian-Laird approa
h to random-e�e
ts meta-analysis uses a simpleestimate of within-study varian
e, and does not in
orporate un
ertainty in the varian
eestimate when making inferen
e on the mean of the random-e�e
ts distribution (DerSimonianand Laird, 1986). A

ording to the use of test Q, when the sample sizes in ea
h study are verylarge, the null hypothesis may be reje
ted even if the individual treatment e�e
t estimatesare not very di�erent (Shadish and Haddo
k, 1987). If the number of 
ombined studies issmall then the statisti
al power of tests are, in most 
ases, very low (Boissel et al., 1989). Thealternative way to deal with heterogeneity is to use a one-way analysis of varian
e (ANOVA)to investigate heterogeneity between and within groups of studies, where the groups are
ategorized by study 
hara
teristi
s (Hedges and Olkin, 1985, page 12). Sin
e the formalQ statisti
 (in most 
ases) has a low power, there are a number of graphi
al informal tests:a plot of normalized s
ores, a forest plot, a Radial plot (Galbraith diagram) and a L'Abb�eplot (Sutton et al., 2000, 
hapter 7). To assess heterogeneity, Thompson and Sharp (1999)
ompared a number of methods used to investigate whether a parti
ular 
ovariate, with avalue de�ned for ea
h study in the meta-analysis, explained any heterogeneity. The random-e�e
ts method has also long been asso
iated with the problems due to poor estimation ofamong-study varian
e when there is little information (Hardy and Thompson, 1996; Ziegleret al., 2001). Song et al. (2001) reviewed the methods used in meta-analysis for exploringheterogeneity. Glasziou and Sanders (2002) addressed the 
ause of heterogeneity in a systemreview. Re
ently, Hedges and Pigott (2001) and Ja
kson (2006) dis
ussed theoreti
ally thepower of the test for heterogeneity. In this thesis, we assume all treatment e�e
ts in the7
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tionmodel to be random e�e
ts to avoid the problem of heterogeneity and also we do not believethat the results from di�erent studies and di�erent designs 
an have the same treatmente�e
t.1.3.2 Sele
tion biasIt has long been a

epted that studies or resear
hes with statisti
ally signi�
ant results(positive results) are potentially more likely to be written up, submitted, sele
ted or pub-lished more rapidly than studies with non-signi�
ant results (negative results), whi
h leadsto false-positive results. In meta-analysis, 
ombining only the identi�ed published studiesun
riti
ally may lead to an in
orre
t, usually over-optimisti
 
on
lusion. This problem isknown as publi
ation bias or sele
tion bias. For example, several studies (Greenwald, 1975;Coursol and Wagner, 1986; Sommer, 1987) have surveyed authors, and found that, generally,studies with non-signi�
ant results are less likely to be submitted for publi
ation 
omparedto those with statisti
ally signi�
ant results. Various tools su
h as the funnel plot, the rank
orrelation test, the linear regression test and trim and �ll to identify publi
ation bias arebrie
y des
ribed below.Funnel plots are a primary visual tool for the investigation of publi
ation bias in meta-analysis. They are simple s
atter plots of the treatment e�e
ts, estimated from individualstudies against a measure of study size. The axis of the treatment e�e
t 
an be log-oddsratio, log risk ratio or risk di�eren
e. The other axis 
an be one of these 
hoi
es: the stan-dard error, the inverse of standard error, the varian
e, the inverse of varian
e, the samplesize, log sample size. They 
an be used in di�erent 
ir
umstan
es (see Sterne and Egger,2001). Generally, the treatment e�e
t estimates from individual studies are often plottedagainst their standard errors (or the inverse of the standard error), instead of the 
orre-sponding sample size. The log-odds ratio and standard error are the best 
hoi
es in most
ases (Rothstein et al., 2005, page 86). The name `funnel plot' is based on the fa
t that the8
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tionpre
ision in the estimation of the underlying treatment e�e
t in
reases as the sample size ofthe studies in
reases. In this thesis, the measure of study size is plotted on the horizontal axisand the treatment e�e
t estimate on the verti
al axis. The results from smaller studies wills
atter widely on the right-hand side of the graph, with the spread narrowing among largerstudies. In the absen
e of bias, the plot will resemble a symmetri
al funnel. Asymmetryin the funnel plots may indi
ate publi
ation bias in meta-analysis. Funnel plots were �rstintrodu
ed in edu
ational resear
h and psy
hology by Light and Pillemer (1984). In 1995,Egger and Davey Smith (1995) used funnel plots for a meta-analysis that might have alertedinvestigators to the unreliability of small studies on the e�e
t of magnesium treatment formyo
ardial infar
tion that found no or little eviden
e that magnesium treatment redu
edmortality.The `rank 
orrelation test', des
ribed by Begg and Mazumdar (1994), examined the asso-
iation between the treatment e�e
t estimates and their varian
es, to exploit the fa
t thatpubli
ation bias will tend to indu
e a 
orrelation between the two fa
tors, and 
onstru
tsthe rank-ordered sample on the basis of one of them. The test is a distribution-free method,whi
h involves no modelling assumptions, but it su�ers from a la
k of power, and so thepossibility of publi
ation bias 
annot be ruled out even when the test is non-signi�
ant. Totest the asymmetry of a funnel plot, Egger et al. (1997) suggested a method, 
alled the `lin-ear regression test' based on a regression analysis of Galbraith's radial plot (Galbraith, 1988).To address the problem of publi
ation bias, the `trim and �ll' method was developed byDuval and Tweedie (2000a,b) to adjust a meta-analysis for the impa
t of missing studies.The method relies on the s
rutiny of one side of a funnel plot for asymmetry, assumed to bedue to publi
ation bias. It appears to give results that mat
h the subje
tive visual assess-ment of a funnel plot. This method is based on a strong assumption of symmetry. Copasand Shi (2001, 2002) argued that some parameters linked to sele
tion bias are inestimable9
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tionsin
e the number of unsele
ted studies is impossible to know. They proposed a sensitivityanalysis with whi
h di�erent patterns of sele
tion bias 
an be tested against the �t of thefunnel plot. In a similar way, they dis
ussed the sensitivity analysis for the meta-analysisof 2 � 2 tables using the exa
t 
onditional distributions (Shi and Copas, 2002). A Markov
hain Monte 
arlo EM algorithm was used to 
al
ulate maximum likelihood estimates.Group dose measures in epidemiologi
al studies have been another problem for meta-analysis.Shi and Copas (2004) proposed a model that allows for an arbitrarily aggregated dose level,and indi
ated that the resulting estimates and standard errors 
an be quite di�erent fromthose given by the usual method.1.4 Multi-arm trialsMost meta-analysis has fo
used on summarizing treatment e�e
t measures based on the
omparison of two treatments ( 
alled `arms', sometimes also 
alled `interventions' or `ex-posures' ). In this 
omparison, two groups of individual studies are exposed to two di�erenttreatments. Standard two-arm RCTs are frequently used in 
lini
al resear
h due in partto its relative simpli
ity of design and interpretation. At its most basi
, one power, onesigni�
an
e level and one magnitude of di�eren
e are analyzed for two-arm 
omparisons.Con
lusions are straightforward: either the two arms are shown to be di�erent or they arenot. The implementation for the model is not 
ompli
ated. When more than two arms arein
luded in meta-analysis, 
omplexity ensues. For example, suppose that two treatmentsA and C are 
onsidered in meta-analysis and the treatment C is a 
ontrol group. A newtreatment B is in
luded whi
h 
an be 
ompared with the 
ontrol group (C) or a standarda
tive treatment (A). We 
an obtain the e�e
tiveness of treatment A versus C, treatment Bversus C and treatment A versus B. These types of dataset are 
alled multi-arm trials al-though some authors 
all it mixed treatment 
omparison (MTC) (Lu and Ades, 2004, 2006).Eddy et al. (1992) said of mixed 
omparisons, `when there are several interventions that10
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tion
an be applied to a parti
ular problem, the available eviden
e 
an 
ompare di�erent pairs ofinterventions'. In this thesis, we fo
us on meta-analysis for multi-arm trials. Two data setsof meta-analysis 
omparing three arms are given in Tables 2.1 and 2.2 of Chapter 2. We willuse both data sets to demonstrate the method we propose.Some issues have arisen in meta-analysis as follows.� Dire
t-indire
t 
omparison: dire
t 
omparison exists in treatment 
omparison but itmight not provide enough information for a statisti
al analysis. We may need to`borrow strength' from an indire
t 
omparison (Higgins and Whitehead, 1996). Thisissue will be des
ribed in detail in Chapter 3.� The 
onsisten
y of multi-arm trials should be 
onsidered, parti
ularly, with indire
t
omparison (Lu and Ades, 2006).� Analyses in multi-arm trials need a large number of studies to a
hieve the good results(Green et al., 1997, Chapter 4).1.4.1 Methods of meta-analysisWe have presented an overview of meta-analysis in the �rst se
tion and des
ribed parti
ularproblems su
h as heterogeneity and sele
tion bias in Se
tion 1.3. In this se
tion, we willreview the methods that have been used in meta-analysis of two-arm and multi-arm 
om-parisons.Pagliaro et al. (1992) used RCTs, 
omparing beta-blo
kers or s
lerotherapy with a nona
tivetreatment (
ontrol group) to assess the e�e
tiveness of those treatments in the prevention of�rst bleeding and the redu
tion of mortality in patients with 
irrhosis and esophagogastri
vari
es. The Mantel-Haenszel-Peto method is applied for statisti
al evaluation of hetero-geneity and for pooling of the results. They estimated the treatment e�e
ts of beta-blo
kers11
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tionand the 
ontrol group, s
lerotherapy and the 
ontrol group separately. The results showthat no heterogeneity was found and the in
iden
e of bleeding in the use of beta-blo
kerswas signi�
antly redu
ed.Indire
t 
omparison has been an important issue of two and multi-arm 
omparisons. Higginsand Whitehead (1996) presented a random e�e
t meta-analysis for binary data and intro-du
ed an idea of `borrowing strength' from an indire
t 
omparison. A three-arm 
omparisonwas also 
onsidered in the meta-analysis to improve the inferen
e with both heterogeneityand the treatment di�eren
e. Two approa
hes, namely the general parameter approa
h andthe exa
t binomial approa
h, were used to estimate parameters of interest in a meta-analysis.We apply the idea of `borrowing strength' in the thesis. Bu
her et al. (1997) presented amodel for making indire
t 
omparisons of the magnitude of treatment e�e
ts that preservedthe randomization of the originally assigned patient group. They illustrated the model withan example that 
ompared two experimental prophyla
ti
 regimens against the standardprophylaxis for the prevention of pneumo
ystis 
arinii pneumonia in HIV infe
ted patients.Similarly, Song et al. (2003) examined the validity of adjusted indire
t 
omparisons by usingdata from 44 published meta-analyses (from 28 systemati
 reviews) of RCTs. Lumley (2002)used `in
oheren
e' in networks of pairwise 
omparisons to estimate the treatment di�eren
esof indire
t 
omparisons. His model isYijk � N(�i � �j + �ik + �jk + �ij; �2ijk); �ij � N(0; � 2); �ij � N(0; !2):The Yijk is the treatment di�eren
e of treatment i and j in the kth randomized trial and itsstandard error is �2ijk. The parameters �i and �j represent the true average e�e
ts of thetreatment i and j respe
tively. Random e�e
ts �ik and �jk with varian
e � 2 represent thedi�eren
e between the average e�e
ts of treatments i and j and their e�e
ts in the study;they 
apture the heterogeniety of treatment e�e
t. The �ij represents the 
hange in thee�e
t of treatment i when it is 
ompared with treatment j and 
aptures the in
onsisten
y.12
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tionHowever, the network needs a large number of di�erent treatment 
omparisons and it doesnot guarantee that the 
on
lusions are reliable and generalizable. There is progress in thisarea: see e.g. Hasselblad (1998); Party et al. (2003); Yazdanpanah et al. (2004) and Glennyet al. (2005) along with texts of Eddy et al. (1992); Whitehead (2002).Many authors have 
onsidered a Bayesian approa
h to meta-analysis. Domeni
i et al. (1999)
onstru
ted a hierar
hi
al Bayesian grouped random-e�e
t model to synthesis existing evi-den
e from RCTs of whi
h treatments were most e�e
tive and of quantifying the remainingun
ertainty about treatment e�e
tiveness. They applied their models to migraine heada
hetreatments to in
orporate expli
itly the relationship between the di�erent 
lasses of treat-ments and 
reating a 
ommon s
ale by using a latent variable to 
ombine information fromstudies that had a di�eren
e in results. Ades (2003) introdu
ed the idea of a `
hain of evi-den
e' stru
ture to mixed treatment 
omparisons by using the Bayesian Markov Chain MonteCarlo (MCMC) method to �t his models. Lu and Ades (2004) proposed a range of Bayesianhierar
hi
al models using the MCMC to represent meta-analysis of multi-arm trials. Theyextended the Bayesian hierar
hi
al model for two-arm 
omparisons proposed by Smith et al.(1995) to a general model for multi-arm trials of K-arm 
omparisons. As mentioned ear-lier, the 
onsisten
y of stru
ture eviden
e of multi-arm trials should be taken into a

ount.Lu and Ades (2006) examined in
onsisten
y using a Bayesian hierar
hi
al model with �xede�e
ts or random e�e
ts for �tting multi-arm trials. It is made under the assumption thatthe available eviden
e sour
es were 
onsistent in estimating all treatment 
ontrasts. Thereis a series of arti
les attempting to investigate eviden
e 
onsisten
y in a variety of di�erenteviden
e stru
tures, see e.g. Ades and Cli�e (2002); Ades (2003); Welton and Ades (2005).Some issues about the use of Bayesian methods in meta-analysis are related to sensitivityof prior distribution, estimation of posterior distribution, and 
omparison of 
lassi
al andBayesian approa
hes (Sutton et al., 2000, page 179).
13
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tionChootrakool and Shi (2008) propose normal approximation models using an empiri
al logisti
transform to 
ompare di�erent treatments in multi-arm trials, allowing studies of both dire
tand indire
t 
omparisons. Additionally a hierar
hi
al stru
ture is introdu
ed in the modelto address the problem of heterogeneity among di�erent studies. The proposed models areperformed with the antiplatelet therapy data.1.5 Gaussian quadrature approximationOur approa
hes in this thesis involve 
al
ulation of integrals in the likelihood. We will useGaussian quadrature approximation to estimate those integrals throughout the thesis. Thisapproximation is a well-known and eÆ
ient te
hnique for numeri
ally evaluating integrals ofthe type R 1�1 f(x) dx and has been used in many statisti
al appli
ations. By using Gaussianquadrature, see Abramowitz and Stegun (1972), an approximation of the de�nite integral ofa fun
tion f(x) 
an be given by Z 1�1 f(x)dx � lXn=1 wnf(xn) (1.2)where xn is a parti
ular node with weight wn and l is the number of nodes and weights. Anl-point Gaussian quadrature rule, named after Carl Friedri
h Gauss, is a quadrature rule
onstru
ted to yield an exa
t result for the polynomials of degree 2l� 1, by a suitable 
hoi
eof the l points and weights. The domain of integration for su
h a rule is 
onventionally takenas [-1, 1℄. However, the Gaussian quadrature in (1.2) 
an be expressed in a slightly moregeneral way by introdu
ing a positive weight fun
tion g into the integrand and allowing aninterval other than [-1, 1℄. That is Z ba g(x)f(x)dx; (1.3)
14
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tionwhere the interval (a; b) and the weight fun
tion g(x) 
an be several 
hoi
es. For instan
e,if the interval (a; b) = (�1; 1) and g(x) = (1 � x2)1=2 then this quadrature is 
alled theChebyshev-Gauss quadrature. The details of other 
hoi
es of (a; b) and g(x) 
an be found inAbramowitz and Stegun (1972, page 875) and S
heid (1988, page 136).1.5.1 Gauss-Hermite integrationIf the interval (a; b) in (1.3) is equal to (�1;1) and the weight fun
tion g(x) = e�x2 thenthe quadrature is 
alled Gauss-Hermite Quadrature. Gauss-Hermite quadrature is oftenused for numeri
al integration in statisti
s be
ause of its relation to a normal density. Thequadrature is de�ned in term of an integral of the formZ 1�1 f(x)e�x2dx: (1.4)Using Gauss-Hermite quadrature, the integral (1.4) is approximated byPln=1wnf(xn), wherethe nodes xn are roots of the lth order Hermite polynomial and the wn are suitably 
orre-sponding weights. Tables of (xn; wn) for l = 1; 2 : : : ; 10; 12; 16; 20 are given by Abramowitzand Stegun (1972, page 924) and for l > 20, 
omputation formulae are given by Golub andWels
h (1969). Suppose that a parameter Æ is a random e�e
t and approximately distributedby N(�; � 2) and an integral of Gauss-Hermite quadrature 
an be in the form ofZ 1�1 f(Æ)�(Æ;�; � 2)dÆ; (1.5)where �(Æ;�; � 2) is the density fun
tion of a normal distribution: e�(Æ��)2=2�2=(2�)1=2. Thesampling nodes are then at Æn = �+21=2�xn and the weights are modi�ed to wn=p�. Usingthe approximation of Gauss-Hermite quadrature, the integral (1.5) is approximated byZ 1�1 f(Æ)�(Æ : �; � 2)dÆ � lXn=1 wnp�f(�+ 21=2�xn): (1.6)
15
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tionSimilarly, if the integral (1.5) involves a multivariate normal distribution of Nk(�;
),Z 1�1 f(Æ)�(Æ;�;
)dÆ: (1.7)Then, this integral 
an be approximated byZ 1�1 f(Æ)�(Æ;�;
)dÆ � ��k=2 l1Xn1=1w(1)n1 : : : lkXnk=1w(k)nk f ��+p2
1=2dn� :The sampling nodes are at �+p2
1=2dn and dn = (x(1)n1 ; : : : ; x(k)nk ).Liu and Pier
e (1994) 
onsidered Gauss-Hermite quadrature in numeri
al integration andalso examined its e�e
tiveness in Lapla
e approximation. Crou
h and Spiegelman (1990)evaluated the integral form (1.4) to the logisti
 normal model.1.6 Outline of the thesisEarlier in this 
hapter, we provided an overview of meta-analysis for multi-arm trials andexisting methods to make inferen
es on the treatment e�e
t. Gaussian quadrature approx-imation has also been des
ribed. As reviewed in Se
tion 1.4.1, most existing methods formeta-analysis of multi-arm trials use the logisti
 regression model with un
onditional like-lihood approa
h, see e.g. Lu and Ades (2004, 2006). In this thesis, we propose the normalapproximation model using empiri
al logisti
 transform (e.g. empiri
al log-odds ratio model)when the sample size is relatively large and also introdu
e the logisti
 regression model with
onditional likelihood approa
h. The trial e�e
ts are eliminated in both models, thus ourmodels give a pre
ise estimate and make the 
omputation more stable. More details aregiven in Chapter 3 and Chapter 4. A main important obje
tive of the thesis is to use asensitivity analysis with the models by allowing di�erent amounts of sele
tion bias.
16



Chapter 1. Introdu
tionChapter 2 gives a brief introdu
tion to antiplatelet therapy, whi
h has been used for patientswith a history of 
oronary artery disease, heart atta
ks, angina (
hest pain) and peripheralartery disease. Two data sets of RCTs: antiplatelet therapy with maintenan
e of vas
ulargraft or arterial paten
y (W1) and antiplatelet therapy with redu
tion in venous thrombosisand pulmonary embolism (W2), are presented in this 
hapter.Chapter 3 �rst introdu
es statisti
ally the stru
ture of multi- arm trials. We propose normalapproximation models using empiri
al logisti
 transform to make inferen
es on treatmente�e
ts of multi-arm 
omparison. The treatment e�e
t and the trial e�e
t are also explainedin detail. The indire
t 
omparison plays an important role in multi-arm trials, parti
ularlyif there is little or no eviden
e from a dire
t 
omparison provided in meta-analysis. Ourmodels allow an indire
t 
omparison by using the idea of `borrowing strength' from indire
t
omparisons. Additionally, we address the 
orrelation stru
ture of the 
ovarian
e matrix.The proposed models in this 
hapter are applied to the W1 data.Chapter 4 employs the logisti
 regression model for the exa
t binomial distribution. Twoalternative approa
hes, based on un
onditional and 
onditional likelihoods, are performedto estimate the unknown parameters in the model. All treatment e�e
ts of the model areassumed to be random and they are normally distributed. This 
auses the likelihood fun
-tion to involve integrals. We use Gaussian-Hermite quadrature to approximate the integral.The logisti
 regression models for both approa
hes are illustrated with the W2 data.Chapter 5 investigates the performan
e of the maximum likelihood estimation (MLE) forthe normal approximation model and the logisti
 regression model using un
onditional and
onditional approa
hes with the simulated data. In 
omparison of the di�erent 
ases, weexploit two s
enarios to generate the data. The simulated data is used to draw inferen
es onvarious di�erent models in order to analyse their MLEs. We spe
ially fo
us an attention on17
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tionMLEs for the logisti
 regression model using the un
onditional and 
onditional approa
hes.Chapter 6 begins by des
ribing the funnel plot to identify sele
tion bias in multi-arm trials.We use the normal approximation model for the W1 data as a standard model in this 
hap-ter. Our main purpose here is to develop inferen
es about parameters of interest. We employthe idea of a sensitivity analysis by using a sele
tion model to the normal approximationmodel, allowing di�erent amounts of sele
tion bias. We then analyze how the parameter ofinterest 
hanges when 
ompared to the results of normal approximation model. Goodness-of-�t tests are used to 
he
k whether taking the sele
tion model into a

ount is appropriateor not for the treatment e�e
t estimates. We also examine the performan
e of the methodfor sensitivity analysis by the simulation study.Finally, Chapter 7 extends the work of Chapter 6 to the logisti
 regression model using the
onditional method. The idea of a sele
tion model in Chapter 6 is adapted to the probabilityof sele
tion in the likelihood fun
tion. This 
hapter is stru
tured in a similar way to thepre
eding one.

18



Chapter 2
Antiplatelet data
2.1 Overview of antiplatelet therapyPlatelets are remnants of 
ells 
ir
ulating in the blood that are ne
essary for blood 
lots toform. Platelets initiate the formation of blood 
lots by 
lumping together, a pro
ess 
alledplatelet aggregation, presented in Figure 2.1. Clumps of platelets are further bound togetherby a protein (�brin) formed from 
lotting fa
tors present in the blood. The 
lumps ofplatelets and �brin make up the blood 
lot. Blood 
lots are important be
ause they restri
tthe amount of bleeding when we get 
ut. However, if a blood 
lot forms inside an artery, it
an blo
k the 
ow of blood to the tissue that the artery supplies and 
an damage the tissue.For example, a blood 
lot that forms in a 
oronary artery supplying blood to the heartmus
le 
an 
ause a heart atta
k, and a blood 
lot that forms in an artery supplying bloodto the brain 
an 
ause a stroke. Antiplatelet drugs are a group of powerful medi
ations thathelp to prevent the formation of blood 
lots. They are e�e
tive in the arterial 
ir
ulation,where anti
oagulants have little e�e
t. Aspirin is the most widely used antiplatelet drug andis in a group of medi
ations 
alled sali
ylates. Aspirin is 
heap and relatively safe, despitea possible side e�e
t of gastri
 irritation or bleeding. Aspirin is also given to patients with
oronary heart disease to redu
e the risk of a heart atta
k. It remains the most 
ommonlyused long-term antiplatelet therapy. Other antiplatelet drugs have been introdu
ed su
h as19



Chapter 2. Antiplatelet data

Figure 2.1: Platelet aggregation
ti
lopidine and 
lopidogrel. These have a similar antiplatelet e�e
t of blo
king the 
lottingpathway, though they do this in a slightly di�erent way to aspirin. They seem to have fewerside e�e
ts of gastri
 dis
omfort or bleeding. Ti
lopidine or 
lopidogrel are pres
ribed, inthe short term, with aspirin for patients undergoing stent implantation with angioplasty,to redu
e the extra risk of blood 
lotting after the pro
edure. Dipyridamole is often usedwith other drugs to redu
e the risk of blood 
lots. It was originally introdu
ed in 1959as an anti-anginal medi
ation: it has 
oronary vasodilator properties through in
reasing
oronary blood 
ow without a�e
ting myo
ardial oxygen 
onsumption. Its e�e
tiveness asan antithromboti
 agent was subsequently demonstrated in the rabbit (Emmons et al., 1965).Antiplatelet drugs may be pres
ribed for patients with a history of: 
oronary artery disease,heart atta
ks, angina (
hest pain), and peripheral artery disease (PAD). They are oftenpres
ribed after angioplasty and stent pla
ement and after heart bypass surgery.Throughout the thesis, we use two 
olle
tions of antiplatelet data: antiplatelet therapy withmaintenan
e of vas
ular graft or arterial paten
y (W1) given in Table 2.1, and antiplatelettherapy with redu
tion in venous thrombosis and pulmonary embolism (W2) given in Table2.2. The W1 data will be applied to the multi-arm trials model using the normal approxi-20



Chapter 2. Antiplatelet datamation approa
h in Chapter 3 and also will be used with a sensitivity analysis in Chapter6. The multi-arm trials model using exa
t binomial distribution will be undertaken with theW2 data in Chapter 4 and Chapter 7. Additionally in Chapter 5, the W2 data will be usedfor generating data to 
ompare the performan
e of estimations.2.2 Antiplatelet data: maintaining vas
ular paten
y(W1)After 
oronary artery revas
ularisation, whether by 
oronary artery bypass grafting or byper
utaneous transluminal 
oronary angioplasty, angiographi
 studies show substantial ratesof reo

lusion (Gillum, 1987). For example, about one �fth of 
oronary artery bypass graftso

lude during the �rst postoperative year (Fuster and Chesebro, 1986) and a few per 
entper year o

lude thereafter (Campeau et al., 1984). These o

lusions are often sub
lini
al,though some may produ
e 
lini
al signs of myo
ardial infar
tion. O

lusion or reo

lusionis also seen after peripheral artery revas
ularisation, though many su
h o

lusions are alsosub
lini
al. Experimental and 
lini
al eviden
e suggests that antiplatelet therapy may helpprevent vas
ular graft or arterial o

lusions, parti
ularly during the period soon after vas
u-lar pro
edures, before any intimal damage has healed (Pirk et al., 1990; Bon
hek et al., 1982).Collaboration (1994a) analyzed 46 RCTs of antiplatelet therapy versus the 
ontrol groupand 14 RCTs 
omparing one antiplatelet regimen with another by setting RCTs that 
ouldhave been available by Mar
h 1990 and in whi
h vas
ular graft or arterial paten
y was tobe studied systemati
ally. Several treatments are involved in RCTs su
h as high dose as-pirin, medium aspirin, aspirin plus dipyridamole, aspirin alone, sulphinpyrazone, ti
lopidineand the 
ontrol group. The obje
tive is to determine the eÆ
a
y of antiplatelet therapyin maintaining vas
ular paten
y in patients. The total number of about 8000 patients atvarying degrees of risk of vas
ular o

ulusion (by virtue of disease or of having some vas
ular21



Chapter 2. Antiplatelet datapro
edure) were in trials of antiplatelet therapy versus 
ontrol and 4000 su
h patients werein trials dire
tly 
omparing di�erent antiplatelet regimens.A forest plot (see the detail in Lewis and Clarke, 2001) was used to present the results ofthe meta-analysis. The treatment e�e
t estimate of ea
h study (odds ratio) and respe
tive
on�den
e interval were plotted on one set of axes. They 
on
luded that antiplatelet ther-apy (aspirin plus dipyridamole (A) or aspirin alone (B)) produ
ed a highly signi�
ant (2p �0.00001) redu
tion in vas
ular o

lusion in a wide range of patients 
omparing to the 
ontrolgroup (C). The odds of vas
ular graft or arterial o

lusion were redu
ed by about 40% whiletreatment 
ontinued.Collaboration (1994a) used a forest plot in their systemati
 review. We will re-analysethe data by using a normal approximation model based on empiri
al logisti
 transform inChapter 3. The problem of sele
tion bias will be addressed in Chapter 6. The data used inthis thesis 
onsists of 31 RCTs of three-arm trials. We shall 
all this data set `W1'. Thestudies 
ompare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and the
ontrol group (C). Six trials 
ompare aspirin plus dipyridamole, aspirin alone and the 
ontrolgroup (i.e. 
omparing all A, B and C), four trials 
ompare aspirin plus dipyridamole andaspirin alone (i.e. 
omparing A and B), thirteen trials 
ompare aspirin plus dipyridamoleand the 
ontrol group (i.e. 
omparing A and C), and seven trials 
ompare aspirin alone and
ontrol group (i.e. 
omparing B and C). The W1 data is given in Table 2.1. The `event' inthe table represents the number of patients who have reo

lusion on those treatments andthe `total' represents the number of patients in total to enter in those groups.
22



Chapter 2. Antiplatelet data2.3 Antiplatelet data: redu
tion in venous thrombosisand pulmonary embolism (W2)During prolonged general anaesthesia or any other period of limited mobility thrombus for-mation may be initiated in the deep veins of the legs. Spe
i�
 tests dis
lose deep venousthrombosis in about a quarter of all patients who have had general surgery and in abouthalf of those who have had orthopaedi
 surgery (Kakkar, 1981). Most su
h thromboses aresub
lini
al and resolve 
ompletely when mobility is restored (though a few produ
e per-manent valvular damage and 
hroni
 venous insuÆ
ien
y), but some may embolise to thelungs, produ
ing slight, substantial, or fatal e�e
ts. Venous thrombosis and pulmonary em-bolism remain an important 
ause of morbidity and mortality both in surgi
al patients andin immobilised medi
al patients. Various thromboprophyla
ti
 treatments have thereforebeen devised to prevent or limit thromboembolism (Dalen et al., 1986). An overview of ran-domised trials of perioperative sub
utaneous heparin showed that among surgi
al patientssu
h treatment 
an roughly halve the risk not only of deep venous thrombosis but, moreimportantly, of pulmonary embolism. Sub
utaneous heparin is now widely re
ommended forsurgi
al or medi
al patients at high risk of venous o

lusion, but antiplatelet therapy still isnot (Gent M., 1986; Collins et al., 1988).Collaboration (1994b) analysed 53 trials (total 8400 patients) of an average of two weeksof antiplatelet therapy versus 
ontrol in general or orthopaedi
 surgery; nine trials (600 pa-tients) of antiplatelet therapy versus 
ontrol in other types of immobility; 18 trials (1000patients) of one antiplatelet regimen versus another. Many treatments are involved in RCTssu
h as high dose aspirin, medium aspirin, aspirin plus dipyridamole, aspirin alone, aspirinplus hydroxy
hloroquine, ti
lopidine and the 
ontrol group. The obje
tive was to deter-mine the eÆ
a
y of antiplatelet therapy as prophylaxis against deep venous thrombosis orpulmonary embolism in surgi
al and high risk medi
al patients. It had previously been23



Chapter 2. Antiplatelet datasupposed that antiplatelet therapy did not in
uen
e venous thromboembolism, and manysurgeons and physi
ians do not use it routinely for thromboprophylaxis, even for patientswho are at substantial risk of deep venous thrombosis or pulmonary embolism.Collaboration (1994b) used a forest plot to present the results of the meta-analysis. They
on
luded that antiplatelet therapy - either alone or, for greater e�e
t, in addition to otherproved forms of thromboprophylaxis (su
h as sub
utaneous heparin) - should be 
onsidered.Also antiplatelet therapy produ
ed a highly signi�
ant (2p � 0.00001) redu
tion in deepvenous thrombosis by about 67%.As shown in Table 2.2, the sample sizes for many studies are quite small. An exa
t logisti
regression model will therefore be used with both un
onditional likelihood approa
h, see thedetails in Chapter 4. In the thesis, we will investigate 27 RCTs from systemati
 reviews ofAntiplatelet Trialists' Collaboration (Collaboration, 1994b) in total. We shall 
all this dataset `W2'. The studies 
ompare three treatments: aspirin plus dipyridamole (A), aspirin alone(B) and 
ontrol group (C), where seven trials 
ompare aspirin plus dipyridamole, aspirinalone and 
ontrol group (i.e. 
omparing all A, B and C), ten trials 
ompare aspirin plusdipyridamole and 
ontrol group (i.e. 
omparing A and C) and ten trials 
ompare aspirin aloneand 
ontrol group (i.e. 
omparing B and C) . The W2 data is given in Table 2.2. The `event'in the table represents the number of patients in whom deep venous thrombosis was dete
tedby systemati
 �brinogen s
ans or venography, or both, after general and orthopaedi
 surgeryand in high risk medi
al patients. The `total' represents the number of patients 
ontrolledin ea
h group.
24



Chapter 2. Antiplatelet data
Table 2.1: The W1 data: 31 RCTs of aspirin dataStudy number Number of patientsAspirin + Dipyridamole (A) Aspirin (B) Control (C)event/total event/total event&total1 15/49 10/47 18/512 35/162 37/155 47/1533 83/368 85/373 114/3714 23/100 16/100 39/1005 6/16 2/16 12/176 0/100 6/100 12/1007 20/60 22/648 26/313 27/3179 10/41 6/4010 8/55 15/5511 33/160 37/16012 37/202 81/20513 4/18 9/3014 17/62 20/6315 8/61 24/6416 13/47 27/4617 21/34 14/3518 11/72 15/6819 6/187 13/18920 86/286 86/26321 4/33 15/3222 15/50 12/5023 7/22 19/3124 15/132 13/6725 15/71 16/7126 6/29 15/3127 7/68 17/6928 24/215 47/21329 19/148 28/15030 6/19 18/2531 2/47 11/45
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Chapter 2. Antiplatelet data
Table 2.2: The W2 data: 27 RCTs of aspirin dataStudy number Number of patientsAspirin + Dipyridamole (A) Aspirin (B) Control (C)event/total event/total event&total1 3/31 7/30 13/352 6/12 6/9 4/93 3/30 9/32 13/344 0/100 4/100 5/1005 6/18 8/16 8/256 1/11 2/10 4/117 0/11 2/14 1/148 13/75 35/759 12/85 24/7510 3/38 14/6611 1/30 11/3612 20/32 21/3213 10/20 8/2014 8/21 8/2215 3/13 6/1516 1/19 7/1917 6/40 14/4018 42/153 33/15019 5/702 11/67920 9/56 11/4921 9/357 32/35722 16/50 12/5023 7/138 17/14024 27/66 29/6325 16/44 20/4426 7/26 4/2527 11/58 23/59
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Chapter 3
Meta-analysis of multi-arm trialsusing normal approximation approa
h
3.1 Introdu
tionAs des
ribed in Chapter 1, in standard two-arm 
omparison, eviden
es from two treatmentshave been 
ombined dire
tly in meta-analysis. In multi-arm trials, we aim to summarizethe studies providing more than two arms to estimate the overall treatment e�e
ts from thepair-wise treatment 
omparison. Some studies in multi-arm trials might give useful infor-mation on indire
t 
omparison in a situation where the treatments have not been dire
tly
ompared to the 
ontrol group. Treatment 
omparisons in meta-analysis have been dividedinto two types (Glenny et al., 2005). One is to 
ompare two treatments dire
tly, 
alled dire
t
omparison, or head-to-head 
omparison. The other is to use information from indire
t 
om-parisons. For example, from antiplatelet data given in Table 2.1 of Chapter 2, there are threetreatment 
omparisons available: treatments A, B and C; the 
ontrol group of meta-analysisis treatment C. Three groups of studies 
ompare treatment A versus C, treatment B versusC, and treatment A versus B, respe
tively. If our aim is to 
ompare treatment A versusB then the studies 
omparing treatment A versus C and treatment B versus C provide the27



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approa
hindire
t 
omparison for treatment A versus B. The dire
t and indire
t 
omparisons for RCTsin meta-analysis have been explored by several authors (Bu
her et al., 1997; Lumley, 2002;Song et al., 2003; Lu and Ades, 2004, 2006). This 
hapter proposes the model for multi-armtrials approximated by a normal approximation model (Chootrakool and Shi, 2008).The 
hapter is organized as follows. We begin by introdu
ing the data stru
ture of multi-arm trials in Se
tion 3.2. Se
tion 3.3 dis
usses the normal approximation model using theempiri
al logisti
 transform. The model on a log-odds s
ale is performed in Se
tion 3.4, andthe dire
t and indire
t 
omparisons are given. Se
tion 3.5 des
ribes the model on a log-oddsratio s
ale in
luding both 
omparisons. The maximum likelihood method and its propertiesare illustrated in Se
tion 3.6. We give the standard errors of MLEs in Se
tion 3.7. In Se
tion3.8, the proposed models in the 
hapter are applied with the W1 data, given in Chapter 2.The last se
tion 
on
ludes the ideas of this 
hapter and gives some 
omments.3.2 The data stru
ture of multi-arm trialsSuppose that M RCTs of a meta-analysis make multi-arm 
omparisons between K + 1treatments. The indi
es i = 1; : : : ;M and j = 0; 1 : : : ; K stand for the studies and thetreatments respe
tively, where the index j = 0 stands for the 
ontrol group. For the ithstudy, let rij represent the number of an unsu

essful out
ome on treatment j and let nijdenote the number of observation in the 
orresponding group. Let �ij be the probability ofan unsu

essful out
ome of a patient given the treatment j (treated as a failure) in the ithstudy. The rij has a binomial distributionrij � Bin(�ij ; nij); i = 1; : : : ;M and j = 0; 1 : : : ; K: (3.1)Some studies might not have all the treatments available. For example, from the W1 data,treatment C is not available in the studies 7 - 10. The data stru
ture is analogous to an28



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approa
hin
omplete-blo
ks design, whi
h has been investigated by several authors: S
he�'e (1959,page 161), Po
o
k (1989, page 121) and Hinkelmann and Kempthorne (1994, page 290). Tode�ne a data stru
ture of multi-arm trials, we shall introdu
e an index set Ji 
omprising thetreatments involved in the ith study. The data stru
ture of multi-arm trials is representedas D = f(rij; nij) : i = 1; :::; M ; j 2 Jig : (3.2)3.3 Normal approximation model based on empiri
allogisti
 transformA

ording to the binomial distribution (3.1), the mean and varian
e of rij are nij�ij andnij�ij(1 � �ij) respe
tively. An important property of the binomial distribution is thatas the number of observation nij in
reases, the degree of asymmetry in the distributionde
reases and also the binomial distribution be
omes more 
losely approximated by thenormal distribution (Collett, 1991, page 20). Let  (x) be the fun
tion log (x=1� x) and letÆij be the parameter of interest, given by Æij =  (�ij). From Cox (1970, page 31) if nij islarge and �ij is not too near 0 or 1, we substitute �ij by rij=nij in  (�ij). Then the Æij isreasonably estimated by Xij =  (rij=nij) = log� rijnij � rij� ; (3.3)whi
h is nearly normally distributed and we 
all Xij the empiri
al logisti
 transform of(rij; nij). As nij approa
hes in�nity, the asymptoti
 mean and varian
e are respe
tivelyE(Xij) = log� �ij1� �ij� and V ar(Xij) = nijrij(nij � rij) :Modifying the transformation, the empiri
al logisti
 transform Xij and V ar(Xij) need modi-�
ation only if rij = 0 or nij when the logisti
 transform in (3.3) is unde�ned. With extensive29
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hdata, o

asional extreme values of rij are to be expe
ted, even if on the whole the 
onditionsfor large-sample theory apply. Haldane and Smith (1948) and Ans
ombe (1956) proposed atransform de�ned by Xij(a) = log� rij + anij � rij + a� : (3.4)The idea is to 
hoose the 
onstant a so that the expe
ted value of (3.4) is as nearly as possibleÆij = log(�ij=(1 � �ij)). As a result an appropriate 
hoi
e of a is 1=2. We then have theempiri
al logisti
 transform asXij = log� rij + 0:5nij � rij + 0:5� : (3.5)The asymptoti
 mean and varian
e are respe
tivelyE(Xij) = log� �ij1� �ij� and V ar(Xij) = nij + 1(rij + 0:5)(nij � rij + 0:5) : (3.6)3.4 Empiri
al log-odds modelIn 
lini
al trials without a 
ontrol treatment, it is impossible to be sure that any responseis due solely to the e�e
t of the treatment and the importan
e of a new treatment 
an beover-stated. Thus the 
ontrol treatment may be the standard treatment (a positive 
ontroltreatment) or, if one does not exist, may be a negative 
ontrol treatment, whi
h 
an be apla
ebo (a treatment whi
h looks and tastes like the new drug but whi
h does not 
ontainany a
tive 
ompound) (Petrie and Sabin, 2005, page 34). The 
ontrol treatment 
orrespond-ing to ea
h study shall be 
alled the `baseline treatment '. In a meta-analysis, more thanone studies are 
ombined so it is possible to have more than one baseline treatment in themeta-analysis. In 
omparing in multi-arm trials, we 
an have only one 
ontrol treatmentin a meta-analysis, thus we shall 
all the 
ontrol treatment for a meta-analysis `
ontrol group'.30
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h
This se
tion presents the model using the empiri
al logisti
 transform and based on therequirement of (rij; nij) that nij is large (larger than 20) and rij is not too small (near 0)and not too 
lose to nij. We start with a spe
ial 
ase of the model. Then the general modelwill be explained in
luding the dire
t and indire
t 
omparisons.3.4.1 Meta-analysis of multi-arm trialsWe �rst de�ne a model for a spe
ial 
ase in whi
h ea
h of the M studies in
ludes all K +1 treatments. For this spe
ial 
ase, the 
ontrol group of meta-analysis and the baselinetreatment for all studies are treatment `0'. There is a dire
t 
omparison only in this meta-analysis. Suppose that ri0 and rij have binomial distributions Bin(ni0; �i0) and Bin(nij; �ij)respe
tively for j = 1; : : : ; K. The data stru
ture is given in (3.2) where the set Ji for allMstudies is f0; : : : ; Kg. For the ith study, let Xi0 and Xij be the empiri
al logisti
 transforms(or empiri
al log-odds) for (ri0; ni0) and (rij; nij) respe
tively, as de�ned in (3.5). Based onthe dis
ussion in Se
tion 3.3, normal approximation models for Xi0 and Xij on the log-oddss
ale 
an be de�ned byXi0 = �i + �i0�i0; (3.7)Xij = �i + Æi;0j + �ij�ij; j = 1; : : : ; K: (3.8)They are 
alled an empiri
al log-odds model. The parameters �2i0 and �2ij are the varian
esof Xi0 and Xij respe
tively, approximated from (3.6). The parameters �i0 and �ij are inde-pendent, follow the standard normal distributions and 
orrespond to the random samplingerrors of the models Xi0 and Xij respe
tively. The random sampling errors (�i0�i0 and �ij�ij)are therefore independent and normally distributed as N(0; �2i0) and N(0; �2ij) respe
tively.The �i in both models are the trial e�e
ts representing the di�eren
e a
ross studies. TheÆi;0j is a parameter of interest, whi
h is the treatment e�e
t between the 
ontrol group and31



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approa
htreatment j in the ith study. It is obtained from Æi;0j = Æij � Æi0, 
alled the log-odds ratiobetween treatment j and the 
ontrol group.Trial e�e
tTwo assumptions are usually made about the trial e�e
t �i. The �rst one is that the triale�e
ts are assumed to be study-level e�e
ts, whi
h means that the �is are di�erent param-eters and are treated as nuisan
e parameters in the model. We need to in
lude M di�erentunknown parameters in the model. The se
ond one is that we may assume a model for the�i's. A spe
ial 
ase is to assume that the trial e�e
t is a �xed e�e
t, de�ned by �i = �0.Conversely, it may be assumed to be a random e�e
t, given by �i � N(��0; � 2�0), where��0 is the overall mean of the trial e�e
t and ��0 measures the magnitude of the variationbetween the studies. To 
apture skewness and heavy tails in the distribution of the triale�e
t, a mixture of normal distributions may be used, see Domeni
i et al. (1999). However,in pra
ti
e the trial e�e
ts in most meta-analysis would not satisfy any model sin
e di�erentexperiment designs and di�erent data analysis models are used in di�erent studies. Most ofthe existing methods therefore used the �rst assumption. However, the number of unknownparameters (for the trial e�e
t) is the same as the number of studies if the �rst assumptionof the trial e�e
t is used. This will result in some theoreti
al and 
omputational problems.The a

ura
y of the estimation depends on the sample size of ea
h study not the overallsample size of the pool in the meta-analysis. The estimates of some parameters may not be
onsistent, see Lubin (1981). Due to the large number of parameters, the 
omputation isusually unstable. We therefore propose the empiri
al log-odds ratio model in Se
tion 3.5.Treatment e�e
tThe treatment e�e
t 
an be assumed to be a �xed e�e
t or a random e�e
t. The �xed e�e
tis de�ned as Æi;0j = �0j, where �0j is a �xed treatment e�e
t between the 
ontrol groupand treatment j for all studies. There are several di�erent ways to deal with the random32
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he�e
ts, for example, see DerSimonian and Laird (1986). The treatment e�e
t is assumed tobe random and normally distributed as Æi;0j � N(�0j; � 20j)From the models (3.7) and (3.8), we shall assume that the trial e�e
t follows the �rst as-sumption and the treatment e�e
t is a random e�e
t, i.e. all the �is are di�erent parametersand the treatment e�e
t is a random e�e
t N(�0j; � 20j). The treatment e�e
ts Æi;0j and Æi;0kfor j 6= k and j; k 2 f1; : : : ; Kg may be dependent. This is be
ause they involve Æi0 in thesame way; thus the 
ovarian
e between the treatment e�e
ts Æi;0j and Æi;0k are not equal tozero (Cov(Æi;0j; Æi;0k) 6= 0). Let �jk be the 
orrelation 
oeÆ
ient between ea
h pair (Æi;0j; Æi;0k)for j 6= k and j; k 2 f1; : : : ; Kg. The treatment e�e
ts Æi;0j, for j = 1; : : : ; K in the ith studyare therefore modelled by the following multivariate normal distribution,0BBBBBBB� Æi;01Æi;02...Æi;0K
1CCCCCCCA �MVN 0BBBBBBB�

0BBBBBBB� �01�02...�0K
1CCCCCCCA ;0BBBBBBB� � 201 �12�01�02 : : : �1K�01�0K�12�01�02 � 202 : : : �2K�02�0K... ... . . . ...�1K�01�0K �2K�02�0K : : : � 20K

1CCCCCCCA
1CCCCCCCA : (3.9)

The �0k is the overall mean e�e
t between the 
ontrol group and the treatment k. The � 20kis a measure of between-study heterogeneity of the treatment e�e
t Æi;0k. The 
orrelation
oeÆ
ient �jk measures the amount of linear asso
iation between the Æi;0j and the Æi;0k. Alsothe �jk�0j�0k is the 
ovarian
e between the treatment e�e
ts Æi;0j and Æi;0k. From (3.9), theentries on the diagonal of the 
ovarian
e matrix are often 
alled the heterogeneity param-eters of the treatment e�e
ts. The heterogeneity parameter measures the variation in thetreatment e�e
t between studies. If there is a very little variation between studies then a�xed e�e
t may be appropriate for the treatment e�e
t. The useful properties of the modelparameterisation are the 
orrelation stru
ture of the 
ovarian
e matrix:1. An important spe
ial 
ase is that the heterogeneity parameters of the treatment e�e
tsare assumed to be the same, 
alled homogeneity of varian
es. The 
orrelation 
oeÆ-33
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h
ients between ea
h pair (Æi;0j; Æi;0k), for j 6= k, and j; k 2 f1; : : : ; Kg are equal andtake the value 1=2 be
ause the treatment e�e
ts Æi;0j and Æi;0k involve log (�i0=1� �i0)in the same way. The 
ovarian
e matrix in (3.9) for this assumption is
� 20BBBBBBB� 1 � : : : �� 1 : : : �... ... . . . ...� � : : : 1

1CCCCCCCA ; where � = 1=2:
2. The above assumption may not be reasonable in some appli
ations. We thus allow theheterogeneity parameters of the treatment e�e
ts to be di�erent for ea
h treatmente�e
t, 
alled heterogeneity of varian
es. The 
ovarian
e matrix will be in the standardform as shown in (3.9).3.4.2 Meta-analysis of multi-arm trials with both dire
t and indi-re
t 
omparisonsIn some 
ir
umstan
es, a meta-analysis may 
ontain di�erent information to the spe
ial
ase. For example, some studies might 
ompare fewer than K + 1 treatments, or somebaseline treatments may be di�erent, or both 
ases 
ould o

ur simultaneously. We shallpropose a general model adapted from the spe
ial 
ase des
ribed in the previous se
tion.Let b(i) denote the baseline treatment 
orresponding to the ith study, whi
h 
an be the
ontrol group or any other treatments. As mentioned earlier about indire
t 
omparison, ina situation that the treatments in some studies 
an not be 
ompared dire
tly to the 
ontrolgroup, we need to use eviden
e from the external studies. To make it 
lear, if b(i) = 0 thenthe dire
t 
omparison is involved in this study. Conversely, if b(i) 6= 0 then the study makesindire
t 
omparison. Let J(i) = Jin fb(i)g represent the set of treatments involved in the ithstudy but ex
luding the baseline treatment b(i). Let ki and ki + 1 denote the number of34
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htreatments in the sets J(i) and Ji respe
tively. The rib(i) and rij are binomially distributedas Bin(nib(i); �ib(i)) and Bin(nij ; �ij) for j 2 J(i) respe
tively. The empiri
al log-odds modelsfor the general 
ase in the ith study are de�ned asXib(i) = �i + �ib(i)�ib(i); (3.10)Xij = �i + Æi;b(i)j + �ij�ij; j 2 J(i): (3.11)These models 
an be used for both 
omparisons. A

ording to above dis
ussion, let D and Ibe sets of studies that make the dire
t and indire
t 
omparisons respe
tively. The assump-tions of the trial e�e
t and the treatment e�e
t are similar to the spe
ial 
ase (assumed to bedi�erent parameters and random e�e
t respe
tively). The treatment e�e
t Æi;b(i)j in (3.11)
an be dire
t treatment e�e
t if i 2 D or indire
t treatment e�e
t if i 2 I: they are de�nedas follows.Æi;b(i)j = 8><>: Æi;0j � N(�0j; � 20j) if i 2 D;Æi;0j � Æi;0b(i) � N(�0j � �0b(i); � 20j + � 20b(i) � 2�jb(i)�0j�0b(i)) if i 2 I: (3.12)where �jb(i) is the 
orrelation 
oeÆ
ient between Æi;0j and Æi;0b(i). For example, from the W1data, suppose the treatment A, B, C represent aspirin plus dipyridamole, aspirin alone and
ontrol group respe
tively. The baseline treatment for the studies 7-10 is B thus the indire
ttreatment e�e
t 
an be written asÆi;AB = Æi;AC � Æi;BC � N(�AC � �BC ; � 2AC + � 2BC � 2�AB�AC�BC); i = 7; : : : ; 10:Next, we shall 
onsider the treatment e�e
t in a matrix form, of whi
h will be in the form ofan index ve
tor and the treatment e�e
t model from the spe
ial 
ase. From the treatmente�e
t model (3.9), let Æi;0 and �0 represent the ve
tors of (Æi;0j; j = 1; : : : ; K)t and (�0j; j =1; : : : ; K)t respe
tively where the supers
ript t stands for matrix transposition and let 
035



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approa
hrepresent the K �K 
ovarian
e matrix. The model (3.9) 
an be written asÆi;0 �MVN(�0;
0): (3.13)This is 
alled the basi
 model of random treatment e�e
t. Let Fij be the index ve
tor oflength K 
onsisting of elements 0 and 1 
orresponding to Æi;b(i)j, given by
Fij = 8>>>><>>>>: (0; : : : ; 0|{z}b(i)th; : : : 1|{z}jth ; : : : ; 0) if i 2 D;(0; : : : ; �1|{z}b(i)th; : : : ; 1|{z}jth ; : : : ; 0) if i 2 I: (3.14)

Now, the random e�e
t Æi;b(i)j 
an be written in the form of (3.13) and (3.14):Æi;b(i)j = FijÆi;0 � N(Fij�0;Fij
0Ftij): (3.15)As before, the 
ovarian
e between the treatment e�e
ts Æi;b(i)j and Æi;b(i)k for j 6= k andj; k 2 J(i) may be dependent. For the ith study, let Fi be the following ki �K matrixFi = (Fij)ki�K; for j 2 J(i); (3.16)where Fij is as de�ned in (3.14). Let Æi denote the ve
tor (Æi;b(i)j ; j 2 J(i))t then we haveÆi = FiÆi;0 �MVN(�i;
i); (3.17)where �i = Fi�0 and 
i = Fi
0Fti: (3.18)Referring to the assumptions of 
ovarian
e matrix 
0 in the previous subse
tion, the 
orre-lation stru
ture of Æi 
an be 
onsidered a

ordingly. More dis
ussion will be given in Se
tion3.8. 36
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h3.5 Empiri
al log-odds ratio modelTo avoid the problem of many nuisan
e parameters and in
onsistent estimate, the trial e�e
ts
an be eliminated from the empiri
al log-odds models by using the empiri
al log-odds modelon the log-odds ratio s
ale. Those models in Se
tion 3.4.1 and 3.4.2 are 
onsidered here asfollowing subse
tions.3.5.1 Meta-analysis of multi-arm trialsLet Yi;0j be the empiri
al log-odds ratio between (rij; nij) for j = 1; : : : ; K and (ri0; ni0).This 
an be written as Yi;0j = Xij �Xi0. A

ording to the empiri
al log-odds models (3.7)and (3.8) in the spe
ial 
ase, they 
an be de�ned on the log-odds ratio s
ale asYi;0j = Æi;0j + �i;0j�i;0j; j = 1 : : : ; K: (3.19)We shall 
all this an empiri
al log-odds ratio model. Noti
e that the trial e�e
t is eliminatedin the model. The Æi;0j is a random treatment e�e
t de�ned in (3.9). The varian
e �2i;0j isobtained from a summation of 
�2i0 and 
�2ij. For notational 
onvenien
e, let ei;0j denote arandom sampling error �i;0j�i;0j for the model Yi;0j and normally distributed as N(0; �2i;0j).The model 
an be written as Yi;0j = Æi;0j + ei;0j. The ei;0j and ei;0k are not independent forj 6= k and j; k 2 f1; : : : ; Kg, derived asCov(ei;0j; ei;0k) = Cov(Xij �Xi0; Xik �Xi0) = V ar(Xi0) = �2i0: (3.20)
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approa
hThe random sampling errors ei;0j are distributed as a multivariate normal distribution, givenby 0BBBBBBB� ei;01ei;02...ei;0K
1CCCCCCCA �MVN 0BBBBBBB�

0BBBBBBB� 00...0
1CCCCCCCA ;0BBBBBBB� �2i;01 �2i0 : : : �2i0�2i0 �2i;02 : : : �2i0... ... . . . ...�2i0 �2i0 : : : �2i;0K

1CCCCCCCA
1CCCCCCCA ; (3.21)

where �2i;0j = V ar(Yi;0jjÆi;0j) = �2i0+�2ij. If we assume a random e�e
t model for Æi;0j as givenin (3.9), the empiri
al log-odds ratio model for the ith study is the following multivariatenormal distribution:0BBBBBBB� Yi;01Yi;02...Yi;0K
1CCCCCCCA �MVN 0BBBBBBB�

0BBBBBBB� �01�02...�0K
1CCCCCCCA ;0BBBBBBB� � 201 + �201 �12�01�02 + �2i0 : : : �1K�01�0K + �2i0�12�01�02 + �2i0 � 202 + �202 : : : �2K�02�0K + �2i0... ... . . . ...�1K�01�0K + �2i0 �2K�02�0K + �2i0 : : : � 20K + �20K

1CCCCCCCA
1CCCCCCCA :(3.22)The �0k is the overall mean e�e
t between the 
ontrol group and the treatment k obtainingfrom the mean of the treatment e�e
t. The term � 20k + �20k is the varian
e of Yi;0k. The term�jk�0j�0k + �2i0 is the 
ovarian
e between Yi;0j and Yi;0k where j 6= k and j; k 2 f1; : : : ; Kg.3.5.2 Meta-analysis of multi-arm trials with both dire
t and indi-re
t 
omparisonAs in the previous subse
tion, let Yi;b(i)j be the empiri
al logisti
 transform between (rij; nij)and (rib(i); nib(i)). The empiri
al log-odds models (3.10) and (3.11) 
an be de�ned on thelog-odds ratio s
ale by Yi;b(i)j = Æi;b(i)j + �i;b(i)j �i;b(i)j ; j 2 J(i): (3.23)
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hThe varian
e of �2i;b(i)j is approximated by d�2ib(i)+
�2ij. The random treatment e�e
t model forÆi;b(i)j is given in (3.15). As de�ned in the previous se
tion, let ei;b(i)j represent the randomsampling error �i;b(i)j�i;b(i)j . The ei;b(i)j 
an be given in the form of the index ve
tor andrandom sampling errors model. From (3.21), let ei;0 be the ve
tor (ei;0j; j = 1; : : : ; K)t andlet �i;0 be the K � K 
ovarian
e matrix. The model for random sampling errors given in(3.21) 
an then be rewritten as ei;0 �MVN(0;�i;0): (3.24)We 
all it as a basi
 model of random sampling errors. Using the index matrix de�ned in(3.14), the random sampling error ei;b(i)j is taken in the form ofei;b(i)j = Fijei;0 � N(0;Fij�i;0Ftij): (3.25)Let ei be the ve
tor (ei;b(i)j ; j 2 J(i))t. From (3.21), we haveei = Fiei;0 �MVN(0;�i); (3.26)where Fi is given in (3.16) and �i = Fi�i;0Fti. Similarly, let Yi;0 be the ve
tor (Yi;0j; j =1; : : : ; K)t. The basi
 model for empiri
al log-odds ratio model (3.22) 
an be de�ned asYi;0 �MVN(�0;
0 +�i;0); (3.27)and the model (3.23) 
an be de�ned byYi;b(i)j = FijYi;0 � N(�i;Fij
0Ftij + Fij�i;0Ftij): (3.28)
39



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approa
hLet Yi be the ve
tor (Yi;b(i)j, j 2 J(i))t, whi
h may be written as Yi = FiYi;0. In matrixnotation, the model (3.23) is Yi = Æi + ei �MVN(�i;Vi); (3.29)where Æi and ei are given in (3.17) and (3.26) respe
tively. The �i is given in (3.18) and the
ovarian
e matrix Vi = 
i +�i.3.6 Maximum likelihood estimationFrom model (3.29), Yi is distributed as a multivariate normal distribution MVN(�i;Vi).The probability density fun
tion for Yi is in the formp(Yi) = 1(2�)ki=2 jVij1=2 e�(Yi��i)0V�1i (Yi��i)=2: (3.30)We aim to estimate the unknown parameters for the meta-analysis 
onsisting of M studies.Let � be the 
olle
tion of all unknown parameters of � and 
. Suppose that � 
an take anyvalue within an admissible range �. Let Y denote the 
olle
tion Yi for i = 1; : : : ;M . Thelikelihood fun
tion for the meta-analysis is de�ned as L(�jY), taking the formL(�jY) = 1QMi=1(2�)k2i =2 jVijki=2 e�PMi=1(Yi��i)0V�1i (Yi��i)=2: (3.31)The method of maximum likelihood (ML) is to �nd the value b� within � whi
h maximisesthe likelihood fun
tions of �. In other wordsb� = arg max�2�L(�jY):This is the maximum likelihood estimator of �. The likelihood fun
tion L(�jY) representsthe joint probability, or likelihood of observing data that has been 
olle
ted in the meta-40
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hanalysis. The term joint probability means a probability that 
ombines the 
ontributionsof all the studies in the meta-analysis. Let ln stand for the log-likelihood fun
tion in thenormal approximation model based on the empiri
al logisti
 transform. The MLE is usuallydetermined by maximizing the log-likelihood fun
tion ln(�jY) = logL(�jY). Di�erentiatingln(�jY) with respe
t to �, termed as a s
ore fun
tion, givesU(�) = �ln(�jY)�� :By setting the s
ore fun
tion to zero and solving for �, the MLE b� 
an be obtained.3.7 Standard error of parameter estimationFollowing the estimation of the unknown parameters in the empiri
al log-odds ratio model,suppose that m unknown parameters �1; �2; : : : ; �m are in the set � of a meta-analysis. Them derivatives of the log-likelihood fun
tion with respe
t to �1; �2; : : : ; and �m are 
alled theeÆ
ient s
ores, whose jth 
omponent is �ln(�jY)=��j for j = 1; 2; : : : ; m. Now let H(�) bethe m�m matrix of se
ond partial derivatives of ln(�jY) ,where the (j; k)th entry of H(�)is �2ln(�jY)��j��k ;for j = 1; 2; : : : ; m and k = 1; 2; : : : ; m. The observed Fisher information (Palmgren, 1981)I(�) with (j; k)th entry is given by(I(�))j;k = ���2ln(�jY)��j��k � ; (3.32)for j = 1; 2; : : : ; m and k = 1; 2; : : : ; m. The observed Fisher information matrix I(�)plays a parti
ularly important role in maximum likelihood estimation. The inverse of I(�),denoted by I(�)�1, is the asymptoti
 varian
e-
ovarian
e matrix of the maximum likelihoodestimates of the unknown parameters. Additionally, standard errors for MLEs 
an be found41
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happroximately by removing the dependen
e of I(�) on �, i.e. I(�) � I(b�). In other words,the asymptoti
 standard error (s.e.) of b�j is the square root of the jth diagonal entry ofI(b�)�1, given by s:e:(b�j) �qI(b�)jj; (3.33)for j = 1; 2; : : : ; m. We 
an also determine approximately the ellipsoidal 
on�den
e regionsfor � using (b� � �)tI(b�)(b� � �) � �2m:From the standard error of b�j, 100(1-
)% 
on�den
e limits for the 
orresponding true value�j are b�j � z
=2s:e:(b�j); (3.34)where z
=2 is the upper 
=2 point of the standard normal distribution. By the propositionof 
onsisten
y (Bulmer, 1979), suppose that the estimator b� = (b�1; : : : ;
�m) is the MLE for� = (�1; : : : ; �m). Then the b�j are 
onsistent for �j where j = 1; : : : ; m. By the propositionof asymptoti
 normality (Bulmer, 1979), the estimator b� is approximately distributed asb� � N(�; I(�)�1).3.8 Appli
ation to antiplatelet therapy data (W1)In this se
tion, we shall use the proposed model to the W1 data given in Table 2.1 of Chapter2. A

ording to this data, most of total number of patients are large (larger than 20), thusthe normal approximation model 
an be applied.3.8.1 The modelFrom the W1 data, there are 31 studies (or RCTs) in total, investigating the use of aspirinplus dipyridamole or aspirin alone in 
omparison with the 
ontrol group. The studies 
om-pare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and 
ontrol group42
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h(C). Six studies 
ompare A, B and C, four studies 
ompare A and B, thirteen studies 
om-pare A and C and seven studies 
ompare B and C. For 
onvenien
e, we partition the datasetinto four groups of studies,G1 = f1; : : : ; 6g; G2 = f7; : : : ; 10g; G3 = f11; : : : ; 24g and G4 = f25; : : : ; 31g;
omparing treatment A versus B versus C, A versus B, A versus C and B versus C, respe
-tively. Let riA, riB and riC be the numbers of patients who have reo

lusions on treatmentsA, B and C respe
tively where the ith study is in G1[G2[G3, G1[G2[G4 and G1[G3[G4,respe
tively. The total numbers of patients are niA, niB and niC respe
tively. Let �iA, �iBand �iC be the probabilities of patients that have reo

lusions on treatments A, B and Crespe
tively in the ith study. The riA; riB and riC are thus binomially distributed asriA � Bin(�iA; niA); i 2 G1 [G2 [G3;riB � Bin(�iB ; niB); i 2 G1 [G2 [G4;riC � Bin(�iC ; niC); i 2 G1 [G3 [G4:Suppose that XiA; XiB and XiC are the empiri
al logisti
 transforms for (riA; niA); (riB; niB)and (riC ; niC) respe
tively and are formulated in (3.5). For example, the empiri
al logisti
transform of XiA is de�ned by log(riA+0:5)=(niA�riA+0:5). From the dis
ussion in Se
tion3.3, the XiA, XiB and XiC have approximate normal distributions with means and varian
esgiven in (3.6). For example, the XiA has an approximate normal distribution with meanlog(�iA=(1� �iA)) and varian
e 
�2iA = (niA + 1)=((riA + 0:5)(niA � riA + 0:5)). The normalapproximation models using the empiri
al logisti
 transforms 
an therefore be applied withthe data.The baseline treatment for G1, G3 and G4 is the 
ontrol group, 
an be written as b(i) = Cfor i 2 G1 [G3 [G4. While the baseline treatment for G2 is the treatment B, b(i) = B for43
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hi 2 G2. The meta-analysis involves the dire
t 
omparison in G1, G3 and G4 and indire
t
omparison in G2. The sets for both 
omparisons are D = fG1; G3; G4g and I = fG2grespe
tively. First, by using the models (3.7) and (3.8), the empiri
al log-odds models forea
h group 
an be given by
i 2 G1; 8>>>><>>>>: XiC = �i + �iC�iC ;XiA = �i + Æi;AC + �iA�iA;XiB = �i + Æi;BC + �iB�iB;i 2 G2; 8><>: XiB = �i + �iB�iB;XiA = �i + Æi;AB + �iA�iA;i 2 G3; 8><>: XiC = �i + �iC�iC ;XiA = �i + Æi;AC + �iA�iA;i 2 G4; 8><>: XiC = �i + �iC�iC ;XiB = �i + Æi;BC + �iB�iB:The trial e�e
ts are assumed to be di�erent and the treatment e�e
ts Æi;AC , Æi;BC and Æi;ABare assumed to be random as in (3.12). The �iA, �iB and �iC are independent, following thestandard normal distributions and 
orresponding to the random sampling errors of XiA, XiBand XiC respe
tively. All random sampling errors are therefore independent and normallydistributed as N(0; �2iA), N(0; �2iB) and N(0; �2iC), respe
tively.Next, we will determine the basi
 model for the random treatment e�e
t. Let Æi;0 and �0 rep-resent the ve
tors (Æi;AC ; Æi;BC)t and (�AC ; �BC)t respe
tively and let 
0 denote the 2�2 
o-varian
e matrix 
orresponding to Æi;0. Thus, the model Æi;0 is distributed as MVN(�0;
0),i.e. 0B� Æi;ACÆi;BC 1CA �MVN 0B�0B� �AC�BC 1CA ;0B� � 2AC ��AC�BC��AC�BC � 2BC 1CA1CA : (3.35)
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hThe �AC and �BC are the overall mean e�e
ts between the 
ontrol group C and treatmentsA and B, respe
tively. The � 2AC and � 2BC measure the between-study heterogeneities of thetreatment e�e
ts Æi;AC and Æi;BC respe
tively. For notational 
onvenien
e, we let � be the
orrelation 
oeÆ
ient between Æi;AC and Æi;BC . By using the index matrix given in (3.16),the index matrix Fi for G1 is the 2 � 2 identity matrix; the Fi for G2, G3 and G4 are(1;�1), (1; 0) and (0; 1) respe
tively. The treatment e�e
t for the ith study is de�ned asÆi = FiÆi;0 � MVN(Fi�0;Fi
0Fti). The model Æi for G1 
onsisting of three arms whi
h ismodelling by the basi
 model (3.35). The Æi for G2 is given byÆi;AB = FiÆi;0 = Æi;AC � Æi;BC � N(�AC � �BC ; � 2AC + � 2BC � 2��AC�BC): (3.36)Similarly the Æi;AC and Æi;BC for G3 and G4 are normally distributed as N(�AC ; � 2AC) andN(�BC ; � 2BC) respe
tively. Now we have the treatmenet e�e
t models for ea
h group. Asmentioned before, we have 31 nuisan
e parameters in the models. To over
ome the problemof in
onsisten
y, the empiri
al log-odds ratio models are suggested here in order to eliminatethe trial e�e
ts.To present the empiri
al log-odds ratio models for the data, we �rst need to identify thebasi
 model for random sampling errors and empiri
al log-odds ratio models. Let ei;0 be theve
tor (ei;AC ; ei;BC)t and let �i;0 denote the 2� 2 
ovarian
e matrix of ei;0. The basi
 modelei;0 is normally distributed as MVN(0;�i;0), given by0B� ei;ACei;BC 1CA �MVN 0B�0B� 00 1CA ;0B� �2i;AC �2iC�2iC �2i;BC 1CA1CA : (3.37)To obtain the basi
 model for empiri
al log-odds ratio models, letYi;0 be the ve
tor (Yi;AC; Yi;BC)t.
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hThen, Yi is distributed as MVN(�0;
0 +�i;0), i.e.0B� Yi;ACYi;BC 1CA � N 0B�0B� �AC�BC 1CA ;0B� � 2AC + �2i;AC ��AC�BC + �2iC��AC�BC + �2iC � 2BC + �2i;BC 1CA1CA : (3.38)By setting Yi = FiYi;0, the Yis for G1, G2, G3 and G4 are (Yi;AC; Yi;BC)t, Yi;AB, Yi;AC andYi;BC respe
tively. The Æi for ea
h group is the same as de�ned in the empiri
al log-oddsmodels. The random sampling error ei for ea
h group is Fiei;0 � MVN(0;�i); where�i = Fi�i;0Fti. Spe
ially, the log-odds ratio models are
i 2 G1; 8><>: Yi;AC = Æi;AC + ei;AC ;Yi;BC = Æi;BC + ei;BC ; (3.39)i 2 G2; Yi;AB = Æi;AB + ei;AB; (3.40)i 2 G3; Yi;AC = Æi;AC + ei;AC; (3.41)i 2 G4; Yi;BC = Æi;BC + ei;BC : (3.42)The trial e�e
ts are no longer in the models. The model (3.39) is normally distributed asshown in (3.38). Additionally the empiri
al log-odds ratio models (3.40)-(3.42) for G2 - G4are normally distributed asN(�AC��BC ; � 2AB+�2i;AB), N(�AC ; � 2AC+�2i;AC) andN(�BC ; � 2BC+�2i;BC) respe
tively, where � 2AB = � 2AC + � 2BC � 2��AC�BC .3.8.2 Maximum likelihood estimationTo make inferen
es, the maximum likelihood method is used to estimate the unknown pa-rameters in the empiri
al log-odds ratio models (3.39) - (3.42). The aim is to estimatethe unknown parameters for the meta-analysis 
onsisting of 31 studies. The log-likelihood
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hfun
tion ln(�) for the empiri
al log-odds ratio models is performed asXi2G1 log p(Yi;AC; Yi;BC j�) +Xi2G2 log p(Yi;ABj�) +Xi2G3 log p(Yi;ACj�) +Xi2G4 log p(Yi;BC j�):The ln(�) is the summation of the log-likelihoods from G1 to G4 where G1, G3 and G4 are inthe set D and G2 is in the set I. The p(Yi;AC; Yi;BCj�), p(Yi;ABj�), p(Yi;ACj�) and p(Yi;BC j�)represent the joint probabilities of observing data that has been 
olle
ted in G1, G2, G3 andG4 respe
tively. We used the fun
tion nlme in the software R to 
al
ulate the MLEs (RDevelopment Core Team, 2007). As des
ribed in Se
tion 3.4.1, there are two assumptions ofheterogeneity parameters: homogeneity and heterogeneity varian
es. Sin
e there are only 4studies in G2, in absen
e of additional information, we assume homogeneity of varian
e forthe model. The heterogeneity parameters for the models (3.39) - (3.42) are assumed to bethe same: �AC = �BC = �AB = � and the 
orrelation 
oeÆ
ient between the ÆAC and ÆBCtakes the value 1=2. The 
olle
tion of unknown parameters is therefore � = f�AC; �BC ; � 2g.For 
onvenien
e, let �1, �2 and �3 stand for �AC , �BC and � 2 respe
tively. To estimate thestandard error of maximum likelihood estimator, let lij stand for the related partition of these
ond derivatives of the log likelihood fun
tion in terms of �i and �j. Using the equation(3.32), the 3� 3 observed Fisher information matrix I(�) is written as
I(�) = �0BBBB� l�1�1(�) l�1�2(�) l�1�3(�)l�2�1(�) l�2�2(�) l�2�3(�)l�3�1(�) l�3�1(�) l�3�3(�)

1CCCCA : (3.43)
Standard errors 
an be 
al
ulated from the inverse matrix of I(�).3.8.3 Numeri
al resultsThe estimates of the unknown parameters �AC , �BC and � are shown in Table 3.1.
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hTable 3.1: The results for the empiri
al log-odds ratio models on the log-odds ratio (LOR)and odds ratio (LO) s
alesÆAB ÆAC ÆBC�AB �AB �AC �AC �BC �BCLOR 0.108146 0.275320 -0.568930 0.275320 -0.677076 0.275320(SD) (0.118645) (0.136747) (0.161554) 0.136747) (0.150660) (0.136747)95%CI (-0.12,0.34) (0.007,0.54 (-0.88,-0.25) (0.007,0.54) (-0.97,-0.38) (0.007,0.54)OR 1.114210 0.566130 0.50810095%CI (0.88,1.40) (0.41,0.77) (0.37,0.68)
They are denoted by d�AC , d�BC and b� , respe
tively. Note that the estimate of �AB is obtainedfrom d�AC � d�BC . The overall means of the treatment e�e
ts A versus B, A versus C andB versus C are 0.108146, -0.568930 and -0.677076 respe
tively and the variations betweenstudies in those 
omparisons are the same, 0.275320. Taking the inverse of the observedFisher information matrix (3.43), the asymptoti
 varian
e-
ovarian
e matrix of the unknownparameters for the models (3.39) - (3.42) is

I(b�)�1 = 0BBBB� 0:026110 0:013530 �0:00400:013530 0:022732 �0:001220�0:0040 �0:001220 0:018778
1CCCCA (3.44)

From this matrix, the asymptoti
 varian
es of d�AC, d�BC and b� are the entries on the diagonalof the matrix, 0.26110, 0.022732 and 0.018778 respe
tively. As a result their asymptoti
standard errors are 0.161554, 0.150660 and 0.136747 respe
tively. The varian
e of d�AB isestimated from V ar(d�AB) = V ar(d�AC) + V ar(d�BC)� 2� se(d�AC)se(d�BC):The standard error of this estimate is 0.118645. Using these results, approximate 95%48
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h
on�den
e intervals on the log-odds-ratio s
ale for the estimators of �AB, �AC,�BC and � are(�0:12; 0:34), (�0:88;�0:25), (�0:97;�0:38) and (0:007; 0:54) respe
tively. All treatmente�e
ts are estimated on the LOR s
ale. The overall means of the treatment e�e
ts ÆAB, ÆACand ÆBC are 1.114210, 0.566130 and 0.508100 on the OR s
ale. The results indi
ate thatboth treatment A and treatment B redu
e the rates of reo

lusion signi�
antly by over 40%
ompared to the 
ontrol group. However the di�eren
e between treatment A and treatmentB is almost negligible although treatment B is slightly better than treatment A (improvedby about 11%). The 
on�den
e intervals for the true values, �AB, �AC and �BC on the ORs
ale 
an be 
al
ulated for the related CI on the LOR s
ale, whi
h are (0.88,1.40), (0.41,0.77)and (0.37,0.68) respe
tively.3.9 Dis
ussionThis 
hapter has demonstrated the normal approximation model based on the empiri
allogisti
 transform to multi-arm trials data. We �rst proposed the spe
ial 
ase of empiri
allog-odds model with ea
h of M studies 
omprising all K +1 treatments. The model did not
over all possible 
ases of multi-arm trials, e.g. if baseline treatments in some studies aredi�erent. Thus the general 
ase of the empiri
al log-odds model was 
onsidered to modelany multi-arm trial data set, in
luding the dire
t and indire
t 
omparisons. The treatmente�e
t was de�ned in term of both 
omparisons using the basi
 model of random treatmente�e
t. The mean and varian
e of the model that involves the indire
t 
omparison 
annot beestimated dire
tly. Note that whenever there is no or insuÆ
ient eviden
e of dire
t 
ompar-ison from RCTs, the indire
t 
omparison may provide useful or supplementary informationon the treatment e�e
t. However the validity of the indire
t 
omparisons depends on theinternal validity and similarity of the in
luded studies, see Song et al. (2003); Lu and Ades(2006). Additionally, we also des
ribed the assumptions of heterogeneity parameters { ho-mogeneity and heterogeneity of varian
es - for the model. Generally, the assumption ofvarian
e homogeneity has been most used , see e.g. Higgins and Whitehead (1996); Lu and49
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hAdes (2004, 2006).In pra
ti
e the trial e�e
ts in most meta-analysis would not satisfy any model (�xed e�e
tor random e�e
t) sin
e di�erent experiment designs and di�erent data analysis models areused in di�erent studies. Most of the existing methods assume that they are study-levele�e
t. We also use this assumpiton in this thesis. Additionally, the treatment e�e
ts areassumed to be random be
ause we do not believe that results from di�erent studies anddi�erent designs 
an have the same treatment e�e
t.From the empiri
al log-odds model mentioned above, the trial e�e
ts are di�erent, thus thenumber of unknown parameters (from the trial e�e
t) are the same as the number of studies.The estimation may be unstable as many parameters are involved in the model, espe
iallyif the number of studies is large. The a

ura
y of estimation thus depends on the number ofindividual observations from ea
h study, e.g. if this number is large enough then the estimatemay be a

urate. Also this may lead to a problem of in
onsistent estimate. To avoid thisproblem, we suggested the empiri
al log-odds ratio model to eliminate the trial e�e
ts fromthe empiri
al log-odds model. There are at least three advantages of using the empiri
allog-odds ratio model over other methods:(1) the model ex
ludes the trial e�e
ts and give a
onsistent estimate for treatment e�e
t while the other methods (e.g. the empiri
al log-oddsmodel) may give an in
onsistent estimate in some 
ir
umstan
es;(2) the approximation isusually quite good if the number of individual observations is not too small (the numberof samples in a single study should usually be larger than 20); (3) the 
omputation is veryeÆ
ient and very stable, it 
onverges very fast for almost any starting point. It takes lessthan 2 se
onds to get the results.From the appli
ation to the W1 data, the studies 7� 10 (G2) involve the indire
t treatmente�e
t Æi;AB, obtained from Æi;AC � Æi;BC . As mentioned before, the 
orrelation 
oeÆ
ients50
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hbetween the treatment e�e
ts under the assumption of varian
e heterogeneity are estimableif enough information is provided in the indire
t 
omparison. Sin
e there is not enoughinformation in G2 thus the 
orrelation 
oeÆ
ient between treatment e�e
ts Æi;AC and Æi;BC
annot be estimated. The assumption of varian
e heterogeneity is not valid for the model.Conversly, if the numbers of studies in G1 and G2 were 24 and 12 respe
tively, the 
orrelation
oeÆ
ient 
ould be estimated by borrowing strength from indire
t 
omparison (Higgins andWhitehead, 1996). Collaboration (1994a) 
on
luded that antiplatelet therapy (aspirin plusdipyridamole (A) or aspirin alone (B)) produ
ed a highly signi�
ant (2p � 0.00001) redu
-tion in vas
ular o

lusion in a wide range of patients. The odds of vas
ular graft or arterialo

lusion were redu
ed by about 40% while treatment 
ontinued. Our numeri
al results inTable 3.1 are similar to those of Collaboration (1994a).Even though the eÆ
ien
y of 
omputation for the empiri
al log-odds ratio model is goodand the model gives a 
onsistent estimate 
omparing to other methods, the model requiresthe large number of individual observations (larger than 20) and the probability of an un-su

essful out
ome �ij to be not too near zero or one. The MLEs of the model may notbe a

urate when 
ompared to the model with the exa
t binomial distribution. We shallintrodu
e the exa
t binomial model in the next 
hapter.
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Chapter 4
Meta-analysis of multi-arm trialsusing binomial approa
h
4.1 Introdu
tionIn the previous 
hapter, we proposed the normal approximation model using an empiri
allogisti
 transform. The model requires a large number of individual observations nij and theprobability of an unsu

essful out
ome �ij to be not too near zero or one. If the number ofindividual observations is small, the model in Chapter 3 is not suitable. In this 
hapter, weintrodu
e an exa
t binomial model to �t the binary multi-arm trials data. There are twoalternative maximum likelihood approa
hes that 
an be used to make inferen
es for the un-known parameters in the logisti
 regression model. These are the un
onditional method and
onditional method. The logisti
 regression model has be
ome in
reasingly popular with theeasy availability of appropriate 
omputer routines. Many authors have des
ribed maximumlikelihood estimation pro
edures whi
h turn out to be iterative, for example Cox (1970, page61). Albert and Anderson (1984) dealt with the existen
e of maximum likelihood in logisti
regression models and proved on existen
e theorem by 
onsidering the possible pattern ofdata points. The use of the 
onditional likelihood in logisti
 models is well established and53
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hroutines for �tting it are provided by major statisti
al software (Pendergast et al., 1996).Hirji (1994) proposed an eÆ
ient algorithm to generate the exa
t distribution for the bi-variate logisti
 model with 
ommon and sub-unit-spe
i�
 
ovariates and also presented theexa
t un
onditional and 
onditional distribution of the model. Bellio and Sartori (2003)proposed the modi�ed pro�le likelihood as an ideal extension of the 
onditional likelihood ingeneralized linear models for binary data with the generi
 link fun
tion, and also suggestedthat an important feature of the implementation was the standard outputs of routines forthe generalized linear models. With an appli
ation in biology, Zhao and Aragaki (2000) in-vestigated a 
onditional likelihood approa
h of 
andidate genes and showed analyti
ally the
onsisten
y of this approa
h. There have been a large number of studies about un
onditionaland 
onditional methods, for example, see Cox (1972); Prenti
e (1976); Trit
hler (1984) andSartori (2003).As mentioned in Chapter 1, most existing methods for meta-analysis of multi arm trials usethe logisti
 regression model with the un
onditional approa
h. Thompson and Sharp (1999)used the random e�e
ts logisti
 regression model with the un
onditional method to explainheterogeneity in meta-analysis of serum 
holesterol redu
tion. Lu and Ades (2004) intro-du
ed the Bayesian hierar
hi
al model for multi-arm trials using the un
onditional methodto estimate unknown parameters. More examples 
an be found in Lu and Ades (2006); Luet al. (2007). Using the un
onditional maximum likelihood approa
h, note that if the num-ber of studies is large and the number of individual observations is small then the estimatemay be biased or misleading (Cox and Snell, 1989, page 103). For example, if the individualobservations ni0 and nij are equal to 1 then for large M , the estimate of un
onditional max-imum likelihood[Æi;b(i)j is 
lose to 2Æi;b(i)j (Cox and Snell, 1989, page 59). We thus introdu
ethe logisti
 regression model using the 
onditional approa
h in this 
hapter.The stru
ture of this 
hapter is arranged as follows. We introdu
e the logisti
 regression54
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hmodel for the dire
t and indire
t 
omparisons in Se
tion 4.2. Un
onditional maximumlikelihood approa
h for the model in
luding the standard error of MLEs are des
ribed inSe
tion 4.3. Similarly, 
onditional maximum likelihood approa
h for the model is presented inSe
tion 4.4. In Se
tion 4.5, we illustrate the logisti
 regression model with the un
onditionaland 
onditional approa
hes with the W2 data. We dis
uss the advantages and the limitationsof the two approa
hes in the �nal se
tion.4.2 Fitting the logisti
 regression modelThis se
tion illustrates how to �t the logisti
 regression model to the binary data relatedto multi-arm trials in
luding the dire
t and indire
t 
omparisons. Logisti
 regression is aregression model for a binomially distributed response/dependent variable. It is useful formodelling the probability of an event o

urring as a fun
tion of other fa
tors. Logisti
 re-gression is part of a 
ategory of statisti
al models 
alled generalized linear models and usesthe logit as its link fun
tion. Logisti
 regression 
an be used only with two types of de-pendent variables: one is a 
ategori
al dependent variable that has exa
tly two 
ategories(i.e. a binary or di
hotomous variable). The other is a 
ontinuous dependent variable thathas values in the range 0 to 1 representing the probability values or the proportions. Thenames for logisti
 regression used in various other appli
ation areas are logisti
 model orlogit model. Logisti
 regression is similar to linear regression in that we are interested inthe relationship of a group of independent variables with a response or dependent variable.In linear regression, the ultimate obje
tive for the study may be either estimation of the
oeÆ
ient values, or predi
tion of the response value. One signi�
ant di�eren
e betweenlogisti
 and linear models is that the linear model has a 
ontinuous response variable andthe logisti
 model uses a binary or di
hotomous response.All notations used in this 
hapter are the same as de�ned in Chapter 3 unless stated. Sup-pose that the rib(i) and rij are binomially distributed, respe
tively as Bin(nib(i); �ib(i)) and55
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hBin(nij ; �ij) for i = 1; : : : ;M and j 2 J(i). Logisti
 regression models for the ith study 
anbe de�ned by log� �ib(i)1� �ib(i)� = �i; (4.1)log� �ij1� �ij� = �i + Æi;b(i)j; j 2 J(i): (4.2)The assumptions of the trial e�e
t and the treatment e�e
t are the same as were assumedin the empiri
al log-odds models: the �i's are assumed to be di�erent and the Æi;b(i)j areassumed to be random as presented in (3.17). The above models 
an be used for bothtreatment 
omparisons. From model (4.2), we 
all log �ij=(1� �ij) the logisti
 transform ofprobability �ij, or alternatively log odds �ij or logit �ij. Having 
onsidered the properties oflogit �ij, the term �ij=(1��ij) is the odds of an unsu

essful out
ome from a patient treatedwith treatment j and so logit �ij is the log odds of an unsu

essful out
ome. It is easilyseen that a value of �ij in the range (0; 1) 
orresponds to a value of logit �ij in (�1;1).As �ij ! 0, logit �ij ! �1; as �ij ! 1, logit �ij ! 1 and for �ij = 0:5, logit �ij =0. After some rearrangement, the logisti
 regression models (4.1) and (4.2) have equivalentformulations as �ib(i) = � e�i1 + e�i� and �ij = � e�i+Æi;b(i)j1 + e�i+Æi;b(i)j � : (4.3)There are two alternative ML approa
hes, the un
onditional and 
onditional approa
hes,that 
an be used to estimate the unknown parameters in a logisti
 regression model. Theywill be performed in the following se
tions.4.3 Un
onditional maximum likelihood approa
hGenerally, un
onditional ML estimation is prefered if the number of parameters in the modelis small relative to the number of studies in a meta-analysis (Kleinbaum, 1994, page 106).56



Chapter 4. Meta-analysis of multi-arm trials using binomial approa
h4.3.1 Probability fun
tionsTo demonstrate the un
onditional ML estimation, let p(rib(i)j�i) and p(rijj�i; Æi;b(i)j) denotethe probability fun
tions asso
iated with the distributions of rib(i)j�i and rijj�i; Æi;b(i)j re-spe
tively for i = 1; : : : ;M and j 2 J(i), de�ned as follows.For the baseline treatment,p(rib(i)j�i) = 0B� nib(i)rib(i) 1CA�rib(i)ib(i) (1� �ib(i))nib(i)�rib(i) = 0B� nib(i)rib(i) 1CA e�irib(i)(1 + e�i)nib(i) : (4.4)For the treatments j, j 2 J(i)p(rijj�i; Æi;b(i)j) = 0B� nijrij 1CA �rijij (1� �ij)nij�rij = 0B� nijrij 1CA e(�i+Æi;b(i)j)rij(1 + e(�i+Æi;b(i)j))nij : (4.5)The 
ombination in (4.4) represents the number of possible 
ombinations of observationsnib(i) taken rib(i) at a time. The �ib(i) in the middle term of (4.4) is substituted from (4.3)and (1� �ib(i)) be
omes 1=1 + e�i . The 
ombination in (4.5) 
an be 
onsidered in the sameway.4.3.2 The un
onditional likelihoodFrom the probability fun
tions (4.4) and (4.5), the trial e�e
ts �i's are study-level e�e
ts.They are assumed to be di�erent and also in
luded in both probability fun
tions. Whilethe Æi;b(i)j is a random e�e
t, thus the p(rijj�i; Æi;b(i)j) involves the ve
tor of random e�e
ts,Æi, given in (3.17). The standard method of handling a probability fun
tion whi
h involvesrandom variables that have a fully spe
i�ed probability is to integrate the probability fun
tionwith respe
t to the distribution of those variables. To deal with the random e�e
ts Æi, letr(i) be the ve
tor (rij; j 2 J(i))t. We shall integrate the probability fun
tion p(rijjÆi) withrespe
t to Æi. The p(r(i)) 
ontains ki integrals, whi
h is the number of treatments in the set57
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hJ(i), and is given by p(r(i)) = ZÆi Yj2J(i) p(rijjÆi)�(Æi;�i;
i)dÆi; (4.6)where �(Æi;�i;
i) is the probability density fun
tion of the normal distribution with mean�i and 
ovarian
e 
i de�ned in (3.17), given by�(Æi;�i;
i) = 1(2�)ki=2 j
ij1=2 e�(Æi��i)0
�1i (Æi��i)=2: (4.7)The integral (4.6) 
an be 
al
ulated numeri
ally; one way to do it is to use the Gauss-Hermitemethod. To apply Gauss-Hermite approximation, the probability fun
tion p(r(i)) for the ithstudy 
an be estimated byp(r(i)) � ��ki=2 l1Xn1=1w(1)n1 : : : lkiXnki=1w(ki)nki 8><>: Yj2J(i)0B� nijrij 1CA e��i+(�i+p2
1=2i di;n)�rij�1 + e�i+(�i+p2
1=2i di;n)�nij9>=>; ;(4.8)where the sampling nodes are at �i + p2
1=2i di;n and di;n = (x(1)n1 ; : : : ; x(ki)nki ). The ve
tordi;n depends on the number ki, whi
h is the number of treatments 
omprising in the ithstudy. The resulting fun
tion (4.8) does not depend on the Æi. For most pra
ti
al purposes,lki need not be greater than 20, although some authors suggest using even smaller values(Collett, 1991, page 208). The assumptions of the heterogeneity parameters (varian
es forÆi) are similar to those des
ribed in Se
tion 3.4.2 of Chapter 3.As before, let � be the 
olle
tion of all unknown parameters for the meta-analysis in
ludingall trial e�ets (�1; : : : ; �M), � and 
 and let ri be the ve
tor (rij; j 2 Ji). The likelihoodfun
tion for the ith study 
an be written asL(�jri) = Yj2Ji p(rij) = p(rib(i)j�i):p(r(i)); (4.9)where p(rib(i)j�i) and p(r(i)) are given in (4.4) and (4.8) respe
tively. Let lu;i = logL(�jri),58
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hstanding for the un
onditional log-likelihood fun
tion of the logisti
 regression model for theith study. The log-likelihood fun
tion of � for the models (4.1) and (4.2) is given bylu(�) = MXi=1 lu;i: (4.10)Bear in mind that the number of �i's is the same as the number of studies. The 
omputationof MLEs may be quite unstable if the number of studies is large while the sample size ofea
h study is small. As dis
ussed at the beginning of this 
hapter, this may also result in abiased or misleading estimate. We thus suggest using a 
onditional approa
h to eliminateall nuisan
e parameters in Se
tion 4.4.4.3.3 Asymptoti
 varian
e-
ovarian
e matrixIn this se
tion, we will show how to 
al
ulate the standard errors for the MLEs of thelogisti
 regression model using the un
onditional approa
h. Sin
e there are random e�e
tsin the model, some integrals are involved in the likelihood fun
tion. The un
onditionallog-likelihood fun
tion (4.10) 
an be written aslu(�) = MXi=1 log p(rib(i)) + MXi=1 log p(ri);= MXi=1 log p(rib(i)) + MXi=1 log ZÆi Yj2J(i) p(rijjÆi)�(Æi;�i;
i)dÆi: (4.11)We let l1 and l2 stand for the �rst and se
ond terms of the above log-likelihood fun
tion,given by lu(�) = l1 + l2. Three types of unknown parameters are involved in �; the triale�e
ts, �i's, the overall mean e�e
ts �'s (for �), and the varian
es � 's and the 
orrelation
oeÆ
ients �'s in the 
ovarian
e matrix 
. For 
onvenien
e, we let � represent a parameter(either � or �) involved in 
. There is no random e�e
t involved in l1.First, the se
ond-order partial derivative �2l1=��2i 
an be 
al
ulated in the usual way; while59
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hthe other terms are�2l1��i�j = �2l1��i� = �2l1��i� = 0; i 6= j and i; j 2 f1; :::;MgNext, let us 
onsider the se
ond term of (4.11), for notational 
onvinen
e, let Pi(Æi) representthe fun
tion Qj2J(i) p(rijjÆi) in l2. Now the term l2 takes the forml2(�1; :::; �M ;�;
) = MXi=1 log ZÆi Pi(Æi)�(Æi)dÆi = MXi=1 l2i;where �(Æi) is the density of the multivariate normal distribution with mean �i and varian
ematrix
i, and l2i is a summand of the log-likelihood involving the integrals (log RÆi Pi(Æi)�(Æi)dÆi).The �rst-order partial derivatives relating to l2 are shown as follows�l2��i = MXi=1 e�l2i ZÆi �Pi(Æi)��i �(Æi)dÆi ;�l2�� = MXi=1 e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi ;�l2�� = MXi=1 e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi :Similarly, the se
ond-order partial derivatives are�2l2��2i = MXi=1  e�l2i ZÆi �2Pi(Æi)��2i �(Æi)dÆi � �e�l2i ZÆi �Pi(Æi)��i �(Æi)dÆi�2! ; (4.12)�2l2��2 = MXi=1  e�l2i ZÆi Pi(Æi)�2�(Æi)��2 dÆi � �e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi�2! ; (4.13)�2l2�� 2 = MXi=1  e�l2i ZÆi Pi(Æi)�2�(Æi)�� 2 dÆi � �e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi�2! ; (4.14)�2l2���� = MXi=1 �e�l2i ZÆi Pi(Æi)�2�(Æi)���� dÆi � �e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi��2 : (4.15)Note that the se
ond-order partial derivative �2l2=��i��j is equal to zero. The se
ond-order60



Chapter 4. Meta-analysis of multi-arm trials using binomial approa
hpartial derivatives of �2l2=��i��j and �2l2=��i��j 
an be expressed in similar equations to(4.13) and (4.14). The integrals in the �rst-order and se
ond-order partial derivatives 
anbe approximated by Gaussian quadrature.From the log-likelihood (4.11), the se
ond-order partial derivatives for the observed Fisherinformation matrix 
an be 
al
ulated as�2lu��2i = �2l1��2i + �2l2��2i ; �2lu��2 = �2l2��2 ; �2lu��i��j = �2l2��i��j ;�2lu�� 2 = �2l2�� 2 ; �2lu��i��j = �2l2��i��j ; �2lu���� = �2l2���� :As set earlier, the se
ond partial derivatives of �2lu=��2 and �2lu=���� (and �2lu=����)
an be 
al
ulated in similar equations to �2lu=�� 2 and �2lu=���� respe
tively. Noti
e thatthe se
ond-order derivative of l1 is only related in �2lu=��2i . We 
an partition the matrix ofse
ond partial derivatives into a blo
k matrix with null matri
es in the o� diagonals:H(�) = 0B� H�(�) 00 H���(�) 1CA ;where H�(�) and H���(�) are the se
ond-order partial derivatives about �i, and �, � and� respe
tively. By multiplying H(�) by -1, the observed Fisher information matrix I(�) isobtained. The inverse of I(�) is the asymptoti
 varian
e-
ovarian
e matrix of MLEs andtheir standard errors are the square roots of the diagonal of I(�)�1.4.4 Conditional maximum likelihood approa
hConditional likelihood is widely used in logisti
 regression models with binary data. Inparti
ular, this leads to a

urate inferen
es for the parameters of interest and eliminatesall nuisan
e parameters (Kleinbaum, 1994). We shall de�ne the 
onditional likelihood and61
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hdes
ribe the maximum likelihood estimation in this se
tion.4.4.1 Conditional likelihoodFrom the logisti
 regression models (4.1) and (4.2), the 
onditional likelihood ri given thatCi =Pj2Ji rij = 
i for the ith study, is given byf(rijCi = 
i; Æi) = f(rijXj2Ji rij = 
i; Æi) = f(rijÆi)f(Pj2Ji rij = 
ijÆi) : (4.16)The 
onditional likelihood re
e
ts the probability of the observed data 
on�guration relativeto the probability of all possible 
on�gurations of the given data. The numerator f(rijÆi) isexa
tly the same as the un
onditional likelihood obtained from (4.4) and (4.5) . The denom-inator is what makes the 
onditional likelihood di�erent from the un
onditional likelihood;it sums the joint probability for all possible 
on�gurations. To derive the equation (4.16),the 
onditional likelihood ri given Ci 
an be simpli�ed as
f(rijCi = 
i; Æi) = Qj2Ji0B� nijrij 1CA e(Æirij)Pui2Ui0B� ni0
i �Pj2J(i) uij 1CAQj2J(i)0B� nijuij 1CA e(Æiuij) ; (4.17)

where ui = (uij; j 2 J(i))t andUi = 8<:ui : 0 � uij � nij; j 2 J(i)and 
i � ni0 � Xj2J(i) uij � 
i9=; :Noti
e that this likelihood fun
tion does not involve any nuisan
e parameters �i's and isa fun
tion of Æi alone. The removal of the trial e�e
ts from the 
onditional likelihoodis important be
ause it means that when the 
onditional likelihood is used, estimates areobtained only for the parameters of interest in the model and not for the �i's.62
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h4.4.2 EstimationThe 
onditional likelihood (4.17) has ki random e�e
ts so the likelihood f(rijPj2Ji rij = 
i)involves ki integrations:f(rijXj2Ji rij = 
i) = ZÆi f(rijXj2Ji rij = 
i; Æi)�(Æi;�i;
i)dÆi; (4.18)where �(Æi;�i;
i) is the probability density fun
tion of multivariate normal distributionwith mean �i and 
ovarian
e 
i, given in (4.7). Similar to the dis
ussion in the previousse
tion, we apply Gauss-Hermite approximation to (4.18) and obtain:f(rijXj2Ji rij = 
i) � ��ki=2 l1Xn1=1w(1)n1 : : : lkiXnki=1w(ki)nki f(rijXj2Ji rij = 
i; Æi;n); (4.19)where f(rijPj2Ji rij = 
i; Æi;n) is obtained from (4.17) where the sampling nodes is Æi;n =�i + p2
1=2i di;n and di;n = (d(1)n1 ; : : : ; d(ki)nki ). Again, let � be the 
olle
tion of all unknownparameters for the meta-analysis. The likelihood for the ith study L(�jri) 
an be written asL(�jri) = f(rijXj2Ji rij = 
i; Æi):The log-likelihood fun
tion of the logisti
 regression models using the 
onditional approa
his l
(�) = logL(�jr) = MXi=1 logL(�jri); (4.20)By maximising the 
onditional likelihood fun
tion over � we obtain an exa
t parameterestimate for �, 
alled the 
onditional maximum likelihood estimate. To 
al
ulate the standard
63
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herror of their MLEs, the log-likelihood fun
tion (4.20) 
an be written asl
(�) = MXi=1 log f(rijXj2Ji rij = 
i);= MXi=1 logZÆi f(rijXj2Ji rij = 
i; Æi)�(Æi;�i;
i)dÆi: (4.21)Let Pi(Æi) represent f(rijPj2Ji rij = 
i; Æi) in the above equation. The se
ond-order partialderivatives of �2l
=��2, �2l
=�� 2 and �2l
=���� are similar to the equations (4.13) - (4.15)respe
tively. In a similar way to the previous se
tion, the standard errors for the MLEs areobtained.4.5 Appli
ation to antiplatelet therapy data (W2)From the W2 data given in Table 2.2 of Chapter 3, the number of individual observations issmall thus the empiri
al log-odds model is not appropriate. In this se
tion, we shall applythe logisti
 regression model using the un
onditional and 
onditional approa
hes with theW2 data.4.5.1 Un
onditional inferen
eFrom the W2 data, there are 27 studies investigating the use of aspirin plus dipyridamole oraspirin alone in 
omparison with the 
ontrol group. The studies 
ompare three treatments:aspirin plus dipyridamole (A), aspirin alone (B) and the 
ontrol treatment (C). Seven studies
ompare A, B and C, ten studies 
ompare A and C and ten studies 
ompare B and C. Thereis no indire
t 
omparison for this dataset, so the set D is f1; : : : ; 27g. The baseline treatmentfor all studies is the 
ontrol group (b(i) = 0).The indi
es i = 1; : : : ; 27 and j = 0; 1; 2 stand for the studies and the treatments C, A andB, respe
tively. The data is partitioned into three groups: G1 = f1; : : : ; 7g; G2 = f8; : : : ; 17g64
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hand G3 = f18; : : : ; 27g. The sets Ji and J(i) are given by8>>>><>>>>: Ji = f0; 1; 2g ; J(i) = f1; 2g for i 2 G1;Ji = f0; 1g ; J(i) = f1g for i 2 G2;Ji = f0; 2g ; J(i) = f2g for i 2 G3: (4.22)
Let ri0; ri1 and ri2 be the numbers of patients who su�ered reo

lusions on treatments C, Aand B respe
tively, where the ith study is in G1[G2[G3, G1[G2 and G1[G3, respe
tively.The total numbers of patients are ni0; ni1 and ni2. Let �i0; �i1 and �i2 be the probabilitiesthat patients have reo

lusions on treatments C, A and B respe
tively in the ith study. Theri0, ri1 and ri2 are binomially distributed asri0 � Bin(�i0; ni0); i 2 G1 [G2 [G3;ri1 � Bin(�i1; ni1); i 2 G1 [G2;ri2 � Bin(�i2; ni2); i 2 G1 [G3:The treatment e�e
t models 
an be obtained in the same way to that des
ribed in Se
tion3.8 of Chapter 3. For example, the treatment e�e
t Æi for G1 is de�ned as0B� Æi;01Æi;02 1CA �MVN 0B�0B� �01�02 1CA ;0B� � 201 ��01�02��01�02 � 202 1CA1CA : (4.23)Logisti
 regression models for the data 
an be �tted using the equations (4.1) and (4.2)where b(i) = 0 and J(i) is given in (4.22). Note that the trial e�e
ts are assumed to bedi�erent in ea
h study. To de�ne the un
onditional likelihood fun
tion, let r(i) represent theve
tor (ri1; ri2). The probability fun
tions p(ri0) and p(r(i)) are formulated from (4.4) and(4.8) respe
tively.From Æi for G1, the 
orrelation 
oeÆ
ient � between Æi;01 and Æi;02 is in the form � 20 =�01�02,where is obtained from Æi0 � N(�0; � 20 ). Note that �0 and � 20 are not estimable unless65
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hsome other information is used. We shall 
onsider the assumption of homogeneity vari-an
e here. Suppose that all heterogeneity parameters are the same: �01 = �02 = � andthe 
orrelation 
oeÆ
ient takes the value 1=2. The unknown parameter � for the models isf�1; �2; : : : ; �27; �01; �02; � 2g. The log-likelihood fun
tion lu(�) is obtained from (4.10). Bymaximizing the log-likelihood fun
tion, the MLEs 
an be estimated. Also we 
al
ulate theirstandard errors from the observed Fisher information matrix given in Se
tion 4.3.3.The results for the treatment e�e
ts Æ01 and Æ02 are given in Table 4.1. The trial e�e
ts arepresented in Table 4.2. The overall means on the LOR s
ale for Æ01 and Æ02 are -1.17849 (SD0.08499) and -0.63700 (SD 0.03728), and the heterogeneity parameter is 0.0372 (SD 0.04752).On the OR s
ale, the means are 0.30774 and 0.52800 respe
tively. Their 
on�den
e interval
an be 
al
ulated from the related CI on the LOR s
ale. We 
on
lude that treatments aspirinplus dipyridamole and aspirin only in antiplatelet therapy redu
e deep venous thrombosisby over 70% and 45% respe
tively. The average of both treatments redu
e deep venousthrombosis by over 55 %.Table 4.1: The results of the treatment e�e
ts for the model using the un
onditional methodÆ01 Æ02�01 �01 �02 �02LOR s
ale -1.17849 0.00372 -0.63700 0.00372(SD) (0.08499) (0.04752) (0.03728) (0.04752)95%CI (-1.33,-1.00) (-0.08,0.09) (-0.64,-0.62) (-0.08,0.09)OR s
ale 0.30774 0.5280095%CI (0.26,0.36) (0.52,0.53)
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hTable 4.2: The trial e�e
ts of the model using the un
onditional methodStudy 1-5 -0.72387 1.20619 -0.54688 -3.01061 0.55283(SD) (0.01021) (0.00934) (0.00993) (0.0117) (0.00926)95%CI (-0.74,-0.70) (1.18, 1.22) (-0.56,-0.52) (-3.03, -2.98) ( 0.53,0.57)Study 6-10 -0.85773 -1.69947 -0.34480 -0.65231 -1.29308(SD) (0.01206) (0.01264) (0.00735) (0.00770) (0.01087)95%CI (-0.88,-0.83) (-1.72,-1.67) (-0.35,-0.33) (-0.66, -0.63) (-1.31,-1.27)Study 11-15 -2.18147 1.68130 1.17724 0.68567 -0.14132(SD) (0.01231) (0.00636) (0.00811) (0.00869) (0.01102)95%CI (-2.20,-2.15) (1.66,1.69) (1.16,1.19) (0.66,0.70) (-0.16,-0.11)Study 16-20 -1.53114 -0.57320 -0.33486 -4.24972 -1.05748(SD) (0.01214) (0.00941) (0.00661) (0.01367) (0.01199)95%CI (-1.55,-1.50) (-0.59, -0.55) (-0.34,-0.32) (-4.27,-4.22) (-1.08,-1.03)Study 21-25 -3.01727 -0.11773 -2.23388 0.24853 0.04007(SD) (0.01184) (0.00977) (0.01252) (0.00802) (0.00987)95%CI (-3.04,-2.99) (-0.13,-0.09) (-2.25,-2.20) (0.23,0.26) (0.02,0.05)Study 26-27 -0.37573 -0.76995(SD) (0.01277) (0.01098)95%CI (-0.40,-0.35) (-0.79,-0.74)
4.5.2 Conditional inferen
eThe models and other parameters are similar to those de�ned in the un
onditional method.The fun
tion Ci for the data 
an be de�ned by8>>>><>>>>: Ci = ri0 + ri1 + ri2 for i 2 G1;Ci = ri0 + ri1 for i 2 G2;Ci = ri0 + ri2 for i 2 G3: (4.24)
Let ri denote the ve
tor (ri0; ri1; ri2). The 
onditional likelihood f(rijCi) for the ith study isgiven in (4.18). To handle the random treatment e�e
t Æi, the likelihood fun
tion is approx-67
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himated by Gaussian-Hermite approximation as de�ned in (4.19). The unknown parameter �for the models is f�01; �02; �g : By using the log-likelihood fun
tion (4.20), the results of themodels are given in Table 4.3. On the LOR s
ale, the overall mean e�e
ts for both treatmente�e
ts are -0.87516 (SD 0.04340) and -0.39000 (SD 0.31160) while their variation betweenstudies is 0.37000 (SD 0.03900). Those means on the OR s
ale are 0.41679 and 0.67434.As before their 
on�den
e intervals are obtained from the related CI on the LOR s
ale.The results indi
ate that treatments aspirin plus dipyridamole and aspirin only produ
e aredu
tion in deep venous thrombosis by over 55% and 30% respe
tively. The average of bothtreatments in antiplatelet therapy redu
es deep venous thrombosis by over 40 %.As seen from Tables 4.1 and 4.3, the results from using the un
onditional likelihood (on theLOR s
ale) are smaller than from using 
onditional likelihood. Note that those results arenegative. That is to say that estimation with un
onditional likelihood may 
ause underes-timation or bias. Collaboration (1994b) summarized that antiplatelet therapy produ
ed ahighly signi�
ant (2p � 0.00001 ) redu
tion in deep venous thrombosis of about 40%. Theresults from the model using the 
onditional likelihood support this.Table 4.3: The results of the treatment e�e
ts for the model using the 
onditional methodÆ01 Æ02�01 �01 �02 �02LOR s
ale -0.87516 0.37000 -0.39000 0.37000(SD) (0.04340) (0.03900) (0.31160) (0.03900)95%CI (-0.96,-0.79) (0.29,0.44) (-1.00,0.22)OR s
ale 0.41679 0.6743495%CI (0.38,0.45) (0.36,1.24)
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h4.6 Dis
ussionIn Chapter 3, we presented the normal approximation model for a large number of individualobservations. In this 
hapter, we have introdu
ed the logisti
 regression model for the exa
tbinomial distribution. Two types of 
omparisons, dire
t and indire
t, 
an be used with themodel. Two alternative approa
hes for making inferen
es were presented. The un
onditionallikelihood involves nuisan
e parameters (from the trial e�e
ts). If the number of studies (M)is large, it may lead to in
onsistent estimate. Cox and Snell (1989, page 103) 
on
luded forthe un
onditional likelihood that if the number of studies (M) is large and the number ofindividual observations (nij) is small then it makes estimation ina

urate and in
onsistent.Thus we introdu
ed the 
onditional maximum likelihood approa
h for the model to elimi-nate all nuisan
e parameters. In making a 
hoi
e between the two approa
hes, we need to
onsider the number of studies and the number of individual observations. However, the useof this method 
an be expensive in term of the 
ost of 
omputer running time, espe
iallyif the number of individual observations is large. Simulation studies will be 
ondu
ted inthe next 
hapter to 
ompare these two approa
hes. Some other methods 
an be used in thelogisti
 regression model, for example, using a pseudo-loglikelihood, see Severini (1998); orthe modi�ed pro�le likelihood, see Bellio and Sartori (2003).Gaussian-Hermite quadrature was used to 
al
ulate the integral forms of the probabilitiesin
luding random e�e
ts in the likelihood fun
tions for both approa
hes. The approximationis reasonably e�e
tive for low-oder integrations (Crou
h and Spiegelman, 1990). Implement-ing Gaussian-Hermite approximation, we used the fun
tion `gauss.quad' in the software R toestimate MLEs for the model. The number of integrands depends on the number of treat-ments involved in those studies. If this number is large then it makes the dimensionalityof the integral large and so it 
annot be approximated a

urately. Other approximationssu
h as Lapla
e approximation or Monte Carlo method 
an be used, see Ripatti and Palm-gren (2000); Shi and Copas (2002). Lapla
e approximation 
ould make the 
al
ulation of69
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hse
ond-order derivatives for the observed Fisher information matrix easier than using Gaus-sian approximation sin
e there is no weight term in the approximation (Liu and Pier
e, 1994).
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Chapter 5
Simulation study
5.1 Introdu
tionWe saw the normal approximation model used with an empiri
al logisti
 transform with theW1 data in Chapter 3. Computation of the model is eÆ
ient and 
onverges very fast foralmost any starting point. The approximation of the model is quite good if the numberof individual observations is large (Chootrakool and Shi, 2008). In Chapter 4, the logisti
regression model was introdu
ed for the exa
t binomial distribution in
luding the un
ondi-tional and 
onditional approa
hes to making inferen
es. We applied the logisti
 regressionmodel with the W2 data be
ause some of the numbers of individual observations were notlarge enough (less than 20) to use the normal approximation model. By 
omparing the resultsfrom both approa
hes in Chapter 4, we 
on
luded that the results from the un
onditionalapproa
h may be in
onsistent. This bias 
an be eliminated by 
onsidering the 
onditionalapproa
h to the logisti
 regression model (Prenti
e and Breslow, 1978; Lubin, 1981). Thus,the 
onditional maximum likelihood estimate may be more a

urate in a 
ertain situation.The theory of exa
t 
onditional logisti
 regression analysis (or exa
t inferen
e) was �rstproposed by Cox (1970) (M
Carthy, 2007). The un
onditional approa
h (or asymptoti
 in-feren
e) is suitable for the small number of parameters in the model (Kleinbaum, 1994).71



Chapter 5. Simulation studyIn this 
hapter, we examine the performan
e of various inferen
e methods from the normalapproximation model and the logisti
 regression model using the un
onditional and 
ondi-tional methods. The main aim is to 
ompare the un
onditional and 
onditional methods ofthe logisti
 regression model in di�erent 
ases. We demonstrate the pro
edure for generat-ing data in Se
tion 5.2. The models that are used to make inferen
es in the simulation arepresented in Se
tion 5.3. We dis
uss and 
ompare some models in Se
tion 5.4. Simulationdetails and the results are given in Se
tions 5.5 and 5.6 respe
tively. Finally, Se
tion 5.7
on
ludes and gives some dis
ussions about the 
hapter.5.2 Simulated dataIn this se
tion, we aim to generate the data set whi
h will be used in the simulation study.The basi
 data stru
ture is the same as the W2 data. The baseline treatment for all studies isthe 
ontrol group, whi
h means there is only dire
t 
omparison here. The data is generatedfrom binomial distribution (3.1) with logisti
 regression models given in (4.1) and (4.2) whereb(i) = 0. The indi
es i = 1; : : : ;M and j 2 J(i) represent the studies and the treatments,respe
tively. The general s
heme of generating the data is given as follows:1. Give the numbers of individual observations ni0 and nij;2. Generate the trial e�e
t �i;3. Generate the treatment e�e
t Æi;0j;4. Cal
ulate the probabilities �i0 and �ij: substituting the generated trial e�e
t andthe generated treatment e�e
t into models (4.1) and (4.2), and the probabilities areobtained;5. Generate the ri0 and rij from binomial distribution (3.1) ;6. Repeat steps 1-5 until the data is generated for all M studies.72



Chapter 5. Simulation studySimilar to the W2 data, we 
onsider three treatments in the simulation study. Two s
enariosare employed here.� S1: The values of �i's are di�erent. The treatment e�e
ts are Æi;01 � N(�1:0; 0:22)and Æi;02 � N(�0:30; 0:052).� S2: The values of �i's are generated from a distribution N(�0:92; 0:22). The treatmente�e
ts are Æi;01 � N(�1:0; 0:22) and Æi;02 � N(�0:30; 0:052).Note that there is no asso
iation between the treatment e�e
ts Æi;01 and Æi;02. In S1, thevalues of �i's are quite di�erent (this is the 
ase we usually en
ounter in pra
ti
e). In S2,we assume �i's 
ome from a normal distribution.5.3 The modelsEight di�erent models related to the normal approximation model and the logisti
 regressionmodel will be 
onsidered. For 
onvenien
e, let `M1', `M2' and `M3' represent the empiri
allog-odds ratio model and the logisti
 regression model using the un
onditional and 
ondi-tional methods, respe
tively. The 
orrelation 
oeÆ
ients between the treatment e�e
ts inthis se
tion are assumed to be zero. This may be written as �jk = 0 where j 6= k andj; k 2 J(i). Therefore, the 
ovarian
e between the treatment e�e
ts is Cov(Æij; Æik) = 0. Let`F' and `R' denote the �xed-treatment e�e
t model and the random-treatment e�e
t model,respe
tively. For the logisti
 regression model, let `d' and `N' represent the di�erent-triale�e
t and the random-trial e�e
t model, respe
tively.5.3.1 The empiri
al log-odds ratio modelWe 
ompare the empiri
al log-odds ratio model with the �xed-treatment e�e
t and therandom-treatment e�e
t. The empiri
al log-odds ratio model is given in (3.29), and thetreatment e�e
ts are assumed to be random; this is model `M1-R'. By setting the varian
es73



Chapter 5. Simulation studyof all the treatment e�e
ts in the `M1-R' model equal to zero, then the model `M1-F' isobtained.5.3.2 The logisti
 regression modelThe logisti
 regression models given in (4.1) and (4.2) are applied here with di�erent 
hoi
esof treatment e�e
t (`R' or `F') and trial e�e
t (`d' or `N'). The following logisti
 regressionmodels are used to make inferen
es with the un
onditional maximum likelihood approa
h asdes
ribed in Chapter 4.� M2-F-d: the treatment e�e
ts are �xed: Æi;0j = �0j and the trial e�e
ts are di�erentparameters.� M2-R-d: the treatment e�e
ts are assumed to be random and normally distributedas Æi;0j � N(�0j; � 20j) and the trial e�e
ts are di�erent parameters.� M2-F-N: the treatment e�e
ts are �xed as above and the trial e�e
t is assumed tobe random as N(��0; � 2�0). Hen
e, the probability fun
tion for the baseline treatmentp(ri0j�i) has a random e�e
t �i. By integrating p(ri0j�i) with respe
t to �i, we obtainp(ri0) = Z p(ri0j�i)�(�i;��0; � 2�0)d�i; (5.1)where p(ri0j�i) is de�ned in (4.4) where the trial e�e
t is normally distributed. The�(�i;��0; � 2�0) is the normal distribution with mean ��0 and varian
e � 2�0. As dis
ussedin Chapter 4, the integral (5.1) 
an be 
al
ulated numeri
ally by a Gauss-Hermiteapproximation, taking the formp(ri0) � ��1=20B� ni0ri0 1CA lXn=1 wn( e(��0+p2��0dn)ri0�1 + e(��0+p2��0dn)�ni0) ; (5.2)where the sampling nodes are at ��0 +p2��0dn for n = 1; : : : ; l.74



Chapter 5. Simulation study� M2-R-N: the treatment e�e
ts and the trial e�e
t are assumed to be random asde�ned above. The probability fun
tion p(ri0) here is the same as (5.2). The proba-bility fun
tion p(rijj�i; Æi;0j) involves two random e�e
ts of the trial e�e
t �i and thetreatment e�e
t Æi;0j. The probability p(rij) is given byp(rij) = Z Z p(rijj�i; Æi;0j)�(�i;��0; � 2�0)�(Æi;0j;�0j; � 20j)d�idÆi;0j; (5.3)where �(�i;��0; � 2�0) and �(Æi;0j;�0j; � 20j) are the probability density fun
tions of normaldistributions for �i and Æi;0j respe
tively. As before, the p(rij) 
an be approximatedbyp(rij) � ��10B� nijrij 1CA l1Xn1=1w(1)n1 l2Xn2=1w(2)n2 8<: e((��0+p2��0dn1 )+(�0j+p2�0jdn2 ))rij�1 + e(��0+p2��0dn1 )+(�0j+p2�0jdn2 )�nij9=; ;(5.4)where the sampling nodes are at (��0+p2��0dn1)+ (�0j +p2�0jdn2) for n1 = 1; : : : ; l1and n2 = 1; : : : ; l2.For the 
onditional maximum likelihood approa
h, we 
onsider the �xed-e�e
t model (fortreatment e�e
t) denoted by `M3-F', and the random-e�e
t model denoted by `M3-R'. Wedo not need to 
onsider the trial e�e
ts sin
e they are eliminated.5.4 Comparison of modelsWe shall 
ompare three models, M1-R, M2-R-d and M3-R, in terms of limitations, 
ompu-tation and drawba
ks. Those are the mostly used models in pra
ti
e. Assuming that themulti-arm trials data is similar to the spe
ial 
ase given in Se
tion 3.4.1. The treatmente�e
ts for all models are assumed to be random and the trial e�e
ts are assumed to bedi�erent parameters for the logisti
 regression model. The brief 
on
lusions are summarizedin Table 5.1. 75



Chapter 5. Simulation study
Table 5.1: Con
lusions of the modelsModel Limitations Computation Drawba
ksEmpiri
al log-odds ratio ni0 and nij are large fast not a

urate if(M1-R) �i0 and �ij are sample size isnot near 0 or 1 smallLogisti
 regression - medium biased estimate andwith un
onditional method unstable 
omputation(M2-R-d) if ni0 and nij are smalland M is largeLogisti
 regression - slow time 
onsumingwith 
onditional method if ni0,nij and K are large(M3-R)Regarding the limitations of ea
h model, if the number of individual observations ni0 andnij is reasonable large (larger than 20) and the probability �ij is not near 0 or 1 then theempiri
al log-odds ratio model is appropriate (Shi and Copas, 2002; Chootrakool and Shi,2008). A

ording to the dis
ussion in Se
tion 3.3 of Chapter 3, with the opposite 
onditions,the empiri
al log-odds ratio model is not valid be
ause the empiri
al logisti
 transformsfor (ri0; ni0) and (rij; nij) are not approximately normally distributed. While the logisti
regression model 
an be used for the exa
t binomial distribution without any limitations.The un
onditional or 
onditional maximum likelihood approa
hes 
an be employed with thelogisti
 regression model for making inferen
es.In term of 
omputation, the empiri
al log-odds model is distributed as a multivariate normaldistribution. Its likelihood fun
tion is straightforward, as shown in (3.31). If the numbers ofstudies (M) and/or treatments (K) are large, it will not a�e
t the 
omputation mu
h 
om-pared to the other models. Therefore, the 
omputation of MLEs for the empiri
al log-oddsmodel is fast. For the logisti
 regression model, we use the Gaussian-Hermite approximationto deal with random variables for both inferen
e methods. This is one of the reasons to make76



Chapter 5. Simulation studythe 
al
ulation for the logisti
 regression model take more time than the empiri
al log-oddsmodel. By 
omparing both inferen
e methods, as des
ribed in Chapter 4, the numerator ofthe 
onditional likelihood is exa
tly the same as the likelihood for the un
onditional likeli-hood but the denominator of the 
onditional likelihood requires summing ui terms, wherethe ui are de�ned byUi = (ui : 0 � uij � nij; and 
i � ni0 �Xj uij � 
i; j = 1; : : : ; K) :This is often 
omputationally prohibitive. The 
omputation is tedious and slow, parti
u-larly if ni0, nij and K are large (Lubin, 1981; Prenti
e and Breslow, 1978). Consequentlythe 
onditional maximum likelihood estimation is slower than the un
onditional maximumlikelihood estimation.To 
on
lude the drawba
ks, the estimate from the empiri
al log-odds model is not as a

urateas from the model using exa
t binomial distribution unless the sample size for ea
h studiesis suÆ
iently large. The logisti
 regression model using the un
onditional method in
ludesnuisan
e parameters; the model should be used with a small number of studies. The estimatemay be biased if the number of observations ni0 and nij are small and the number of studiesM is large (Lubin, 1981; Cox and Snell, 1989). As mentioned above, if ni0, nij andK are largefor the logisti
 regression model using the 
onditional method, it 
an be time 
onsuming.The main advantage of the 
onditional likelihood approa
h is that the likelihood dependsonly on the parameter of interest.5.5 Simulation detailsIf the sample size of ea
h individual study is large, the empiri
al logisti
 transform modelis always the best 
hoi
e. Here, we just 
ompare the di�erent models in two di�erent 
ases:small number of individual observations with a medium number of studies, and very small77



Chapter 5. Simulation studynumber of individual observations with a large number of studies. By using the s
heme ofgenerating data in Se
tion 5.2, we use the numbers of individual observations ni0 and nijfrom the two original data sets as follows:� 27 studies with small number of individual observations (ni0 and nij are the same asfor the W2 data but ri0 and rij are generated as dis
ussed in Se
tion 5.2 );� 54 studies with very small number of individual observations. To 
onstru
t this dataset, we double the data set from 27 to 54 studies but the number of ea
h individualstudy is halved from the W2 data.For notational 
onvenien
e, let `M = 27' and `M = 54' represent two types of the simu-lated data sets respe
tively. Following the steps given in Se
tion 5.2, the trial e�e
t and thetreatment e�e
t are generated from the models S1 and S2. For ea
h generated data set, theeight models dis
ussed in Se
tion 5.3 are used. The estimates of treatment e�e
ts and otherparameters are 
al
ulated for ea
h model.We 
ompute 1000 repli
ations in our simulation study. The root mean squared error (r.m.s.e.)is used to measure the performan
e for di�erent models. Suppose that �0 is the true valueand b�i is the value of estimation obtained in the ith repli
ation. The r.m.s.e for � is de�nedas r:m:s:e(b�) =  1nr nrXi=1 (b�i � �0)2!1=2 :where nr is the number of repli
ations, and nr = 1000 in our simulation study. The value ofr.m.s.e and the sample means of b�i's are 
al
ulated. The results of the simulation study forS1 and S2 are shown in Tables 5.2 and 5.3, and 5.4 and 5.5 (see the end of this 
hapter).
78



Chapter 5. Simulation study5.6 Results5.6.1 S
enario 1(i). S1 with M = 27Table 5.2 gives the simulation study results based on the data generated from S1with M = 27. The sample size for ea
h individual study is quite small. Note thatsimulation model S1 is the logisti
 regression model with the di�erent-trial e�e
ts andrandom-treatment e�e
ts thus the models with random-treatment e�e
ts may givegood estimates. The true values from S1 are �01 = �1:0, �01 = 0:2, �02 = �0:3 and�02 = 0:05. The trial e�e
ts in S1 are di�erent. We 
ompare eight di�erent models, andthe sample means and r.m.s.e.'s are reported in Table 5.2. The following 
on
lusionsare our �ndings.(a) Overall, the sample means from model M3-R (the logisti
 regression model withrandom-treatment e�e
ts by using the 
onditional likelihood) are the ones most
lose to the true values. That is to say that the model gives the least bias. Alsothe values of r.m.s.e for this model give the best performan
e.(b) Sin
e the sample size for some studies is very small, as expe
ted, the a

ura
y ofthe estimates (sample means) from the empiri
al log-odds ratio models (M1) arenot good as the logisti
 regression models (M2 and M3) ex
ept the models withrandom-trial e�e
t by using the un
onditional likelihood (M2-F-N and M2-R-N).(
) By 
omparing the un
onditional and 
onditional methods for the logisti
 regres-sion models with random-treatment e�e
t, the estimates and the values of r.m.s.efrom M3-R give respe
tively the better results and performan
e than M2-R-d.(d) We shall use the quantile-quantile plot (or Q-Q plot) to test the normality ofthe trial e�e
t assumption we used in M2-F-N and M2-R-N. The Q-Q plot for�i's is shown in Figure 5.1. Some plotted values fall o� on a straight-line. Thismeans that the trial e�e
ts do not follow the normal distribution. The normality79



Chapter 5. Simulation studyassumption for the trial e�e
t fails in models M2-F-N and M2-R-N. The simulationstudy results given in Table 5.2 indi
ate that those two models perform badly
omparing to other models.(ii). S1 with M = 54The sample means from the models in Table 5.3 are based on the data generated fromS1 with M = 54. The sample size in ea
h individual studies is very small but thenumber of studies is large. The true values for �01, �01, �02 and �02 are the same asS1 with M = 27. In addition, we shall 
ompare the sample means and performan
efrom the models in Tables 5.2 (27 studies) and 5.3 (54 studies). The data generatedfrom S1 with M = 27 has small sample size of ea
h individual study and mediumnumber of studies. While the data from S1 with M = 54 has very small sample sizeof ea
h individual study and large number of studies. We expe
t these results fromthe 
omparison: (1) the empiri
al log-odds ratio models (M1) from M = 54 shouldperform even worse than those from M = 27, be
ause the sample size of individualstudies in M = 54 is even smaller; (2) the logisti
 regression model with un
onditionalmethod (M2) fromM = 54 may give in
onsistent or biased estimates due to very smallsample size of individual studies and the large number of study in meta-analysis. Theresults from our simulation study are summarized as follows.(a) As expe
ted, the model M3-R gives the best estimates.(b) Similar to S1 with M = 27, the sample means from models M1 are least a
-
urate. In 
omparison models M1 from M = 27 and M = 54, the empiri
almodel with M = 54 has larger bias and less a

ura
y, this is be
ause the normalapproximation is deteriorated for smaller sample size.(
) The estimates from M3-R give the better estimates than M2-R-d. By 
omparingmodels M2 and M3 from M = 27 and M = 54, as expe
ted, models M2 fromM = 27 give the less bias than from M = 54. The performan
e of models M280



Chapter 5. Simulation studyfrom M = 27 is better than those from M = 54 ex
ept models M2-F-N andM2-R-N.(d) Models M2-F-N and M2-R-N assume normality for the trial e�e
t wrongly, themodels fail for the data. The Q-Q plot of the trial e�e
ts (from 54 studies) isgiven in Figure 5.2. The plot does not support the normality of trial e�e
ts either.Similar to S1 with M = 27, the trial e�e
t 
annot be assumed to be normallydistributed in models M2-F-N and M2-R-N.5.6.2 S
enario 2(i). S2 with M= 27In Table 5.4, the means and r.m.s.e.'s of the models are obtained from simulation modelS2 with 27 studies; this is the logisti
 regression model with the random-trial e�e
tand random-treatment e�e
ts. The true values for S2 are ��0 = �0:92, ��0 = 0:2,�01 = �1:0, �01 = 0:2, �02 = �0:3 and �02 = 0:05. Noti
e that this simulationmodel assume a normal distribution for the trial e�e
t. We expe
t the same results asdes
ribed in S1 with M = 27 but models M2-F-N and M2-R-N would perform better.The simulation results are summarized as follows.(a) Again, the estimates from the empiri
al log-odds ratio model are least a

urate;be
ause the sample size of ea
h individual study is small as used in S1 withM = 27.(b) By 
omparing the un
onditional and 
onditional methods for the logisti
 regres-sion models, the estimates and the values of r.m.s.e from M2-R-N give the betterresults and performan
e than M3-R be
ause the model M2-R-N is exa
tly thesame model as S2 although the performan
e of 
onditional likelihood method forM3 is still very good.(ii). S2 with M= 54 81



Chapter 5. Simulation studyThe estimates from the models are obtained from the data generated from S2 withM = 54. The results from the simulation study are the same as S2 with M = 27. Forexample, model M2-R-N gives the best estimates; means of models M1 give the mostbias. The summaries of 
omparisons between S1 with M = 27 and S1 with M = 54are similar from as des
ribed in (ii) of Se
tion 5.6.1.5.7 Dis
ussionThe simulation provides opportunities to analyse the data that are not available when usingthe real data set alone. Generally, the results from the simulation give more robust and de-pendable solutions. The empiri
al log-odds ratio model was proposed for a 
ertain situationin Chapter 3. In Chapter 4, we introdu
ed the exa
t binomial model (logisti
 regressionmodel) for binary multi-arm trials data. We also expe
ted that the 
onditional maximumlikelihood estimation of the model would be more a

urate than the un
onditional maximumlikelihood estimation be
ause there were no nuisan
e parameters involved. In this 
hapterwe have examined the performan
e of estimation in those models in di�erent situations.Additionally we made some general 
on
lusions on the 
omparisons of mostly used models.The sample means and r.m.s.e.'s from the empiri
al log-odds ratio models (M1) betweenM = 27 and M = 54 suggest that the models are suitable for large individual observationsonly (Cox and Snell, 1989; Shi and Copas, 2002). The individual observations from 27 stud-ies are larger than from 54 studies thus their MLEs are 
lose to the true values than from54 studies.For the logisti
 regression models using the un
onditional method (M2), there are nuisan
eparameters involved in the model. The a

ura
y of estimates depends on the number of in-dividual observations and nuisan
e parameters. The estimates from M2 from the simulationwith 54 studies 
on�rm that the use of the un
onditional method leads to biased estimates82



Chapter 5. Simulation studyif the number of individual observations is small and the number of studies is large (Cox andSnell, 1989; Hirji et al., 1987), although their standard errors are very small (Lubin, 1981).The logisti
 regression models using the 
onditional method (M3) perform well in almostall the 
ases. However, as des
ribed in Se
tion 5.4, one obsta
le of the 
onditional methodis the 
omputational 
omplexity. From simulation study results of M = 27 (from S1 andS2), the large number of individual studies makes the estimation of models M3 diÆ
ult to
ompute, see e.g. Prenti
e and Breslow (1978); Hirji et al. (1987). The number of individualobservations in M = 54 is small and the number of studies is large. The 
omputation is notheavy as for M = 27.Overall, we have the following 
on
lusions for meta-analysis of multi-arm trials. If thesample size in ea
h individual study is large enough (larger than 20), see Chootrakool andShi (2008), we shall use an empiri
al logisti
 transform model; otherwise we should usean exa
t logisti
 regression model with 
onditional likelihood. However, in the 
ase thatthe number of studies is not very large but the sample size in ea
h individual study is notvery small, the performan
e of 
onditional and un
onditional likelihood approa
hes are quitesimilar (Cox and Snell, 1989, page 103), we 
an use the un
onditional likelihood approa
hto redu
e the 
omputation burden.
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Figure 5.1: The Q-Q plot: the trial e�e
ts for M =27
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Chapter 5. Simulation study
Table 5.2: Simulation study results based on the data generated from S1 with M = 27� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -1.0 0.2 -0.3 0.051) M1-F mean -0.90123 -0.28788r.m.s.e 0.17720 0.106962) M1-R mean -0.90360 0.08654 -0.28828 0.04605r.m.s.e 0.17578 0.18135 0.10718 0.091323) M2-F-d mean -1.00566 -0.30219r.m.s.e 0.16261 0.112594)M2-R-d mean -1.00931 0.02977 -0.31490 0.03803r.m.s.e 0.16640 0.20307 0.27665 0.160845) M2-F-N mean -0.67698 1.00675 -1.01345 -0.73103r.m.s.e 0.20104 0.509086) M2-R-N mean -0.92330 0.96800 -0.99082 0.04267 0.08951 0.03030r.m.s.e 0.20110 0.29985 0.53850 0.539327) M3-F mean -0.99176 -0.29990r.m.s.e 0.16034 0.111688) M3-R mean -1.00000 0.17030 -0.30141 0.03026r.m.s.e 0.16245 0.20459 0.11229 0.14836
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Chapter 5. Simulation study
Table 5.3: Simulation study results based on the data generated from S1 with M = 54� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -1.0 0.2 -0.3 0.051) M1-F mean -0.78602 -0.26570r.m.s.e 0.25923 0.137182) M1-R mean -0.78706 0.02606 -0.26569 0.01536r.m.s.e 0.25834 0.19311 0.13737 0.067923) M2-F-d mean -1.02375 -0.31619r.m.s.e 0.19243 0.160914) M2-R-d mean -1.02501 0.02784 -0.30247 0.03933r.m.s.e 0.19728 0.21311 0.25730 0.178555) M2-F-N mean -0.92121 0.96196 -1.00059 -0.08400r.m.s.e 0.19461 0.315556) M2-R-N mean -0.92330 0.96800 -0.99082 0.04267 -0.08951 0.03038r.m.s.e 0.21176 0.36846 0.31422 0.358297) M3-F mean -0.98839 -0.30544r.m.s.e 0.18460 0.154888) M3-R mean -1.00021 0.25955 -0.30686 0.09526r.m.s.e 0.18862 0.28027 0.15710 0.24840
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Chapter 5. Simulation study
Table 5.4: Simulation study results based on the data generated from S2 with M = 27� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -0.92 0.2 -1.0 0.2 -0.3 0.051) M1-F mean -0.91355 -0.30170r.m.s.e 0.15194 0.077692) M1-R mean -0.91863 0.11031 -0.30098 0.02966r.m.s.e 0.15035 0.07223 0.19608 0.062113) M2-F-d mean -1.03935 -0.30879r.m.s.e 0.16839 0.082444) M2-R-d mean -1.04805 0.05279 -0.33293 0.04529r.m.s.e 0.17288 0.23431 0.15533 0.093805) M2-F-N mean -0.93680 0.19283 -1.02629 -0.36060r.m.s.e 0.09379 0.10139 0.15523 0.161956) M2-R-N mean -0.93793 0.11769 -1.04984 0.06497 -0.35672 0.00826r.m.s.e 0.09579 0.17453 0.17591 0.38942 0.15960 0.173267) M3-F mean -0.97811 -0.31870r.m.s.e 0.16480 0.278338) M3-R mean -0.91198 0.19711 -0.31237 0.11499r.m.s.e 0.34845 0.30415 0.22113 0.27201
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Table 5.5: Simulation study results based on the data generated from S2 with M = 54� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -0.92 0.2 -1.0 0.2 -0.3 0.051) M1-F mean -0.76590 -0.25500r.m.s.e 0.27700 0.134292)M1-R mean -0.76642 0.01049 -0.25519 0.01110r.m.s.e 0.27647 0.19779 0.13428 0.066173)M2-F-d mean -1.01269 -0.31020r.m.s.e 0.19552 0.152374)M2-R-d mean -1.01784 0.03457 -0.31176 0.02672r.m.s.e 0.20172 0.22038 0.27105 0.133035)M2-F-N mean -0.94138 0.15866 -0.97917 -0.30087r.m.s.e 0.11654 0.16723 0.19263 0.231586)M2-R-N mean -0.94216 0.15912 -1.00124 0.07353 -0.30892 0.01922r.m.s.e 0.11721 0.17700 0.20349 0.33496 0.23695 0.291877) M3-F mean -0.97882 -0.27944r.m.s.e 0.18996 0.147118) M3-R mean -1.00012 0.25748 -0.30244 0.11425r.m.s.e 0.19574 0.28954 0.14917 0.26059
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Chapter 6
Sensitivity analysis to bivariatenormal approximation model
In Chapter 3, we used the empiri
al log-odds ratio model for the W1 data without 
onsid-ering sele
tion bias. In fa
t, we do not know how the studies in the W1 data were sele
tedin the meta-analysis. As explained in Chapter 1, various tools to dete
t sele
tion bias 
anbe used in meta-analysis and in this thesis, we use the funnel plot. If studies with posi-tive results were mostly sele
ted in the meta-analysis then it 
ould make the meta-analysispositively biased. Conversely, if more studies with negative results were sele
ted then themeta-analysis would be negatively biased. In either 
ase, the results may give us in
orre
tresults. To solve this problem, we will use a sele
tion model to investigate the me
hanismof sele
tion pro
ess. The empiri
al log-odds ratio model will be used as a standard meta-analysis model in this 
hapter. The exa
t logisti
 regression model will be dis
ussed in thenext 
hapter.The funnel plot has been widely used to dete
t sele
tion bias in medi
al resear
h. Eggeret al. (1997) 
on
luded from the investigation of the funnel plot with 37 meta-analyses thatthe funnel plots provided a useful test for the likely presen
e of bias in meta-analyses, but89



Chapter 6. Sensitivity analysis to bivariate normal approximation modelthe 
apa
ity to dete
t bias will be limited to a small number of studies in meta-analysis.Copas and Shi (2000) used the funnel plot (the relative risk against the standard deviation)to reanalyse the 37 published epidemiologi
al studies of passive smoking and lung 
an
erdata and proposed a sensitivity analysis method to address the problem of sele
tion bias.Song et al. (2002) examined a funnel plot along with three other statisti
al methods: rank
orrelation, regression analysis and Trim and Fill, to 28 meta-analyses from the Database ofAbstra
ts of Reviews of E�e
tiveness (DARE).There are various approa
hes that a resear
her 
onfronting the problem of sele
tion biasmay take. One is to apply a sele
tion model for bias using a weight fun
tion to representthe pro
ess of sele
tion. Several 
lasses of sele
tion model have been proposed. Iyengar andGreenhouse (1988) employed the sele
tion model, or weighted distributions, to deal withbias and 
orre
ted the results. They also suggested using families of weight fun
tions tomodel plausible biasing me
hanisms to study the sensitivity analysis of inferen
es about thetreatment e�e
ts. A similar idea was studied in the area of edu
ation, see Hedges (1984).Alternatively, the weight fun
tion of the sele
tion model 
an be de�ned depending on thetreatment e�e
t estimate and its standard error (Copas, 1999; Copas and Shi, 2001, 2002);be
ause some parameters are inestimable and a sensitivity analysis has to be 
ondu
ted.We will use the similar idea to address the problem of sele
tion bias in meta-analysis formulti-arm trials.The 
hapter is outlined as follows. Se
tion 6.1 des
ribes how to dete
t sele
tion bias in themulti-arm trials model. Se
tion 6.2 illustrates sele
tion bias in
luding the population andsele
tion models, and some mathemati
al 
onsequen
es are also given. Se
tion 6.3 presentsthe likelihood of 
ombined models between the empiri
al log-odds ratio models and thesele
tion models. Se
tion 6.4 shows a goodness-of-�t test for the funnel plots of 
ombinedmodels. The details of the pro
edure for sensitivity analysis are des
ribed in Se
tion 6.5.90



Chapter 6. Sensitivity analysis to bivariate normal approximation modelSe
tion 6.6 examines the use of sensitivity analysis with the simulated data. Some relatedtheorems and derivations applying to this 
hapter are proved in Se
tion 6.7. Finally, some
omments are made in Se
tion 6.8. Throughout the 
hapter, the W1 data will be used toillustrate the idea and the model. There is no diÆ
ulty to extend to other data sets.6.1 Identifying sele
tion bias in multi-arm trialsThe basi
 idea of funnel plot is to plot the estimated treatment e�e
ts from individual stud-ies (e.g. empiri
al log-odds ratios) against their standard errors. If a set of studies is a goodsample of a meta-analysis, the funnel plot will be symmetri
al between the negative andpositive on the treatment e�e
t estimate axis. Asymmetry is a sign of sele
tion bias (seedetailed dis
ussion in Rothstein et al., 
hapter 4, 2005 ). In multi-arm trials data, there aremultiple-pairwise 
omparisons in RCTs. We thus need to 
onsider the funnel plot in ea
hpairwise-
omparison involved in those studies. By using the empiri
al log-odds ratio modelfor the W1 data in Chapter 3, it would be 
onvenient and reasonable to use the empiri
allog-odds ratio and its standard error on the axes be
ause these quantities are already avail-able in the data set.Re
all that the W1 data is partitioned into four groups of studies: G1 = f1; : : : ; 6g; G2 =f7; : : : ; 10g; G3 = f11; : : : ; 24g and G4 = f25; : : : ; 31g where the studies in G1, G2, G3 andG4 
ompare treatments A versus B versus C, A versus B, A versus C, B versus C respe
tively.Let Yi;AC, Yi;BC and Yi;AB be the empiri
al log-odds ratios between the treatments A versusC, B versus C and A versus B, and let si;AC, si;BC and si;AB be their respe
tive standarderrors. To dete
t sele
tion bias, we shall apply the funnel plot to the individual studies inea
h group of multi-arm trials with the empiri
al log-odds ratio on the verti
al axis and thestandard error on the horizontal axis. Note that the studies in G2 are not 
onsidered heresin
e there are only indire
t 
omparisons in G2.91



Chapter 6. Sensitivity analysis to bivariate normal approximation modelFor the W1 data, we 
onsider the number of `event' that the patients in whom reo

lu-sion on treatments (A, B and C) was dete
ted. Thus, the negative value of, for example,Yi;AC means positive e�e
t. For 
onvenien
e, we multiplied the value -1 to all the empiri
allog-odds ratios in our analysis. Thus, the larger positive value of Yi;AC means the morepositive e�e
t of treatment A 
omparing to the 
ontrol group C. The two funnel plots forG1: Yi;AC against si;AC and Yi;BC against si;BC , are displayed in Figures 6.1(a) and 6.1(b)respe
tively. The funnel plots 
orresponding to G3 and G4 are given in Figures 6.1(
) and6.1(d) respe
tively. There are strong tenden
ies in the funnel plots displayed in Figures6.1(a) and 6.1(b). Also, signs of sele
tion bias 
an be seen in the top right-hand 
orner ofboth funnel plots { smaller studies (larger standard errors) give more positive results thanlarger studies (smaller standard errors). Figure 6.1(
) shows a set of studies in G3 with noeviden
e of sele
tion bias. Plot 6.1(d) is asymmetri
al with a suggestive la
k of studies in thebottom right-hand 
orner. It shows that small studies with negative results are missing inG4.From Figures 6.1(a), 6.1(b) and 6.1(d), the problem of sele
tion bias has arisen in G1 andG4. As a result, we suspe
t that there might be other small studies, 
omparing treatmentsA, B and C and treatments B and C, respe
tively whi
h have been 
arried out or published,but whi
h have not been sele
ted in our meta-analysis.6.2 Sele
tion biasThe empiri
al log-odds ratio models for the W1 data are de�ned in (3.39) - (3.42) of Chap-ter 3. All treatment e�e
ts are assumed to be random. The estimated treatment e�e
ts(empiri
al log-odds ratios) Yi;AC, Yi;BC , and Yi;AB, and their standard errors si;AC, si;BC , andsi;AB are known from the meta-analysis.
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(d)Figure 6.1: The funnel plots:(a) Yi;AC against si;AC for G1; (b) Yi;BC against si;BC for G1;(
)Yi;AC against si;AC for G3;(d) Yi;BC against si;BC for G4.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.2.1 Assumption for population modelFrom the previous se
tion, there is a presen
e of sele
tion bias in G1 and G4. Re
all theempiri
al log-odds ratios models for G1 and G4:8><>: Yi;AC = Æi;AC + �i;AC�i;AC ;Yi;BC = Æi;BC + �i;BC�i;BC ; (6.1)Yi;BC = Æi;BC + �i;BC�i;BC : (6.2)We will make some assumptions for both models to allow us to explore the sele
tion pro
ess.We assume that the models (6.1) and (6.2) represent the population of studies, 
omparingtreatment A versus B versus C and treatment B versus C respe
tively, that have been or
ould be 
arried out. In theory, the empiri
al log-odds ratios are not dependent on theirstandard errors (Copas and Shi, 2002). For example, Yi;AC and si;AC are independent to ea
hother. From now on, the models (6.1) and (6.2) are our population models.6.2.2 Sele
tion modelWe �rst de�ne a sele
tion model for studies in G1 via a latent variable Zi1. The ith study issele
ted when Zi1 is greater than zero. The latent variable Zi1 is de�ned byZi1 = a1 + b1'i + �i; (6.3)where �i is a standard normal distribution N(0; 1). By adding this sele
tion model to thepopulation model (6.1), the random residuals (�i;AC ; �i) and (�i;BC ; �i) are bivariate normaldistributions with both means equal to zero and both varian
es equal to one. Also their
orrelations %1 and %2 are respe
tively as
orr(�i;AC ; �i) = %1 and 
orr(�i;BC ; �i) = %2:94



Chapter 6. Sensitivity analysis to bivariate normal approximation modelThe latent variable Zi1 in (6.3) 
an be interpreted as the in
lination for the sele
tion.The quantity 'i is the average of the standard errors involved in the ith study, given by(si;AC+si;BC)=2. Thus, larger study will have smaller value of 'i. The parameter a1 
ontrolsthe overall proportion of the studies sele
ted; parameter b1 
ontrols how fast the probabilityof sele
tion in
reases as 'i de
reases. In pra
ti
e, the parameters b1, %1 and %2 are expe
tedto be positive. We will explain this later.As mentioned earlier, the out
ome (Yi;AC; Yi;BC) in the population model (6.1) will be se-le
ted only if Zi1 is greater than 0. In other words, a study 
omparing treatments A, B andC will be sele
ted in the meta-analysis if and only if the value of the random quantity Zi1 ispositive. Therefore, the available data from G1 (the 6 studies from Table 1 of Chapter 2) 
anbe written as (Yi;AC; Yi;BC)jZi1 > 0 and the related density fun
tion for those observationsis p(Yi;AC; Yi;BC jZi1 > 0).If the population and the sele
tion models are independent then the 
orrelations %1 and %2are zero. This will be the ordinary bivariate normal distribution of (Yi;AC; Yi;BC). Also, itindi
ates that the set of studies from the original model is a well-sele
ted sample of themeta-analysis (no sele
tion bias in the model). If %1 > 0 or %2 > 0 then the sele
ted studieswill have Zi1 > 0, and are more likely to have positive �i and positive �i;AC or �i;BC , leadingto a positive bias value of (Yi;AC; Yi;BC).We 
an de�ne a sele
tion model for studies in G4 similarly. Let Zi2 be a latent variable, thesele
tion model is de�ned by Zi2 = a2 + b2si;BC + �i; (6.4)where �i is normally distributed as N(0; 1). The ith study in G4 is sele
ted when Zi2 isgreater than zero. The random residual (�i;BC ; �i) is a bivariate normal distribution withboth means equal to zero and both varian
es equal to one. The 
orrelation between �i;BC95



Chapter 6. Sensitivity analysis to bivariate normal approximation modeland �i is %3. Noti
e that the denominator of b2 is the standard error of si;BC be
ause thereare only two arms in G4.6.2.3 Relating mathemati
al 
onsequen
esSome related mathemati
al 
onsequen
es for the population model (6.1) and the sele
tionmodel (6.3) for Zi1 are given here. All proofs are given in Se
tion 6.7. The equations below
an be derived in a similar way to the population model (6.2) and the sele
tion model (6.4).(i). The probability of sele
tionFrom the sele
tion model (6.3), the marginal probability of sele
tion 
an be 
al
ulatedas p(Zi1 > 0j'i) = ��a1 + b1'i� ; (6.5)where � is a standard normal 
umulative distribution (see the proof of (6.5) in Theorem6.7.1). If the parameters a1 and b1 are �xed in the sele
tion model then the probabil-ity will depend only on the fun
tion 'i. For example, if 'i is small (small si;AC andsi;BC , from a large study) then the probability of sele
tion is 
lose to 1. In 
ontrast, itmakes the sele
tion probability less than 1 for large 'i (i.e. the small study). Thus, if b1is positive then large studies (small 'i) are more likely to be sele
ted than small studies.From (6.5), the sele
tion probability is determined by both parameters a1 and b1.As mentioned in the previous se
tion, the value of a1 
ontrols the overall level ofsele
tion probability while b1 
ontrols how the 
han
e of sele
tion depends on thestudy size. In pra
ti
e, we need to restri
t that b1 is greater than zero be
ause theresults of large studies are usually required to report, no matter that the �nding ispositive or negative (i.e have large sele
tion probability). While the small studies withnegative results are easy to be ignored (either reje
ted by journals or 
onstrained byresear
hers themselves). It is important to note that a1 and b1 
annot be estimated96



Chapter 6. Sensitivity analysis to bivariate normal approximation modelfrom the available data be
ause the unsele
ted studies in the population model (6.1)are unknown.(ii). The probability of sele
tion for a typi
al studyThe probability of a study with the same observations as ith study being sele
ted 
anbe 
al
ulated by p(Zi1 > 0j(Yi;AC; Yi;BC)) = ���2i1�2i1� ; (6.6)where �2i1 and �22i1 are given by�2i1 = �a1 + b1'i�+w12w�122 0B� Yi;AC � �ACYi;BC � �BC 1CA ; (6.7)�22i1 = w11 �w12w�122 w21; (6.8)where w11 = (1), w12 = �%1pv1i; %2pv2i�, w21 = (%1pv1i; %2pv2i)t and w22 is0B� v1i v12iv21i v2i 1CA = 0B� � 2AC + �2i;AC ��AC�BC + �2iC��AC�BC + �2iC � 2BC + �2i;BC 1CA :The proof of (6.6) is given in Theorem 6.7.2. The probability (6.6) is a measure todetermine that how mu
h 
han
e the out
ome of ith study will be sele
ted. Theequation (6.6) will give a larger sele
tion probability for larger values of Yi;AC or Yi;BC .(iii). The means for sele
ted studiesThe means of the log-odds ratios for sele
ted studies areE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �AC�BC 1CA +0B� %1�iAC%2�iBC 1CA��a1 + b1'i� : (6.9)The �(�) is Mill's ratio �(�)=�(�), where � and � are the density and distributionfun
tions respe
tively, of the standard normal distribution (see the proof of (6.9) in97



Chapter 6. Sensitivity analysis to bivariate normal approximation modelTheorem 6.7.3). The equation (6.9) gives the average of log-odds ratios for sele
tedstudies from the population model, allowing di�erent amounts of sele
tion bias. Thisaverage depends on the pair (a1; b1) in the sele
tion model (6.3). It is also an in
reasingfun
tion of (�i;AC ; �i;BC) and a de
reasing fun
tion of 'i. Sin
e the se
ond term in(6.9) is larger than zero, the sele
ted studies has a larger mean than overall mean(�AC ; �BC). For smaller studies of (Yi;AC; Yi;BC), it has even larger mean sin
e Mill'sratio �(a1 + b1='i) has larger values. Thus, the model 
an be used to model the datashown in Figure 6.1.(iv). Varian
e of sele
ted studiesFrom equation (6.9), the varian
e of the sele
ted out
omes 
an be de�ned asV ar0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �2i;AC(1 + d2i1%21) �2iC�2iC �2i;BC(1 + d2i1%22) 1CA ; (6.10)where d2i1 = ��a1 + b1'i��a1 + b1'i + ��a1 + b1'i�� :The proof of (6.10) is given in Theorem 6.7.4. Now, we need to distinguish between(�2i;AC ; �2i;BC) and (s2i;AC; s2i;BC). The �2i;AC and �2i;BC are the varian
es of the populationmodels and may be written as�2i;AC = V ar(Yi;ACjÆi;AC) and �2i;BC = V ar(Yi;BC jÆi;BC):The parameters s2i;AC and s2i;BC are the varian
es of our meta-analysis, estimating froms2i;AC = V ar(Yi;ACjZi1 > 0) and s2i;BC = V ar(Yi;BC jZi1 > 0):
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelFor example, �2i;AC , �2i;BC and �2iC in (6.10) may be written, respe
tively, as�2i;AC = s2i;AC(1 + d2i1%21) ; �2i;BC = s2i;BC(1 + d2i1%22) and �2iC = s2iC : (6.11)Note that the �2i;AC and �2i;BC in equation (6.9) are repla
ed by (6.11).6.3 LikelihoodIn this se
tion, we will 
al
ulate MLEs of all unknown parameters by assuming that the valuesof (a1; b1) and (a2; b2) are given. As the previous se
tion, we still use the W1 data as ourillustrative example. The population models (6.1) and (6.2) are 
ombined with the sele
tionmodels (6.3) and (6.4) for G1 and G4 respe
tively; the empiri
al log odds ratio models forG2 and G3 are the same (without sele
tivity) as de�ned in Chapter 3 (models (3.40) and(3.41)). The log-likelihood fun
tion for the empiri
al log odds models with sele
tion models(with sele
tivity) 
an be written asl(�) = Xi2G1 log p((Yi;AC; Yi;BC)jZi1 > 0) +Xi2G2 log p(Yi;ABj�)+Xi2G3 log p(Yi;ACj�) +Xi2G4 log p(Yi;BCjZi2 > 0): (6.12)As dis
ussed in Chapter 3, the heterogeneity parameters are assumed to be the same: � 2AC =� 2BC = � 2AB = � 2 and the 
orrelation 
oeÆ
ient between the treatment e�e
ts Æi;AC and Æi;BCtakes the value 1=2. The 
olle
tion of all unknown parameters is� = ��AC; �BC ; � 2; %1; %2; %3	 : (6.13)The likelihoods p(Yi;ABj�) and p(Yi;ACj�) are the same as given in Chapter 3. The log-
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Chapter 6. Sensitivity analysis to bivariate normal approximation modellikelihood fun
tion for G1 (the �rst term of (6.12)) 
an be written aslG1 = Xi2G1 log p((Yi;AC; Yi;BC)jZi1 > 0)= Xi2G1 (log p(Zi1 > 0j(Yi;AC; Yi;BC)) + log p(Yi;AC ; Yi;BC)� p(Zi1 > 0j'i)) :The formulae of p(Zi1 > 0j(Yi;AC; Yi;BC)) and p(Zi1 > 0j'i) are given by Theorems 6.7.2and 6.7.1 respe
tively. Note that (Yi;AC; Yi;BC) has a bivariate normal distribution shown in(3.38), we therefore havelG1 = 6Xi=1 ��12 log(� 2 + �2i;AC)(� 2 + �2i;BC)(1� R2i ) + log�(�2i1=�2i1)� log�(a1 + b1='i)�� 6Xi=1 12(1� R2i ) 0�(Yi;AC � �AC)2� 2 + �2i;AC � 2Ri(Yi;AC � �AC)(Yi;BC � �BC)q� 2 + �2i;ACq� 2 + �2i;BC + (Yi;BC � �BC)2� 2 + �2i;BC 1A ;where Ri = �� 2 + �2iCq� 2 + �2i;ACq� 2 + �2i;BC :The �(�2i1=�2i1) is obtained from the fun
tion p(Zi1 > 0j(Yi;AC; Yi;BC)) where �2i1 and �22i1are given in (6.7) and (6.8) respe
tively. The �(a1 + b1='i) is derived from p(Zi1 > 0j'i).The parameter Ri is the 
orrelation between Yi;AC and Yi;BC . Its numerator �� 2+�2i;C is the
ovarian
e of Yi;AC and Yi;BC ; the �rst term (�� 2) is the 
ovarian
e of Æi;AC and Æi;BC , andthe se
ond (�2iC) is the 
ovarian
e of the random sampling errors from both models. In thedenominator of Ri, the � 2 + �2i;AC and � 2 + �2i;BC are the varian
es of the models Yi;AC andYi;BC respe
tively. The �2i;AC , �2i;BC and �2iC are repla
ed by (6.11).

100



Chapter 6. Sensitivity analysis to bivariate normal approximation modelSimilarly, we 
an 
al
ulate the log-likelihood for studies in G4, whi
h islG4 = Xi2G4 log p(Yi;BCjZi2 > 0);= Xi2G4 (log p(Zi2 > 0jYi;BC) + log p(Yi;BC)� p(Zi2 > 0jsi;BC)) :The formulae p(Yi;BC jZi2 > 0) and p(Zi2 > 0jYi;BC) 
an be expressed in the same wayas Theorems 6.7.2 and 6.7.1 respe
tively. The p(Yi;BC) is a density fun
tion of normaldistribution. Therefore, the log-likelihood lG4 islG4 = Xi2G4 12 log(� 2 + �2i;BC)� (Yi;BC � �BC)22(� 2 + �2i;BC) � log�(a2 + b2=si;BC) + log(�2i2=�2i2)! ;where �2i2 and �2i2 are E(Zi2jYi;BC) and V ar(Zi2jYi;BC) respe
tively, given by�2i2 = a2 + b2si;BC + %3 (Yi;BC � �BC)(� 2 + �2i;BC)1=2 ;�2i2 = (1� %23)1=2:Also, the �2i;BC in lG4 is repla
ed by �2i;BC = s2i;BC(1 + d2i2%23) whered2i2 = ��a2 + b2si;BC��a2 + b2si;BC + ��a2 + b2si;BC�� :From the log-likelihood fun
tions lG1 and lG4, the parameters (a1; b1) and (a2; b2) are notestimable be
ause we do not know how many unpublished studies, 
omparing treatments A,B and C and treatments B and C, may have been 
arried out. Therefore, these parameterswill be treated as free parameters in the sensitivity analysis. If the pairs (a1; b1) and (a2; b2)are given then the MLE for � 
an be estimated by maximizing the log-likelihood fun
tiondire
tly.It would be of interest to test the overall means of the treatment e�e
t. For example, to test101



Chapter 6. Sensitivity analysis to bivariate normal approximation modelthe hypothesis H0 : �AC = 0 and H1 : �AC 6= 0 , we 
an use the following likelihood ratiostatisti
: 2�l(b�)� l(b��AC=0)� � �21 under H0; (6.14)where b� is the MLE of � and b��AC=0 is the MLE of � with restri
tion �AC = 0. Thehypothesis test for H0 : �BC = 0 
an be 
onsidered in the same way.6.4 Goodness of �tIn this se
tion, we suppose that the pairs (a1; b1) and (a2; b2) are given in the sele
tion models(6.3) and (6.4) or the log-likelihood fun
tion (6.12). We will explain how to infer these pairsin the next se
tion. From the pro�le of the log-likelihood fun
tion in the previous se
tion,if a set of spe
i�
 parameters (a1; b1; a2; b2) is a possible set for the sele
tion models (6.3)and (6.4), then we need to 
he
k that the resulting models (
ombined models) from thesesele
tion models give reasonable �ts to the data in funnel plots. For a study in G1, if asele
tion model with a spe
i�
 pair (a1; b1) is used, the mean of sele
ted studies is given by(6.9). If another pair (a�1; b�1) is used, the di�eren
e of the means by sele
tion model withthese two pairs is given byE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a�1; b�11CA� E0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a1; b11CA� 
� +0B� %1%2 1CA (�(a�1)� �(a1))0B� si;ACsi;BC 1CA ; (6.15)where 
� is 
onstant (see the proof of (6.15) in Theorem 6.7.5) when (a�1; b�1) is 
lose to (a1; b1).The equation (6.15) is a linear equation in terms of si;AC and si;BC . This suggests that lo
aldepartures of the model in terms of (a1; b1) will be similar to adding the linear term �1 insi;AC and �2 in si;BC to the expe
ted value of (Yi;AC ; Yi;BC). Therefore, testing that if there102



Chapter 6. Sensitivity analysis to bivariate normal approximation modelis another pair (a�1; b�1) better than (a1; b1) is equivalent to test H0 : �1 = 0 and �2 = 0 in thefollowing models. Yi;AC = Æi;AC + �1si;AC + �i;AC�i;AC ;Yi;BC = Æi;BC + �2si;BC + �i;BC�i;BC ;Zi1 = a1 + b1'i + �i:In a similar way to the sele
tion model (6.4), the di�eren
e of the means with these twopairs (a2; b2) and (a�2; b�2) isE(Yi;BC jZi2 > 0; si;BC ; a�2; b�2)� E(Yi;BC jZi2 > 0; si;BC; a2; b2)� 
� + %3(�(a�2)� �(a2))si;BC : (6.16)The proof of (6.16) 
an be obtained in a similar way as Theorem 6.7.5. Similar idea to(6.15), we add the term �3 in si;BC to the expe
ted value of Yi;BC . The re�tted populationmodel (6.2) and its sele
tion model 
an be written asYi;BC = Æi;BC + �3si;BC + �i;BC�i;BC ;Zi2 = a2 + b2si;BC + �i:The purpose here is to 
onsider the �t tests for the 
ombined models (Yi;AC ; Yi;BCjZi1 > 0)and (Yi;BCjZi2 > 0) at the same time in the meta-analysis. To test whether or not the set(a�1; b�1; a�2; b�2) is better than (a1; b1; a2; b2), we use the likelihood ratio testH0 : � = 0 versus H1 : � 6= 0;where � is the ve
tor (�1; �2; �3). If the null hypothesis is a

epted it means that the se-le
tion models (6.3) and (6.4) have satisfa
torily explained the linear relationships between103



Chapter 6. Sensitivity analysis to bivariate normal approximation model(Yi;AC; Yi;BC) and (si;AC ; si;BC), and between Yi;BC and si;BC . The other meaning is that theset (a1; b1; a2; b2) makes the funnel plots of 
ombined models �t well.To test a goodness-of-�t for any given (a1; b1; a2; b2), the log-likelihood fun
tion (6.12) 
an beextended by adding the term �1si;AC to �AC and the term �2si;BC to �BC in the log-likelihoodfun
tion lG1 , and adding the term �3si;BC to �BC in the log-likelihood fun
tion lG4 . Thusl�(�;�) = l�G1(�;�) + lG2(�) + lG3(�) + l�G4(�;�); (6.17)where lG2(�) and lG3(�) are the same as given in Chapter 3. The log-likelihood l�G1(�;�) isgiven by6Xi=1 ��12 log((�2 + �2i;AC)(�2 + �2i;BC)(1�R2i ) + log�(��2i1=��2i1)� log�(a1 + b1='i)�� 6Xi=1 12(1�R2i ) 0�(Yi;AC � �AC � �1si;AC)2�2 + �2i;AC � 2Ri(Yi;AC � �AC � �1si;AC)(Yi;BC � �BC � �2si;BC)q�2 + �2i;ACq�2 + �2i;BC 1A+ 6Xi=1 12(1�R2i )  (Yi;BC � �BC � �2si;AC)2�2 + �2i;BC ! :Note that ��2i1 and ��2i1 are similar as de�ned before but they are added the term �1si;AC to�AC and the term �2si;BC to �BC . The log-likelihood l�G4(�;�) 
an be 
al
ulated similarly.Then, the likelihood ratio statisti
 for the null hypothesis H0 : � = 0 is2�l�(b�; b�)� l�(b��=0;� = 0)� � �23 under H0; (6.18)where (b�; b�) is MLEs by maximizing (6.17) while (b��=0;� = 0) is the MLEs from (6.17)with restri
tion � = 0.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.5 Sensitivity analysisThe idea of a sensitivity analysis is to use the sele
tion models (6.3) and (6.4) to the popula-tion models (6.1) and (6.2) respe
tively by allowing di�erent amounts of sele
tion probabilityin the 
ombined models (Yi;AC; Yi;BC)jZi1 > 0 and (Yi;BC)jZi2 > 0, and investigate how sensi-tive the main interest parameters are 
hanged when 
ompared to the results of the standardmodel (without sele
tivity). The main parameters of interest in our meta-analysis are �ACand �BC , whi
h are the overall mean e�e
ts from the treatment e�e
ts Æi;AC and Æi;BC re-spe
tively. The pro
edure of sensitivity analysis is given as follows� Step 1Determine the possible ranges of (a1; b1) and (a2; b2) for the sele
tion models (6.3) and(6.4) by using the marginal sele
tion probabilities p(Zi1 > 0j'i) and p(Zi2 > 0jsi;BC)respe
tively.� Step 2For ea
h 
ombination of (a1; b1; a2; b2), we estimate d�AC and d�BC by maximizing (6.17)and use the goodness-of-�t test to test how the meta-analysis model with sele
tionmodels �t in funnel plots. P-value will be 
al
ulated for ea
h test.� Step 3We 
ondu
t a sensitivity analysis based on p-value of the goodness-of-�t test given instep 2 and other quantities. For example, the overall estimates d�AC and d�BC obtainingfrom the 
ombined models with p-value < 0:05 should be dis
arded. We will dis
ussthe details for ea
h step in the following subse
tions.6.5.1 The possible range of (a1; b1) and (a2; b2) (Step 1)As mentioned earlier, the parameters (a1; b1) and (a2; b2) 
annot be estimated in the usualway; they need to be given in the log-likelihood fun
tion. In this se
tion, we shall identifyranges of (a1; b1) and (a2; b2) whi
h 
over all reasonable possibilities for the sele
tion models105



Chapter 6. Sensitivity analysis to bivariate normal approximation model(6.3) and (6.4) respe
tively. We use the sele
tion model forG1 in the W1 data to demonstratehow to 
hoose su
h a range. Sin
e the sele
tion probabilityp(Zi1 > 0j'i; a1; b1) = �(a1 + b1='i)is a de
reasing fun
tion of 'i, we obtainPmin(sele
tion) = p(Zi1 > 0j'max; a1; b1) and Pmax(sele
tion) = p(Zi1 > 0j'min; a1; b1);(6.19)where 'max and 'min are the maximum and minimum values of f'i; i = 1; : : : ; 6g. Thus, thesele
tion probability p(Zi1 > 0j'i; a1; b1) 
an be written asPmin(sele
tion) � p(Zi1 > 0j'i; a1; b1) � Pmax(sele
tion): (6.20)If we take a grid in the following area0:01 � Pmin(sele
tion) � Pmax(sele
tion) � 0:99: (6.21)This should 
over all reasonable possibilities of sele
tion. Ea
h pair of (Pmin; Pmax) is 
orre-sponding to a pair of (a1; b1). For example, if (Pmin; Pmax) = (0:7; 0:8) , we havePmin = �(a1 + b1='max) = 0:7 and Pmax = �(a1 + b1='min) = 0:8:For the W1 data, the smallest and largest values of ' are 0.16718 and 0.97771 respe
tivelythus the pair (a1; b1) is (0.4589681, 0.06397397)(as shown on row 2 of Table 6.1).So the �rst step of sensitivity analysis is to take a grid in the area (6.21) and then transferthem to a set of pairs (a1; b1). The range of (a2; b2) 
an be 
hosen similarly.
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelIn the following se
tions, we will report the detailed results of the following six typi
al pairsin the area (6.21):(0.8,0.7), (0.8,0.5),(0.7,0.4),(0.6,0.3),(0.4,0.1) and (0.2,0.01).For these pairs, the related (a1; b1) for G1 and (a2; b2) for G4 in the W1 data are given inTables (6.1) and (6.2) respe
tively. The �rst row in the table is 
orresponding to the modelwithout assuming sele
tion bias.Table 6.1: The pairs (a1; b1) for the sele
tion model (6.3)Sele
tion probability pairs a1 b1(1.0,1.0) 6.0 0.0(0.80,0.70) 0.4589681 0.06397397(0.80,0.50) -0.1735993 0.16972995(0.70,0.40) -0.4137713 0.15684854(0.60,0.30) -0.6848247 0.15684854(0.40,0.10) -1.4936369 0.20735823(0.20,0.01) -2.6325990 0.29942516Table 6.2: The pair of (a2; b2) for the sele
tion model (6.4)Sele
tion probability pairs a2 b2(1.0,1.0) 6.0 0.0(0.80,0.70) 0.33930785 0.1358371(0.80,0.50) -0.49107105 0.3603908(0.70,0.40) -0.70714903 0.3330395(0.60,0.30) -0.97820244 0.3330395(0.40,0.10) -1.88149062 0.4402876(0.20,0.01) -3.19265952 0.6357751From Table 6.1, we 
an interpret a sele
tion from the population model (6.1). The pair(a1; b1) = (0:4589681; 0:06397397) (row 2 of Table 6.1) is 
al
ulated from the sele
tion prob-ability pair (0:80; 0:70). This means that the marginal sele
tion probability take 80% and70% for the largest observed studies (smallest standard errors) and the smallest observedstudies (largest standard errors) respe
tively in the population model (6.1). Also 80% of thelargest studies will be sele
ted but 70% of the smallest studies will be sele
ted. Other pairs
an be interpreted in the same way. 107



Chapter 6. Sensitivity analysis to bivariate normal approximation model6.5.2 Estimation and goodness-of-�t test (Step 2)In the sensitivity analysis, we 
onsider the use of the pairs (a1; b1) and (a2; b2) together tosele
t the studies from the population models (6.1) and (6.2) respe
tively. Ea
h 
ombinationof (a1; b1; a2; b2) is 
orresponding to a parti
ular sele
tion model. The se
ond step in oursensitivity analysis is to 
al
ulate the relative statisti
al quantities (e.g. the p-value ofgoodness-of-�t test) to judge if the underlying model is a reasonable 
hoi
e. To do so, thefollowing quantities are 
al
ulated for ea
h 
ombination of (a1; b1; a2; b2) for the W1 data.1. d�AC ;2. p-value for testing H0 : �AC = 0;3. lower limit of the 95% 
on�den
e interval for �AC ;4. upper limit of the 95% 
on�den
e interval for �AC;5. Pmax(sele
tion) for the sele
tion model (6.3);6. Pmin(sele
tion) for the sele
tion model (6.3);7. estimated number of sele
ted and unsele
ted studies given forG1 byPi fp(Zi1 > 0j'i)g;8. d�BC ;9. p-value for testing H0 : �BC = 0;10. lower limit of the 95% 
on�den
e interval for �BC ;11. upper limit of the 95% 
on�den
e interval for �BC ;12. Pmax(sele
tion) for the sele
tion model (6.4);13. Pmin(sele
tion) for the sele
tion model (6.4);14. estimated number of sele
ted and unsele
ted studies given forG4 byPi fp(Zi2 > 0jsi;BC)g ;108



Chapter 6. Sensitivity analysis to bivariate normal approximation model15. p-value for the �t for the funnel plot 
orresponding to the null hypothesis H0 : � = 0.The 7th and 14th quantities present the overall severities of the sele
tion models (6.3) and(6.4) respe
tively. The 15th quantity gives the p-value of goodness-of-�t test dis
ussed inSe
tion 6.4. For the W1 data, we listed the detailed results for seven typi
al 
ombinationsin Table 6.3. The quantities in ea
h row of the table are 
al
ulated from the 
ombination(a1; b1; a2; b2) 
orresponding to the same row in Tables 6.1 and 6.2. The �rst row representsthe empiri
al log-odds ratio model without assuming sele
tion bias. The 
on
lusions forTable 6.3 are as follows.Table 6.3: The W1 data with sele
tion model: summary of outputs[; 1℄ [; 2℄ [; 3℄ [; 4℄ [; 5℄ [; 6℄ [; 7℄ [; 8℄[1; ℄ 0.5689296 1.7901e-06 0.2386970 0.8991622 1.0 1.00 6 0.6770754[2; ℄ 0.5438695 9.0884e-06 0.5311785 0.5565605 0.8 0.70 8 0.5802389[3; ℄ 0.5203228 1.8689e-05 0.4642864 0.5763592 0.8 0.50 9 0.5270842[4; ℄ 0.5029442 3.5987e-05 0.4417334 0.5641550 0.7 0.40 12 0.4703732[5; ℄ 0.4840191 6.3934e-05 0.3825303 0.5855079 0.6 0.30 15 0.4085832[6; ℄ 0.4446604 2.1316e-04 0.4196116 0.4697092 0.4 0.10 37 0.2726371[7; ℄ 0.4134910 3.9836e-04 0.3018102 0.5251718 0.2 0.01 264 0.1496556[; 9℄ [; 10℄ [; 11℄ [; 12℄ [; 13℄ [; 14℄ [; 15℄[1; ℄ 7.8409e-07 0.294571394 1.0595794 1.0 1.00 7 0.02812794[2; ℄ 4.5603e-05 0.477201709 0.6832761 0.8 0.70 9 0.07719169[3; ℄ 1.9897e-04 0.472615769 0.5815526 0.8 0.50 11 0.19807872[4; ℄ 8.4598e-04 0.276823211 0.6639232 0.7 0.40 13 0.32012129[5; ℄ 3.4631e-03 0.318677969 0.4984884 0.6 0.30 17 0.54505213[6; ℄ 3.3151e-02 0.183261054 0.3620131 0.4 0.10 42 0.93498257[7; ℄ 3.0103e-01 -0.004106355 0.3034176 0.2 0.01 292 0.55372482
(i). The estimates of d�AC and d�BC 
orresponding to di�erent amounts of sele
iton bias arepresented in 
olumns 1 and 8 respe
tively. By using the asymptoti
 varian
e-
ovarian
ematrix in Chapter 3, their standard errors from ea
h row of d�AC and d�BC areSD(d�AC) = f0:16848; 0:00647; 0:02859; 0:03123; 0:05178; 0:01278; 0:05698g;109



Chapter 6. Sensitivity analysis to bivariate normal approximation modelSD(d�BC) = f0:19515; 0:05257; 0:02779; 0:09875; 0:04587; 0:0456; 0:07845g:The lower and upper limits of the 95% 
on�den
e intervals for d�AC and d�BC are givenin 
olumns 3 and 4, and 
olumns 10 and 11 respe
tively.(ii). The inferen
es of standard model are presented in the �rst row of the table. Thed�AC and d�BC of the standard models are 0.5689296 and 0.677075 respe
tively. Thetest for the presen
e of sele
tion bias is obtained from the likelihood test for the nullhypothesis H0 : � = 0. The p-value 0.02812794 in the �rst row 
on�rms that there isstrong eviden
e to reje
t H0, i.e, there is sele
tion bias in G1 and G4. The p-value of thegoodness-of-�t test for the se
ond row (0.077191) is 
lose to 0.05 . This is the eviden
ethat d�AC = 0:5689296 and 0.5438695, and that d�BC = 0:677075 and 0.5802389 areoverestimated.(iii). To 
onsider the number of unsele
ted studies for G1 and G4 (
olumns 7 and 14), rows 2- 7 show that the numbers of unsele
ted studies (or the study populations of treatmentsA vs B vs C and B vs C) in
rease while the estimates of d�AC and d�BC (
olumns 1 and8) de
rease gradually when reading downwards. However, the extreme number givenin row 7 indi
ates that the underline model is not a

eptable.(iv). The p-values of the null hypothesis H0 : d�AC = 0 (
olumn 2) are signi�
ant on allrows while the p-value at row 7 (
olumn 9) of the null hypothesis H0 : d�BC = 0 is notsigni�
ant.(v). To analyze a goodness-of-�t test for the meta-analysis, we 
onsider the p-value ofH0 : � = 0 (
olumn 15). The p-values from rows 3 - 7 give good �ts for the funnel plotsfor the models (Yi;AC; Yi;BC jZi1 > 0) and (Yi;BC jZi2 > 0) while the others in
luding thestandard estimates are overestimates.(vi). Overall, the models 
orresponding to row 1,2 and 7 are not a

eptable. The othersare plausible. The �ts of funnel plot for G1 given by di�erent values of (a1; b1; a2; b2)110



Chapter 6. Sensitivity analysis to bivariate normal approximation model
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Figure 6.2: Funnel plot: Yi;AC against 'i for G1- the solid line represents the estimatewithout sele
tivity d�AC = 0:5689296; the dashed lines represent the �tted values forgiven (a1; b1; a2; b2) whi
h (a1; b1; a2; b2;d�AC) are equal to (0.458,0.063,0.339,0.135, 0.54),(-0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.50).
(rows 2, 3 and 4 from Tables 6.1 and 6.2) are presented by the dashed lines in Figures6.2 and 6.3 respe
tively. These 
urves are 
al
ulated from the equation (6.9) (meanfor sele
ted studies). As des
ribed in Se
tion 6.2.3, note that the smaller number ofstudies of population model (6.1) (
olumn 7) gives larger means as shown in 
olumns7. Two values of (a1; b1; a2; b2) obtained from the sele
tion probability pairs (0:80; 0:50)(row 3 in Tables 6.1 and 6.2) and (0:70; 0:40) (row 4 in Tables 6.1 and 6.2) give good�ts while the �rst one (the �rst dashed line, near the solid line) is una

eptable.Similarly, the �t of funnel plot for G4 given in Figure 6.4 is evaluated from d�BC +%3�i;BC�(a2 + b2=si;BC). The �t for G4 in Figure 6.4 gives similar results as for G1.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model
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Figure 6.3: Funnel plot: Yi;AC against 'i for G1- the solid line represents the estimatewithout sele
tivity d�BC = 0:6770754; the dashed lines represent the �tted values forgiven (a1; b1; a2; b2), whi
h (a1; b1; a2; b2;d�AC) are equal to (0.458,0.063,0.339,0.135, 0.58),(-0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.47).
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Figure 6.4: Funnel plot: Yi;BC against si;BC for G4- the solid line represents the esti-mate without sele
tivity d�BC = 0:6770754; the dashed lines represent the �tted values forgiven (a1; b1; a2; b2), whi
h (a1; b1; a2; b2;d�BC) are equal to (0.458,0.063,0.339,0.135, 0.58),(-0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.47).112



Chapter 6. Sensitivity analysis to bivariate normal approximation model6.5.3 Sensitivity analysis (Step 3)The idea of sensitivity analysis is to 
al
ulate all the statisti
al quantities for any 
ombi-nations of (a1; b1; a2; b2) transformed from a grid in (6.21) for G1 and a similar grid for G4.Then, we 
an plot the estimates for example d�AC against the p-value of the goodness-of-�ttest. All the estimates with p-value less than a signi�
ant level (say 0.05) 
an be dis
arded.The estimates 
orresponding to model with p-value around 0.5 
an be treated as the mostplausible estimates. Some other quantities 
an also be used to �nd plausible estimates.For the W1 data and all 
ombinations of sele
tion probability pairs presented in Tables 6.1and 6.2, the plots of d�AC against p-value of H0 : � = 0 and d�BC against p-value of H0 : � = 0are given in Figures 6.5 and 6.6 respe
tively. The plots indi
ate that the d�AC and d�BC 
anbe anything less than 0.55 and 0.60 respe
tively. The overall d�AC and d�BC should 
ome fromthe models with p-value greater than 0.05 and plausible overall estimates should be the onesfrom the models with p-value around 0.5. Therefore the plausible estimates for d�AC andd�BC should be around 0.47 and 0.40 respe
tively.Bear in mind that we put a negative sign for all the empiri
al log-odds ratios in this 
hapter.That means that the overall log-odds ratio having reo

lusion for treatment A 
omparing tothe 
ontrol group should be around -0.47 (OR = 0.625, i.e redu
ed the rates of reo

lusion37%). The estimate from the standard model (row 1 of Table 6.3) is -0.5689296 (OR =0.566, redu
ed the rate of reo

lusion by over 40%), whi
h is overestimated.Comparing treatment B and the 
ontrol group, the overall log-odds ratio is around -0.40 (OR= 0.67, redu
ed the rate of reo

lusion 33%), while the model without assuming sele
tionbias gives the estimate of �BC -0.677075 (OR = 0.50, redu
ed the rate of reo

lusion 50%),whi
h is 
learly overestimated.
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Figure 6.5: The W1 data: d�AC against the p-value of H0 : � = 0.
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Figure 6.6: The W1 data: d�BC against the p-value of H0 : � = 0.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.6 Simulation studyThis se
tion aims to examine a sensitivity analysis of the bias from the generated three-armdata. The steps of the sensitivity analysis with the generated data are as follows.1. The population dataWe generate the three-arm data with 24 studies to represent the population data oftreatment A versus B versus C. Note that the simulation model is from the di�erent-trial e�e
ts and the treatment e�e
ts Æi;AC � N(0:90; 0:102) and Æi;BC � N(0:60; 0:102).The 
orrelation 
oeÆ
ient between both treatment e�e
ts is assumed to be zero. Thisimplies that the 
ovarian
e between both treatment e�e
ts is zero. The main parame-ters �AC and �BC obtained from the generated data are 0.96 and 0.62 respe
tively.2. Make the sele
tion biasWe shall sele
t ea
h study by the sele
tion probability for a typi
al study given in(6.6). The parameters %1 and %2 are sele
ted from the pair (0:80; 0:80). We 
hoose thevalues of (Pmax(sele
tion); Pmin(sele
tion)) as (0.90,0.10), (0.80,0.20) and (0.60,0.30)then determine the values of (a1; b1) for the sele
tion probability (6.6).The requirement of sele
tion for a study from the population model is that largerstudies are likely to be sele
ted than smaller studies. Let Pi be a probability of thepopulation data being sele
ted. The probability of sele
tion for the ith study isPi = p(Zi1 > 0j(Yi;AC; Yi;BC)) = ���2i1�2i1� ; (6.22)where �2i1 and �22i1 are the same as (6.7) and (6.8). Let Ui be a random numbergenerated from an uniform distribution U(0; 1). The ith study from the populationdata in (i) will be sele
ted if Pi is greater than Ui.
115



Chapter 6. Sensitivity analysis to bivariate normal approximation modelIt is 
lear that the above steps would generate a set of studies with sele
tion bias. We �rst
al
ulated the MLEs for �AC and �BC by using the model without assuming sele
tion bias.The results are given in Table 6.4. The p-value in the table is the one for goodness-of-�ttest with H0 : �1 = �2 = 0. The p-value 0.06705 of the model (the last row of Table 6.4)shows a good �t for funnel plots while the other p-values are signi�
ant at signi�
an
e level0.5. The funnel plots for Yi;AC against si;AC and Yi;BC against si;BC 
orresponding to the�rst two models in Table 6.4 are given in Figures 6.7(a)-(b) and 6.8 (a)-(b). All funnel plotsshow signs of sele
tion bias, i.e. some studies may be unsele
ted. Thus, we shall use thesensitivity for the �rst two models in Table 6.4.The pro
edure of sensitivity analysis is as dis
ussed in the previous se
tion. To save spa
e,we present only the s
atter plots of �AC and �BC against their p-values of the goodness-of-�t test H0 : �1 = �2 = 0, given in Figures 6.7(
)-(d) and 6.8 (
)-(d). The dashed linein the plots represents the true mean e�e
t of the standard model (from the simulated data).Table 6.4: The simulated three-arm data: summary of outputs%1 %2 Pmax(sele
tion) Pmin(sele
tion) d�AC d�BC p-value number of(0.96) (0.62) sele
ted studies0.8 0.8 0.90 0.10 1.34348 1.02130 0.03032 110.80 0.20 1.34701 0.96602 0.04459 90.60 0.30 1.39359 1.06687 0.06705 11
(i). The estimates for �AC and �BC from the models without assuming sele
tion bias ( seeTable 6.4) are overestimated 
omparing to their true mean e�e
ts and presented in theblue and red solid 
ir
les in (
) and (d) of all �gures respe
tively.(ii). By using the sensitivity analysis to those models, we 
an 
on
lude as follows(a) The estimates for �AC and �BC with p-value less than 0.05 
an be dis
arded, thus116



Chapter 6. Sensitivity analysis to bivariate normal approximation modeld�AC and d�BC 
orresponding to the �rst two rows of Table 6.4 
an be anythingless than 1.33 and 0.98 , and 1.33 and 0.93 respe
tively.(b) As des
ribed in Se
tion 6.5, the most plausible estimates should 
ome from themodel with p-value around 0.5. Therefore, the plausible estimates for �AC and�BC should be around 1.26 and 0.62, and 1.0 and 0.64 respe
tively. Noti
e theseestimates are quite 
lose to the true mean e�e
ts of �AC and �BC (0.96 and 0.62).Based on the simulation study, sensitivity analysis approa
h used in this thesis 
an be usedto adjust the over-estimates whi
h the standard model usually give when there is sele
tionbias.6.7 Some theorems of mathemati
al 
onsequen
esIn this se
tion, we will prove the statisti
al theorems presented in Se
tion 6.2.3.Theorem 6.7.1 (The probability of sele
tion). Suppose that there is sele
tion bias in G1and the empiri
al log-odds ratio model (6.1) is assumed to be population model. The sele
tionmodel is de�ned as Zi1 = a1 + b1='i where a1 and b1 
ontrol the marginal probability andthe 'i is the average of the standard errors involved in the ith study. Then the probability ofbeing sele
ted for the ith study isp(Zi1 > 0j'i) = �(gi1); where gi1 = a1 + b1'i :Proof. The sele
tion model Zi1 is normally distributed with mean gi1 and varian
e 1: Zi1 �N(gi1; 1) where gi1 = a1 + b1='i. The marginal probability of the sele
tion model 
an bewritten as p(Zi1 > 0j'i) = p(Zi1 � gi1 > �gi1) = �(gi1):Theorem 6.7.2 (The probability of sele
tion for a typi
al study (Yi;AC; Yi;BC)). Fromthe population model (6.1) and the sele
tion model (6.3), the probability of being sele
ted for117
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Figure 6.7: The generated data with bias where %1 = %2 = 0:8 
orresponds to(Pmin(sele
tion); Pmax(sele
tion) =(0.90,0.10): (a) funnel plot of Yi;AC against si;AC; (b)funnel plot of Yi;BC against si;BC ; (
) d�AC against the p-value of H0 : �1 = �2 = 0; (d)d�BCagainst the p-value of H0 : �1 = �2 = 0
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Figure 6.8: The generated data with bias where %1 = %2 = 0:8 
orresponds to(Pmin(sele
tion); Pmax(sele
tion) =(0.80,0.20): (a) funnel plot of Yi;AC against si;AC; (b)funnel plot of Yi;BC against si;BC ; (
) d�AC against the p-value of H0 : �1 = �2 = 0; (d)d�BCagainst the p-value of H0 : �1 = �2 = 0
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Chapter 6. Sensitivity analysis to bivariate normal approximation modela typi
al study (Yi;AC; Yi;BC) isp(Zi1 > 0j(Yi;AC; Yi;BC)) = ���2i1�2i1� ;where �2i1 = E(Zi1j(Yi;AC; Yi;BC)) and �22i1 = V ar(Zi1j(Yi;AC; Yi;BC)) are given in (6.7) and(6.8) respe
tively.Proof. The sele
tion model Zi1 is normally distributed as N(gi1; 1) where gi1 = a1 + b1='i.The out
ome (Yi;AC ; Yi;BC) is normally distributed as presented in (3.38) of Chapter 3. Thevarian
e-
ovarian
e matrix of (3.38) is0B� v1i v12iv21i v2i 1CA = 0B� � 2AC + �2i;AC ��AC�BC + �2iC��AC�BC + �2iC � 2BC + �2i;BC 1CA : (6.23)The varian
e-
ovarian
e matrix between the sele
tion modelZi1 and the distribution (Yi;AC; Yi;BC)is Cov(Zi1; (Yi;AC; Yi;BC)) = 0B� w11 w12w21 w22 1CA ;where w11 = (1), w12 = �%1pv1i; %2pv2i� , w21 = (%1pv1i; %2pv2i)t and w22 is given in(6.23). From the property of 
onditional distribution, the 
onditional distribution of thesele
tion model (6.3) given (Yi;AC; Yi;BC) is a multivariate normal distribution with meanE(Zi1j(Yi;AC; Yi;BC) and varian
e V ar(Zi1j(Yi;AC; Yi;BC)). The E(Zi1j(Yi;AC; Yi;BC) 
an be
al
ulated as E(Zi1j(Yi;AC ; Yi;BC)) = gi1 +w12w�122 0B� Yi;AC � �ACYi;BC � �BC 1CA = �2i1: (6.24)Likewise, V ar(Zi1j(Yi;AC; Yi;BC)) is formulated asV ar(Zi1j(Yi;AC; Yi;BC)) = w11 �w12w�122 w21 = �22i1: (6.25)120



Chapter 6. Sensitivity analysis to bivariate normal approximation modelHen
e, the probability of being sele
ted for a typi
al study (Yi;AC; Yi;BC) may be written asp(Zi1 > 0; 'ij(Yi;AC; Yi;BC)) = p�Zi1j(Yi;AC ;Yi;BC)�E(Zi1j(Yi;AC ;Yi;BC)pV ar(Zi1j(Yi;AC ;Yi;BC)) > � E(Zi1j(Yi;AC ;Yi;BC))pV ar(Zi1j(Yi;AC ;Yi;BC))� ;= �� E(Zi1j(Yi;AC ;Yi;BC))pV ar(Zi1j(Yi;AC ;Yi;BC))� ;where E(Zi1j(Yi;AC; Yi;BC)) and V ar(Zi1j(Yi;AC; Yi;BC)) are given in (6.24) and (6.25) respe
-tively.Theorem 6.7.3 (The means for sele
ted studies). From the population model (6.1) andthe sele
tion model (6.3), the means for sele
ted studies areE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �AC�BC 1CA+0B� %1�i;AC%2�i;BC 1CA��a1 + b1'i� :Proof. The expe
ted value of the 
onditional distribution (Yi;AC; Yi;BC) given Zi1 is estimatedby E(Zi1j(Yi;AC; Yi;BC)) = 0B� �AC�BC 1CA +0B� %1�iAC%2�iBC 1CA (Zi1 � gi1): (6.26)
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelThe expe
ted value of the 
onditional distribution (Yi;AC; Yi;BC) given Zi1 > 0 isE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA= Z 1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC)jZi1 > 0; 'i)d(Yi;AC; Yi;BC);
= R10 R1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC); Zi1)d(Yi;AC; Yi;BC)dZi1R10 p(Zi1)dZi1 ;
= R10 R1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC)jZi1)p(Zi1)d(Yi;AC; Yi;BC)dZi1R10 p(Zi1)dZi1 ;
= R10 p(Zi1) R1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC)jZi1)d(Yi;AC; Yi;BC)dZi1R10 p(Zi1)dZi1 ;
= R10 p(Zi1)E((Yi;AC; Yi;BC)jZi1)dZi1R10 p(Zi1)dZi1 ; (6.27)
= 0B� �AC�BC 1CA+0B� %1�i;AC%2�i;BC 1CA��a1 + b1'i� :Inserting equation (6.26) in equation (6.27), results are obtained in the above formula.Theorem 6.7.4 (The varian
e of sele
ted studies). From the population model (6.1)and the sele
tion model (6.3), the varian
e of sele
ted studies isV ar0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �2i;AC(1 + d2i1%21) �2iC�2iC �2i;BC(1 + d2i1%22) 1CA ;where d2i1 = �(gi1)(gi1 + �(gi1)): and gi1 = a1 + b1='i.122



Chapter 6. Sensitivity analysis to bivariate normal approximation modelProof. The varian
e from the above equation 
an be written as0B� V ar(Yi;AC jZi1 > 0; 'i) Cov(Yi;AC jZi1 > 0; Yi;BC jZi1 > 0)Cov(Yi;BC jZi1 > 0; Yi;AC jZi1 > 0) V ar(Yi;BC jZi1 > 0; 'i) 1CA : (6.28)We shall prove the entries on the diagonal �rst.1. The entry on the diagonal V ar(Yi;ACjZi1 > 0; 'i) 
an be written in the formV ar(Yi;ACjZi1 > 0; 'i) = E(Y 2i;ACjZi1 > 0; 'i)� (E(Yi;ACjZi1 > 0; 'i1))2 : (6.29)The last term of (6.29) is 
al
ulated as(E (Yi;ACjZi1 > 0; 'i))2 = (�AC + %1�i;AC�(gi1))2 ;= �2AC + 2�AC%�i;AC�(gi1) + %21�2i;AC(�(gi1))2: (6.30)The �rst term of equation (6.29) 
an 
al
ulateE �Y 2i;ACjZi1; 'i� = E (Yi;ACjZi1; 'i) + (E(Yi;ACjZi1; 'i))2 ; (6.31)= �2i;AC(1� %21) + (�AC + %1�i;AC(Zi1 � �BC))2:
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelThe �rst term of (6.29) is an integralE(Y 2i;ACjZi1 > 0; 'i)= Z 1�1 Y 2i;ACp(Yi;ACjZi1 > 0; 'i)dYi;AC;
= R1�1 Y 2i;AC R10 p(Yi;AC; Zi1)dZi1dYi;ACR10 p(Zi1; 'i)dZi1 ;
= R1�1 Y 2i;AC R10 p(Yi;ACjZi1)p(Zi1)dZi1dYi;ACR10 p(Zi1; 'i)dZi1 ;
= R10 p(Zi1) R1�1 Y 2i;ACp(Yi;ACjZi1)dYi;ACdZi1R10 p(Zi1; 'i)dZi1 ;
= R10 p(Zi1)E(Y 2i;ACjZi1)dZi1R10 p(Zi1; 'i)dZi1 ; (6.32)
= R10 p(Zi1)(�2i;AC(1� %21) + (�AC + %1�i;AC(Zi1 � �BC))2)dZi1R10 p(Zi1; 'i)dZi1 ;
= �2i;AC � %21 + �2AC + 2�AC%1�i;AC�(�BC) + %21�2i;AC(�BC�(�BC) + 1): (6.33)Using the results from (6.30) in (6.32), the equation (6.33) is obtained. Substitutingequations (6.30) and (6.33) into the �rst term and the se
ond term of (6.29) respe
tively
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelgives V ar(Yi;ACjZi1 > 0; 'i) = �2i;AC + %21�2i;AC�BC�(�BC) + %21�2i;AC(�(�BC))2;= �2i;AC(1 + d2i1%21);where d2i1 = �(gi1)(gi1 + �(gi1)): In similar way, we have V ar(Yi;BCjZi1 > 0; 'i) =�2i;BC(1 + d2i1%22):2. Considering the 
ovarian
e of V ar0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i11CA, the G1 has the treat-ment C as the baseline treatment thusCov(Yi;ACjZi1 > 0; Yi;BCjZi1 > 0) = Cov(Yi;BC jZi1 > 0; Yi;ACjZi1 > 0) = �2iC :Theorem 6.7.5 (The di�eren
e of means). From the population model (6.1) and thesele
tion model (6.3), we assume that there is another pair (a�1; b�1) for the sele
tion modelwhi
h is better than (a1; b1). The di�eren
e of the means by the sele
tion model (6.3) withthe two pairs (a1; b1) and (a�1; b�1) isE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a�1; b�11CA� E0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a1; b11CA� 
� +0B� %1%2 1CA (�(a�1)� �(a1))0B� si;ACsi;BC 1CA :where 
� is 
onstant where (a�1; b�1) is 
lose to (a1; b1).
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelProof. The above equation 
an be written asE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a�1; b�11CA� E0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a1; b11CA= 0B� �AC�BC 1CA+0B� %1�iAC%2�iBC 1CA�(a�1 + b�1='i)�0B� �AC�BC 1CA�0B� %1�iAC%2�iBC 1CA�(a1 + b1='i);� 
� +0B� %1siAC%2siBC 1CA�(a�1 + b�1='i)� �(a1 + b1='i): (6.34)By using Theorem 6.7.4, we obtain �2i;AC = s2i;AC=(1 + d2i1%21) and �2i;BC = s2i;BC=(1 + d2i1%22).We substitute �2i;AC and �2i;BC by s2i;AC and s2i;BC in the above equation. From Taylor seriesf(x+�) = f(x) +�xf 0(x) + �x22 f 00(x) + : : :By using the Teylor series, the fun
tions �(a�1 + b�1='i) and �(a1 + b1='i) in (6.34) are givenby �(a�1 + b�1='i) = �(a�1) + b�'i + � b�'i�2 �00(a�1)2 + : : :�(a1 + b1='i) = �(a1) + b'i + � b'i�2 �00(a1)2 + : : : :Hen
e, the equation (6.34) is approximated by
� +0B� %1%2 1CA�(a�1)� �(a1)0B� siACsiBC 1CA :
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.8 Dis
ussionAn important role of meta-analysis is to 
ombine information from di�erent studies to sum-marize an overall estimate of a treatment e�e
t. Studies with a greater e�e
t may be morelikely to be sele
ted or published than studies with a less statisti
ally signi�
ant e�e
t.Chapter 3 presented the empiri
al log-odds ratio model for the W1 data without 
onsideringthe problem of sele
tion in the meta-analysis. In this 
hapter, we employed the sensitivityanalysis using the sele
tion model to examine the sele
tion bias and 
orre
ted the resultsunder the 
ontrolled assumptions for the model. We regard the sele
tion model as a tool ofsensitivity analysis.The funnel plot was used to test a sele
tion bias in this thesis. For studies with the binaryout
omes, the standard error is the best measure of study size, while risk ratios or oddsratios should be used for the measure of treatment e�e
t. We plotted the empiri
al log-oddsratios against their standard errors for the funnel plot. From the funnel plot 6.1(d), thestudies missed at the bottom right-hand 
orner 
an be treated as non-ignorable missing datain meta-analysis, see e.g Little and Rubin (2002). Note that a funnel plot is a simple graph-i
al tool for the investigation of sele
tion bias in meta-analysis. It 
annot be 
laimed thatvisually interpreted asymmetry of a plot always re
e
ts sele
tion bias. For example, studiesof lower quality may exaggerate the estimate of the treatment e�e
ts. Sele
tion bias is onlyone of a number of possible 
auses of funnel plot asymmetry. Other sour
es of asymmetry infunnel plots may be true heterogeneity, data irregularities, artefa
t and 
han
e (Egger et al.,1987). These may give the low power of tests for the funnel plot asymmetry.The basi
 idea of the sele
tion model is that the probability of sele
tion depends on boththe empiri
al log-odds ratio and its standard error. Also the model is made under the re-quirement that larger studies are more likely to be sele
ted than smaller studies. Whenthe number of studies is small, two problems arise for the sele
tion model. There may be127



Chapter 6. Sensitivity analysis to bivariate normal approximation modelnumeri
al problems in obtaining stable estimates of the parameters. More importantly, thestandard errors of estimates will be large, perhaps so large as to make any spe
i�
 inferen
esimpossible or meaningless. In this 
ase, we need to use an exa
t logisti
 regression model asdis
ussed in Chapter 4. The related sele
tion model will be dis
ussed in the next 
hapter.In addition, the pairs (a1; b1) and (a2; b2) for the sele
tion models Zi1 and Zi2 
annot beestimated from the log-likelihood fun
tion in the usual way, be
ause we do not know thathow many unsele
ted studies are there in the population of treatment 
omparisons A vs B vsC and B and C. Thus, we 
al
ulate those pairs from the given probabilities obtaining fromthe largest studies and smallest studies in meta-analysis. These probabilities represent thedi�erent amounts of sele
tion bias for the models assuming the sele
tion bias. The funnelplot examines whether or not there is sele
tion bias in meta-analysis but 
annot tell thathow many of unsele
ted studies are. Therefore, the sensitivity analysis is needed.As dis
ussed in Chapter 3, the assumption of varian
e homogeneity applies to all the treat-ment e�e
ts, and the 
orrelation 
oeÆ
ients between treatment e�e
ts are 1/2. If bothdire
t and indire
t 
omparisons are in meta analysis and the number of indire
t 
omparisonstudies is suÆ
iently large then the 
orrelation 
oeÆ
ient between those treatment e�e
ts isestimable (Chootrakool and Shi, 2008). However it would make the model more 
ompli
atedin the sensitivity analysis.If more than three treatments are 
ompared in the meta-analysis, the sensitivity analysis 
anbe applied in the same way but ea
h group of treatment 
omparisons should have enoughinformation (studies) if we would like to add the sele
tion model in those studies (for bias-suspe
ted model).
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Chapter 7
Sensitivity analysis to logisti
regression model
7.1 Introdu
tionWe have des
ribed how to inspe
t sele
tion bias by a funnel plot and how to address thesele
tion bias by using of a sensitivity analysis for normal approximation model in Chapter6. However, if the sample size for ea
h study is very small, an exa
t binomial model shouldbe used. The multi-arm trials model based on the binomial approa
h for the binary datawas presented in Chapter 4. In this 
hapter, we extend the sensitivity analysis to the exa
tlogisti
 regression model when there is sele
tion bias, i.e. studies with statisti
ally signi�
antresults might have been sele
ted more predominantly. Regarding to dis
ussion in Chapter5, the 
onditional likelihood estimates for the logisti
 regression model usually gives a bet-ter result, therefore a 
onditional method will be applied for the logisti
 regression model inthis 
hapter. We will use a simulated data to perform the sensitivity analysis in this 
hapter.The simulated data is given in the �rst se
tion. The rest of this 
hapter is arranged as follows.The multi-arm trials model for the exa
t 
onditional distribution is given in Se
tion 7.3. We129



Chapter 7. Sensitivity analysis to logisti
 regression modelpresent an inspe
tion of sele
tion bias for the data in Se
tion 7.4. Se
tion 7.5 performsthe 
onditional probability with sele
tion using some formulae from Chapter 6. The log-likelihood fun
tion of the model with sele
tion is produ
ed in Se
tion 7.6. Se
tion 7.7 and7.8 illustrate goodness of �t and sensitivity analysis respe
tively. Finally, the 
on
lusion andsome 
omments are given in Se
tion 7.9.7.2 Simulated dataIn this 
hapter, we will employ the following simulated data to illustrate how sensitivityanalysis is used to address the problem of sele
tion bias in meta-analysis with the logisti
regression model using 
onditional method. Essentially, the following steps of generating thedata and making the sele
tion bias are similar to the steps in Se
tion 6.6 from the previous
hapter. Those steps are1. The population dataTo generate the population data of treatment A versus B versus C, we generate three-arm data for 14 studies. We assume the di�erent-trial e�e
ts, and the treatmente�e
ts Æi;AC � N(0:40; 0:102) and Æi;BC � N(0:60; 0:102). Similar to Se
tion 6.6, the
ovarian
e between both treatment e�e
ts is assumed to be zero.2. Make the sele
tion biasThe parameters %1 and %2, and the sele
tion probabilities (Pmax(sele
tion); Pmin(sele
tion))are 0.5,0.5 and (0.90,0.30) respe
tively. We use these parameters in the sele
tion modelZi1 to determine the values of (a1; b1). Following the step 2 of Se
tion 6.6, we will obtainthe sele
ted studies.A group of sele
ted studies obtaining from the above steps is supposed to be biased andthe number of studies in the meta-analysis is now 9. From here, nine sele
ted studies areused in our meta-analysis and the treatment C is the 
ontrol group. We shall present the130



Chapter 7. Sensitivity analysis to logisti
 regression modelexa
t 
onditional distribution of logisti
 regression model for this meta-analysis in the nextse
tion.7.3 Multi-arm trials with the 
onditional probabilityA

ording to the sele
ted studies of three-arm 
omparisons in the previous se
tion, the riC ,riA and riB are binomially distributed as Bin(�iA; niA), Bin(�iB; niB) and Bin(�iC ; niC)respe
tively for i = 1; : : : ; 9. If niA, niB and niC are large and riA, riB or riC are not equalto niA, niB or niC or zero. From the dis
ussion in Se
tion 3.3 of Chapter 3, we 
an de�nenormal approximation model (see dis
ussion in Chapter 3). For example, the empiri
al log-odds ratios between (riA; niA) and (riC ; niC), and (riB; niB) and (riC ; niC) are respe
tivelyYi;AC = log� riA + 0:5niA � riA + 0:5 niC � riC + 0:5riC + 0:5 � ; (7.1)Yi;BC = log� riB + 0:5niB � riB + 0:5 niC � riC + 0:5riC + 0:5 � : (7.2)The logisti
 regression models for our meta-analysis 
an be de�ned aslog� �iC1� �iC� = �i; (7.3)log� �ij1� �ij� = �i + Æi;Cj; j 2 J(i); (7.4)where J(i) = fA;Bg. We allow the heterogeneity in the model. Both treatment e�e
tsÆi;AC and Æi;BC are thus assumed to be random. We assume that there is no asso
iationbetween two treatment e�e
ts then the 
ovarian
e between them is zero. Let ri be the ve
tor(riA; riB) and the fun
tion Ci represent riA+riB+riC = 
i. By using the 
onditional methodas illustrated in Chapter 4, the 
onditional probability ri given Ci for our meta-analysis is
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Chapter 7. Sensitivity analysis to logisti
 regression modelgiven byf(rijÆi;AC ; Æi;BC) = f(rijriA + riB + riC = 
i; Æi;AC ; Æi;BC);
= 0B� niAriA 1CA0B� niBriB 1CA0B� niCriC 1CA e(Æi;ACriA+Æi;BCriB )Pui0B� niC
i � ui1 � ui2 1CA0B� niAriA 1CA0B� niBriB 1CA e(Æi;ACui1+Æi;BCui2) ; (7.5)

where ui is the ve
tor (ui1; ui2) and is in the boundary ofmax(0; 
i � niC) � ui1 � min(
i; niA) and max(0; 
i � niB) � ui2 � min(
i; niB): (7.6)We use the homogeneity of varian
e for the model. Thus the heterogeneity parameters forthe treatment e�e
ts Æi;AC and Æi;BC are the same: � 2AC= � 2BC = � 2. As des
ribed in Chapter4, we integrate the 
onditional probability fun
tion f(rijÆi;AC; Æi;BC) with respe
t to Æi;ACand Æi;BC respe
tively. The probability f(ri) now involves two integrals and is given byf(ri) = Z Z f(rijÆi;AC; Æi;BC)�(Æi;AC ;�AC; �)�(Æi;BC ;�BC ; �)dÆi;ACdÆi;BC ;where �(Æi;AC ;�AC; �) and �(Æi;BC ;�BC ; �) are the probability density fun
tions of normaldistribution for Æi;AC and Æi;BC respe
tively. By applying Gaussian-Hermite approximation,the above probability is approximated asf(ri) � ��1 l1Xn1=1w(1)n1 l2Xn2=1w(2)n2 f(rijÆi;AC ; Æi;BC); (7.7)where f(rijÆi;AC; Æi;BC) is given in (7.5) and the sampling nodes are at Æi;AC = �AC +p2�dn1and Æi;BC = �BC +p2�dn2 for n1 = 1; : : : ; l1 and n2 = 1; : : : ; l2.
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Chapter 7. Sensitivity analysis to logisti
 regression model7.4 Dete
ting the sele
tion biasAs illustrated in Se
tion 6.1 of Chapter 6, the funnel plot was used to dete
t sele
tion biasfor the W1 data. The plot of the empiri
al log-odds ratios against their standard errors fromea
h pairwise-
omparison is 
onsidered for those groups (G1, G3 and G4). Sin
e this 
hapteraims to use the sensitivity analysis for the 
onditional probability model, the values for thesample size axis (standard errors) and means of the model 
annot be 
al
ulated in the usualway as used in Chapter 6.To dete
t sele
tion bias in this 
hapter, we will plot the empiri
al log-odds ratios on theverti
al axis and the estimated 
onditional standard errors on the horizontal axis, and usethe 
onditional mean instead of the 
onventional mean. As before, we 
onsider the funnelplot in ea
h pairwise-
omparison of meta-analysis, e.g by 
onsidering our three-arm simulateddata, the funnel plots are for treatment A versus C and B versus C . Here we need to estimatethe 
onditional varian
e and the 
onditional mean for the funnel plot. In probability theory,the 
onditional varian
e is the varian
e of a 
onditional probability distribution. Whilethe 
onditional mean (also known as 
onditional expe
ted value or 
onditional expe
tation)is the expe
ted value of a real random variable with respe
t to a 
onditional probabilitydistribution.7.4.1 Conditional varian
eTo 
al
ulate the 
onditional varian
e, let �2i;AC and �2i;BC be the 
onditional varian
es of Yi;ACgiven 
i, and Yi;BC given 
i respe
tively 
orresponding to the ith study, may be written as�2i;AC = V ar(Yi;ACj
i) and �2i;BC = V ar(Yi;BC j
i);Note that Yi;AC and Yi;BC are empiri
al log-odds ratios for treatments A versus C and Bversus C and de�ned in (7.1) and (7.2) respe
tively. The above 
onditional varian
es 
an be133
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tively by�2i;AC = E(Y 2i;ACj
i)� (E(Yi;ACj
i))2 and �2i;BC = E(Y 2i;BC j
i)� (E(Yi;BC j
i))2; (7.8)where E represents the expe
tation operator.7.4.2 Conditional meanFrom (7.8), the E(Yi;ACj
i) and E(Yi;BC j
i) are the 
onditional means of Yi;AC given 
i andYi;AC given 
i, respe
tively. They 
an be 
al
ulated asE(Yi;ACj
i) =XriA (Yi;AC:f(riAjÆi;AC)) and E(Yi;BC j
i) =XriB (Yi;BC:f(riBjÆi;BC)): (7.9)The riA and riB are treated as dis
rete random variables and play the important role forE(Yi;ACj
i) and E(Yi;BC j
i) respe
tivley. The 
onditional probability fun
tions f(riAjÆi;AC)and f(riBjÆi;BC) 
an be obtained from (7.5) and estimated in the same way as (7.7). Forexample, by using (7.5) , f(riAjÆi;AC) is given by
f(riAjÆi;AC) = 0B� niAriA 1CA0B� niCriC 1CA eÆi;ACriAPui10B� niC
i � ui1 1CA0B� niAriA 1CA eÆi;ACui1 ; (7.10)

where ui1 is given in (7.6). The above equation is approximated byf(riA) � ��1=2 lXn=1 wnf(riAjÆi;AC); (7.11)where the sampling nodes are at Æi;AC = �AC + p2�dn for n = 1; : : : ; l. Noti
e that thevalues of 
onditional means E(Yi;ACj
i) and E(Yi;BC j
i) depend on the ith study and are134
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onditioned on the fun
tion 
i; this will give the rough fun
tion of their funnel plots. From(7.8), the 
onditional means of Y 2i;AC given 
i and Y 2i;BC given 
i 
an be evaluated fromE(Y 2i;ACj
i) =XriA (Y 2i;AC :f(riAjÆi;AC)) and E(Y 2i;BCj
i) =XriB (Y 2i;BC :f(riBjÆi;BC)): (7.12)7.4.3 Funnel plotFrom our meta-analysis (9 studies), the funnel plots Yi;AC against �i;AC and Yi;BC against�i;BC are shown in Figures 7.1 and 7.2 respe
tively. The 
onditional means E(Yi;ACj
i) andE(Yi;BC j
i) are represented by the dashed line in both �gures. As mentioned earlier, noti
ethat the 
onditional mean in both �gures are not smooth fun
tions when plotted against the
onditional varian
e. Plot 7.1 indi
ates that smaller studies (larger �i;AC) give more positiveresults than larger studies (smaller �i;BC) and this plot has a trend. Funnel plot 7.2 showsa similar sign of sele
tion bias to Figure 7.1. The problem of sele
tion bias has arisen inthe meta-analysis. Therefore, we would assume here that there might be other small studies
omparing the treatments A, B and C, whi
h have been 
arried out but whi
h have not beensele
ted in the meta-analysis.7.4.4 Standard errorThe standard errors of Yi;AC and Yi;BC in (7.8) for logisti
 regression model depend onvalue of treatment e�e
ts. Now we shall 
al
ulate the standard error for the model withouttreatment e�e
t for the use later. Let n1i and n2i represent the summations niA + niC andniB+niC respe
tively. From the empiri
al log-odds ratios Yi;AC and Yi;BC , and the 
onditionalprobabilities f(riAjÆi;AC) and f(riBjÆi;BC), we obtain the following standard errors (see the
135
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Figure 7.1: The funnel plot:Yi;AC against vi;AC-the dashed lines represent the 
onditionalmean of Yi;AC given 
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 regression modeldetails in Shi and Copas, 2002)s�i;AC = pV ar(Yi;ACjÆi;AC = 0; 
i) = � n31i
i(n1i � 
i)niAniC�1=2 ; (7.13)s�i;BC = pV ar(Yi;BC jÆi;BC = 0; 
i) = � n32i
i(n2i � 
i)niBniC�1=2 : (7.14)7.5 Sele
tion biasAs seen from the pre
eding se
tion, there is sele
tion bias in our meta-analysis. We applythe idea of the use of sele
tion model from Chapter 6 in this se
tion. We shall demonstratehow we assume a population model and how a study from the model will be sele
ted. Theyare des
ribed as follows1. Population modelWe shall assume the logisti
 regression model with 
onditional probability (7.5) to bea population model for treatment A versus B versus C.2. Sele
tion eventA sele
tion of studies from the population model 
an be 
hosen to represent our meta-analysis. To illustrate this sele
tion, let S1 be the event that a study from the pop-ulation model will be sele
ted. This is under the expe
tation that larger studies aremore likely to be sele
ted than those smaller studies. Supposing that the event S1has o

urred then the population model with assuming S1 happened 
an be written asp(rijS1; 
i) (or 
alled the 
ombined model).The 
ombined model p(rijS1; 
i) 
an be derived asp(rijS1; 
i) = p(S1; rij
i)p(S1j
i) ;= p(rij
i)p(S1jri; 
i)p(S1j
i) ; (7.15)137



Chapter 7. Sensitivity analysis to logisti
 regression modelwhere p(rij
i) is the population model and given in (7.5) while p(S1jri; 
i) and p(S1j
i) are theprobability of sele
tion (S1 happened) for a typi
al study (ri) and the probability of sele
tion(S1 happened). We need to de�ne a sele
tion model and 
al
ulate these probabilities. Notethat the random treatment e�e
ts Æi;AC and Æi;BC are in
luded in those probabilities. Thefollowing details are for p(S1jri; 
i) and p(S1j
i) respe
tively.(i). The probability of sele
tion event happened for a typi
al studyLet q be the fun
tion of probability of a typi
al study as the ith study being sele
ted,de�ned by q(rijÆi;AC ; Æi;BC) = p(S1jri; 
i; Æi;AC ; Æi;BC): (7.16)We need to de�ne the above sele
tion probability. Now let us revise the sele
tion modelwe used in Chapter 6 for normal approximation model. The normal approximatonmodel and the sele
tion model Zi1 are given by8><>: Yi;AC = Æi;AC + s�i;AC��i;AC ;Yi;BC = Æi;BC + s�i;BC��i;BC ; (7.17)Zi1 = a1 + b1'�i + ��i ; (7.18)where s�i;AC and s�i;BC are the standard errors of Yi;AC and Yi;BC respe
tively. Thefun
tion '�i is the average of standard errors in the ith study, 
an be written as(s�i;AC + s�i;BC)=2. The random residuals (��i;AC ; ��i ) and (��i;BC ; ��i ) are bivariate nor-mal distributions with both means equal to zero and both varian
es equal to one.Their 
orrelations are
orr(��i;AC; ��i ) = %�1 and 
orr(��i;BC ; ��i ) = %�2:If %�1 and %�2 are zero then it shows that the riA; riB and riC from the meta-analysis(or the out
ome (Yi;AC; Yi;BC)) have no e�e
t on whether the study is sele
ted or not.138
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 regression modelThis will be the model without assuming sele
tion bias. On the other hand, if %�1 > 0and %�2 > 0 then the sele
ted studies are biased by the large values of Yi;AC and Yi;BC .Following the dis
ussion given in Chapter 6, we have the following formula:q(rijÆi;AC; Æi;BC) = ����2i1��2i1� ; (7.19)where � is the standard normal 
umulative distribution, and ��2i1 = E(Zi1j(Yi;AC; Yi;BC))and ��22i1 = V ar(Zi1j(Yi;AC; Yi;BC)) given in (6.7) and (6.8) respe
tively. For the logisti
regression models (7.3) and (7.4) with 
onditional approa
h (7.5), we will still adoptthe sele
tion probability but s�i;AC and s�i;BC here are repla
ed by (7.13) and (7.14).For simplifying the 
omputation, as assumed earlier, there is no asso
iation betweenthe treatment e�e
ts Æi;AC and Æi;BC .The sele
tion model de�ned as above is reasonable. A
tually, the only requirementfor sele
tion probability is that it 
an model the phenomena shown in Figures 7.1 and7.2, i.e. the large studies and the studies with positive results would tend to havelarger sele
tion probabilities than others. Sele
tion probability (7.19) would satisfythe requirement. As dis
ussed in Chapter 6, the parameters a1 and b1 are inestimableand whether the meta-analysis model with a sele
tion model �t to the data will be
he
ked by goodness-of-�t test and other statisti
al quantities in a sensitivity analysis.(ii). The marginal sele
tion probabilityTo estimate the probability of sele
tion p(S1j
i), let Qi1 be the marginal sele
tionprobability given Æi;AC and Æi;BC and derived asQi1(Æi;AC ; Æi;BC) = p(S1j
i; Æi;AC; Æi;BC);= Xui p(S1jri = ui; 
i; Æi;AC; Æi;BC)p(ri = uij
i; Æi;AC; Æi;BC);(7.20)139
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 regression modelwhere p(S1jri = ui; 
i; Æi;AC; Æi;BC) is the probability of sele
tion for a study in
ludingthree arms and given in (7.19), and p(ri = uij
i; Æi;AC ; Æi;BC) is the 
onditional proba-bility model of ri given 
i and given in (7.7). Note that the ve
tor ui is given in (7.6).Thus, we have Qi1(Æi;AC ; Æi;BC) =Xui q(uijÆi;AC; Æi;BC)f(uijÆi;AC ; Æi;BC): (7.21)Equation (7.21) in
ludes two random treatment e�e
ts. We shall integrate the marginalsele
tion probability Qi1(Æi;AC ; Æi;BC) with respe
t to treatment e�e
ts Æi;AC and Æi;BCrespe
tively. The overall marginal sele
tion probability isQi1 = Z Z Qi1(Æi;AC ; Æi;BC)�(Æi;AC ;�AC ; �2)�(Æi;BC ;�BC ; �2)dÆi;ACdÆi;BC ;= Z Z Xui f(uijÆi;AC ; Æi;BC)q(uijÆi;AC ; Æi;BC)�(Æi;AC)�(Æi;BC)dÆi;ACdÆi;BC ;(7.22)where �(Æi;AC) and �(Æi;BC) are the probability density fun
tions of the normal distri-butionsN(�AC ; � 2) andN(�BC ; � 2) respe
tively. Noti
e that the fun
tion f(uijÆi;AC ; Æi;BC)involves the random treatment e�e
ts so we need Guassian-Hermnite approximationto estimate in the usual way. After integrating, the Qi1 is an un
onditional probabilityand does not depend on the Æi;AC and Æi;BC . Note that the estimate from marginalsele
tion probabily Qi1 is 
lose to �(a1 + b1='i) (obtained from equations (7.17) and(7.18)) (see the dis
ussion from Shi and Copas, 2002).7.6 LikelihoodThe log-likelihood fun
tion of the 
onditional probability model with assuming sele
tionevent happened 
an be written asl(�) = 9Xi=1 log p(rijS1; 
i) = 9Xi=1 log�p(ri;S1j
i)p(S1j
i) � : (7.23)140



Chapter 7. Sensitivity analysis to logisti
 regression modelThe right-hand side of above equation is obtained from the probability property. The 
ol-le
tion of unknown parameters is� = f�AC; �BC ; �; %�1; %�2g : (7.24)We need to handle with two random treatment e�e
ts Æi;AC and Æi;BC in the log-likelihoodfun
tion l(�). The probability p(ri;S1j
i) thus 
omprises two integrations whi
h are withrespe
t to both treatment e�e
ts. While p(S1j
i) is marginal sele
tion probability given in(7.21) and involved integrations as givne in (7.22). Then, the right- hand side of l(�) 
an bederived as 9Xi=1 (log p(ri;S1j
i)� log p(S1j
i))= 9Xi=1 �logZ Z p(ri;S1j
i; Æi;AC; Æi;BC)�(Æi;AC)�(Æi;BC)dÆi;ACdÆi;BC � log(Qi1)� :By using equation (7.15) in the term p(ri;S1j
i; Æi;AC; Æi;BC), the log-likelihood fun
tion l(�)is 9Xi=1 �logZ Z f(rijÆi;AC ; Æi;BC)q(rijÆi;AC; Æi;BC)�(Æi;AC)�(Æi;BC)dÆi;ACdÆi;BC � log(Qi1)�(7.25)where f(rijÆi;AC ; Æi;BC) and q(rijÆi;AC ; Æi;BC) are given in the equations (7.5) and (7.19) re-spe
tively. The Qi1 in the last term is given in (7.22).7.7 Goodness of �tSuppose that the pair (a1; b1) is used in the sele
tion pro
ess. To test whether the set (a1; b1)is a possible pair in the 
onditional probability model p(rijS1; 
1) or not, we adopt the testbased on the goodness-of-�t test in Chapter 6. The null hypothesis for the test is H0 : � = 0where � is the ve
tor (�1; �2). We shall add the term �1s�i;AC to �AC and �2s�i;BC to �BC for141
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 regression modelthe treatment e�e
ts Æi;AC and Æi;BC . This 
an be set toÆ�i;AC � N(�AC + �1s�i;AC; � 2) and Æ�i;BC � N(�BC + �2s�i;BC ; � 2); (7.26)where s�i;AC and s�i;BC are estimated from (7.13) and (7.14) respe
tively. After that, thetreatment e�e
ts in (7.26) are applied to the log-likelihood fun
tion l�(�;�), given by9Xi=1 �log Z Z f(rijÆ�i;AC ; Æ�i;BC)q(rijÆ�i;AC ; Æ�i;BC)�(Æi;AC)�(Æi;BC )dÆi;ACdÆi;BC � log(Q�i1)� ; (7.27)where Q�i1 = Z Z Xui f(uijÆ�i;AC ; Æ�i;BC)q(uijÆ�i;AC ; Æ�i;BC)�(Æ�i;AC)�(Æ�i;BC)dÆi;ACdÆi;BC : (7.28)The likelihood ratio statisti
s for H0 : � = 0 is2�l�(b�; b�)� l�(b��=0;� = 0)� � �22 under H0; (7.29)where (b�; b�) is MLEs by maximizing the log-likelihood fun
tion (7.27) while (b��=0;� = 0)is the MLEs from (7.27) with restri
tion � = 0. The interpretation of test is similar asexplained in Chapter 6. If the null hypothesis is a

epted, it means that the pair (a1; b1) isa plausible 
hoi
e of the model p(rijS1; 
1) and makes the funnel plots �t well.7.8 Sensitivity analysisWe use the similar idea in Se
tion 6.5 to 
ondu
t a sensitivity analysis here. We allowthe 
onditional probability model p(rijS1; 
i) to have di�erent amounts of sele
tion biasdepending on the pair (a1; b1) in the sele
tion model p(S1jri; 
i) or p(S1j
i). The steps ofsensitivity analysis are given as follows.� Step 1: Determine the range of (a1; b1)142



Chapter 7. Sensitivity analysis to logisti
 regression modelWe use three typi
al pairs: (0.99,0.80), (0.80,0.50) and (0.60,0.30), in the area of0:01 � Pmin(sele
tion) � Pmax(sele
tion) � 0:99;where Pmin(sele
tion) and Pmax(sele
tion) are given in (6.19). By using three typi
alpairs to identify the pair (a1; b1), the pairs relating to the sele
tion probability pairare given in Table 7.1. The model without assuming S1 happened (standard model) isobtained by using the �rst pair of Table 7.1 in the model p(rijS1; 
i).Table 7.1: The pairs of (a1; b1) for the sele
tion model Zi1Sele
tion probability pairs a1 b1(1.0,1.0) 6.0 0.0(0.99,0.80) 0.3793294 0.4492381(0.80,0.50) -0.8844004 0.8594276(0.60,0.30) -1.3416807 0.7942026� Step 2: Estimation and goodness-of-�t testWe will use ea
h 
ombination (a1; b1) in Table 7.1 to 
al
ulate ea
h of the followingquantities.1. d�AC;2. p-value for testing H0 : �AC = 0;3. standard error of d�AC ;4. lower limit of the 95% 
on�den
e interval for �AC;5. upper limit of the 95% 
on�den
e interval for �AC ;6. d�BC ;7. p-value for testing H0 : �BC = 0;8. standard error of d�AC ;9. lower limit of the 95% 
on�den
e interval for �BC ;143
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 regression model10. upper limit of the 95% 
on�den
e interval for �BC ;11. Pmax(sele
tion) for the sele
tion model Zi1;12. Pmin(sele
tion) for the sele
tion model Zi1;13. estimated number of sele
ted and unsele
ted studies given byPi fp(Zi1 > 0j'i)g;14. p-value for the �t for the funnel plot 
orresponding to the null hypothesis H0 :� = 0.Table 7.2: The bias-simulated data with sele
tion: summary of outputs[; 1℄ [; 2℄ [; 3℄ [; 4℄ [; 5℄ [; 6℄ [; 7℄0.5054664 0.0124615 0.014580 0.4768896 0.5340432 0.6369195 0.00147820.5050151 0.0124782 0.038970 0.4286339 0.5813963 0.6364665 0.00214540.3380378 0.0430073 0.135470 0.0725166 0.6035590 0.4668118 0.00628340.1314767 0.3789370 0.481100 -0.8114793 1.0744327 0.2589700 0.0879419[; 8℄ [; 9℄ [; 10℄ [; 11℄ [; 12℄ [; 13℄ [; 14℄0.254810 0.1374919 1.1363471 1.00 1.00 9 0.09995260.021450 0.5948775 0.6789615 0.99 0.80 10 0.14461500.654800 -0.8165962 1.7502198 0.80 0.50 13 0.43370690.258900 -0.2484740 0.7664140 0.60 0.30 20 0.6969515The MLEs for �AC and �BC are presented in 
olumns 1 and 6 respe
tively. By 
al
ulat-ing the asymptoti
 varian
e-
ovarian
e matrix, des
ribed in Chapter 4, their standarderrors are shown in 
olumns 3 and 8 respe
tively. Columns 4 and 5, and 
olumns 9and 10 are the lower and upper limits of the 95% 
on�den
e intervals for d�AC and d�BCrespe
tively. Note that the signi�
an
e level in this se
tion is 0.10.(i). The �rst row represents the results for the standard 
onditional probability modelwithout assuming sele
tion event. The estimates for �AC and �BC are 0.5054664and 0.6369195 respe
tively. The presen
e of sele
tion bias 
an be dete
ted fromthe p-value of H0 : � = 0 (
olumn 14). The p-value 0.0999526 shows that themodel is slightly biased.(ii). Considering the sele
tion bias, the d�AC and d�BC de
rease gradually while theestimated number of population studies (
olumn 13) in
reases.144
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Figure 7.3: d�AC against the p-value of H0 : � = 0
(iii). P-values of H0 : d�AC = 0 (
olumn 2) and H0 : d�BC = 0 (
olumn 7) are signi�
antin all rows.(iv). Using the goodness-of-�t test, the p-value of H0 : � = 0 indi
ates that the modelwith assuming the sele
tion event has improved from reading downward.� Step 3: Sensitivity analysisThe plots of d�AC against the p-value of H0 : � = 0 and d�BC against the p-value ofH0 : � = 0 are shown in Figures 7.3 and 7.4 respe
tively. The estimates for �AC and�BC from our meta-analysis (9 studies) are presented in the blue and red solid dots inFigures 7.3 and 7.4 respe
tively. By using our sensitivity analysis, the plots show thatd�AC and d�BC 
an be anything less than 0.45 and 0.50 respe
tively. Also their plausibleestimates with p-value 0.5 should be around 0.30 and 0.40 respe
tively.To 
on
lude, we 
an see the plausible estimates are a

eptable 
omparing to the true values(0.4 and 0.6) of �AC and �BC in the population data of Se
tion 7.2.145
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Figure 7.4: d�BC against the p-value of H0 : � = 0
7.9 Dis
ussionWe �rst used the sensitivity analysis to the W2 data but there was no eviden
e of sele
tionbias. Consequently, we generated the three-arm data to be the population and made thisdata bias from sele
tion. In this 
hapter, we assume that there is no asso
iation betweenboth treatment e�e
ts Æi;AC and Æi;BC .In general, we extend the sensitivity analysis from the previous 
hapter to the 
onditionalprobability model. We use the exa
t distribution of the data with the 
onditional method torepresent the population model and apply the formulae of the normal approximation modelwith sele
tion, expressed in Chapter 6, for the sele
tion of the event S1. Thus, the probabilityof being sele
ted for a typi
al study q(rijÆi;AC ; Æi;BC) is obtained from p(Zi1 > 0jYi;AC; Yi;BC).As we have dis
ussed in Se
tion 7.5, this sele
tion probability model is still relevant formodelling sele
tion bias su
h as appeared in Figures 7.1 and 7.2, and it 
an be used in a146
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 regression modelsensitivity analysis.The test for the pair (a1; b1) of the sele
tion model is similar to the goodness-of-�t in Chapter6. Sin
e there are two random e�e
ts involved in the likelihood fun
tion, the estimation forthe log-likelihood fun
tion is 
ompli
ated and takes long time. As before, Gaussian quadra-ture has been used for integral estimation. Alternatively, we 
an use the other methods,mentioned in Chapter 4 to estimate the integral. Shi and Copas (2002) used a Markov 
hainMote Carlo EM algorithm to estimate MLEs for the meta-analysis of 2 � 2 tables usingexa
t 
onditional distributions.In this 
hapter, we dis
uss a model with three treatments. More treatment 
omparisons 
anbe applied to the sensitivity analysis here but the 
omplexity of 
onditional model wouldmake the 
al
ulation diÆ
ult, parti
ularly its denominator. In addition, we will have morefree parameters in the likelihood if multiple-sele
tion models are exploited.
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Chapter 8
Con
lusions and further development
8.1 Con
lusionsMeta-analysis is a statisti
al tool that summarizes eviden
e from multiple studies of a par-ti
ular topi
 and attempts to provide an estimate of true e�e
t. The aims of meta-analysisof multi-arm trials are to 
ombine eviden
e from all possible similar studies and draw in-feren
es about the e�e
tiveness of multiple 
ompared-treatments. Throughout the thesis,we have used two meta-analyses of multi-arm trials data (W1 and W2) to di�erent modelstrategies. If the number of individual studies (nij) is large enough (larger than 20) and rijis not too small and not too 
lose to nij, for example from the W1 data then the normalapproximation model is appropriate. For the empiri
al log-odds model, the trial e�e
ts inmeta-analysis would not satisfy any model (�xed e�e
t or random e�e
t) be
ause they arepooled from di�erent design models. Thus, the trial e�e
ts were assumed to be di�erent.This makes the logisti
 regression model in
ludeM (the number of studies in meta-analysis)unknown parameters in the likelihood fun
tion and may 
ause the problem of many nuisan
eparameters and in
onsistent estimate. To avoid these problems, the empiri
al log-odds ra-tios model 
an be proposed. We 
ompare the small and large numbers of nij for empiri
allog-odds ratio model in simulation study of Chapter 5. The results show that the model aresuitable for large individual studies. However, if M is not too large; the empiri
al log-odds149



Chapter 8. Con
lusions and further developmentand empiri
al log-odds ratio models may give the similar results.The logisti
 regression model 
an be employed to any multi-arm trials data. Two approa
hes,un
onditional and 
onditional are used to make inferen
es. The logisti
 regression modelsare applied to the W2 data due to the small number of nij. The logisti
 regression modelusing the un
onditional method in
ludes nuisan
e parameters. The model should be usedwith a small number of studies. The un
onditional maximum likelihood estimate may bebiased if nij is small andM is large (Lubin, 1981; Cox and Snell, 1989). The main advantageof the 
onditional likelihood approa
h is that the likelihood depends only on the parametersof interest. This gives a 
onsistent estimates and the 
omputation is stable. The resultsfrom simulation study of Chapter 5 support our 
on
lusions for the normal approximationmodel and the logisti
 regression model using un
onditional and 
onditional methods.The empiri
al log-odds ratio models have been used for the W1 data in Chapter 3. Howeverwe found that studies with positive results were more likely to be sele
ted, it 
ould thereforelead to sele
tion bias (positive bias). A sensitivity analysis by using a sele
tion model hasbeen employed to examine the sele
tion bias and 
orre
ted the results under the 
ontrolledassumptions for the model. The sele
tion model is regarded as a tool of sensitivity analysis.The missing studies in funnel plot 
an be treated as non-ignorable missing data in meta-analysis. Similarly, the sensitivity analysis is extended to the logisti
 regression model.8.2 Further devolopmentWe proposed un
onditional and 
onditional likelihood for meta-analysis with the logisti
 re-gression model in Chapters 4 and 5. Although 
onditional approa
h shows good performan
ein theory and in our simulation studies, it is of interest to 
ompare the method with someother methods, for example, restri
ted maximum likelihood estimation (REML), penalizedquasi-likelihood (PQL) estimation. 150



Chapter 8. Con
lusions and further development
Gauss-Hermite quadrature approximation has been used to approximate the integral formof probabilities in
luding random e�e
ts in the likelihood fun
tion for the logisti
 regressionmodel. By using di�erent number of nodes for approximation, the results from the modelwere not mu
h di�erent. As mentioned in Chapter 4, the approximation is reasonably ef-fe
tive for low-order integrations depending on the number of treatments involved in thosestudies. If this number is large then it makes the dimensionality of the integral large andthe approximation 
annot give an a

urate approximation. If there are more than threetreatments (two pairwise-
omparisons) in multi-arm trials, we may need to use some othermethods, for example, Lapla
e approximation method or Monte Carlo EM algorithm, seeRipatti and Palmgren (2000); Shi and Copas (2002).In Chapter 5, we fo
us on 
omparing three methods used in this thesis with a spe
ial 
ase thatthere is no asso
iation between the treatment e�e
ts (� = 0) and the dire
t 
omparisons areonly involved. The parameter � is of interest. It is estimable if enough information is providedfor indire
t 
omparison. It is worth a further study on this parameter, by a 
omprehensivesimulation study and analysis of more real data. From Chapter 7, the estimation of log-likelihood fun
tion for the model with sele
tion models is 
ompli
ated and takes long time.Alternatively, we 
an use a Markov 
hain Monte Carlo EM algorithm to estimate MLEs.We used the method to the simulated data. Further, more real data 
an be applied to themethod.
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