
Meta-analysis and Sensitivity analysis forseletion bias in Multi-arm trials
Hathaikan Chootrakool

A thesis submitted to the degree of Dotor of Philosophy

*Shool of Mathematis and StatistisNewastle University



AknowledgementsI am grateful to my supervisor, Dr.Jian Qing Shi and would like to thank him for his exel-lent supervision, support, enouragement and patiene over the last few years. His guidaneand advie has proven invaluable. This thesis would not have had been possible without him.I would like to thank Rajhabhat Suan Dusit University, Thailand for funding my studies. Iwish to thank Asso. Prof. Dr. Sukhum Chaleysub for enoragement and help during mytime here. Also thanks to all the sta� and friends in the shool for support and omfort,espeially Enik}o, Entisar, Yuki and Nasr. Further, I wish to thank Martin for ontinuoussupport, help and proof-reading this thesis.Finally, I would like to thank my family for their in�nite love and giving me strength through-out this researh. I wish to dediate this work to my father who inspired me to study forthis degree.

i



AbstratMeta-analysis of multi-arm trials has been used inreasingly in reent years, the aims ofwhih are to ombine evidene from all possible similar studies and draw inferenes aboutthe e�etiveness of multiple ompared-treatments. Antiplatelet therapy is a pharmaologitherapy whih aims to inhibit platelet ativation and aggregation in the setting of arterialthrombosis. Throughout the thesis we use binary data from antiplatelet therapy to applythe model and sensitivity analysis. The normal approximation model using empirial logistitransform has been employed to ompare di�erent treatments in multi-arm trials, allowingstudies of both diret and indiret omparisons. The issue of diret-indiret omparison isstudied in detail, borrowing the strength from the indiret omparisons and making infer-enes about appropriately hosen parameters. Additionally, a hierarhial struture of themodel addresses the problem of heterogeneity among di�erent studies. However the modelrequires a large sample size of eah individual study. When the sample size is small, anexat logisti regression model is introdued. Both unonditional and onditional maximumlikelihood approahes are performed to make inferenes for the logisti regression model.We use Gaussian-Hermite quadrature to approximate the integral involved in the likelihoodfuntions. Both approahes have been examined to di�erent ases in the simulation study.Studies with statistially signi�ant results (positive results) are potentially more likely tobe submitted or seleted more rapidly than studies with non-signi�ant results (negativeresults). This leads to false-positive results or an inorret, usually over-optimisti, onlu-sion, a problem known as seletion bias in the meta-analysis. A funnel plot is a graphialtool whih is used to detet seletion bias in this researh. We apply the idea of a sensitivityanalysis by de�ning a seletion model to the available data of a meta-analysis, by allowingdi�erent amounts of seletion bias in the model and investigate how sensitive the main inter-est parameter is when ompared to the estiamtes of the standard model. We also examinethe sensitivity analysis by the simulation study.ii
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Chapter 1
Introdution
1.1 A brief history and basi onepts of meta-analysisThere has been a massive growth in the number of randomised linial trials (RCTs) sinethe �rst RCT was introdued in the well-known streptomyin trial in 1946 (see the dissus-sion in Hill, 1990). The results of RCTs have been spread over many reports and thousandsof medial journals. The available results would be impossible to read individually and dif-�ult to summarize. In making some of this information more readily available, an attemptis made to pull together the existing evidene in a form that an be used by researhersor statistiians; this is alled systemati review. The aim of systemati reviews is to �ndand assess for inlusion all possible high quality studies addressing the linial question ofthe review. There is an international network of liniians and methodologists who haveformed the Cohrane Collaboration. It was founded in 1993 and named after the Britishepidemiologist, Arhie Cohrane. This organization is dediated to the ompilation and reg-istration of RCTs, the ombination of appropriate results and the dissemination of �ndingsthrough a regularly updated eletroni database. What does systemati review ahieve? Itredues the large quantities of information to a manageable size. The results an often begeneralized to a wider population in a broader setting than would be possible from a singlestudy. Also, systemati reviews aim to redue errors and tend to improve the reliability.1



Chapter 1. IntrodutionSystemati reviews provide the researh evidene input into the proess of evidene-baseddeision making. An important aspet of most reviews is the quantitative synthesis of re-sults; thus meta-analysis is the statistial part of systemati review. Other names given tometa-analysis inlude overview, quantitative overview, pooling, pooled analysis, integrativeresearh review, researh integration, researh onsolidation, data synthesis, quantitativesynthesis, and ombining studies (Jeniek, 1989). However, a meta-analysis is also possiblewithout doing a systemati review - some studies ould be ombined without any attemptto be systemati about how the partiular studies were hosen. The minimum requirementto produe a meta-analysis is the availability of data from two or more studies, irrespetiveof whether they are reviewed narratively or systematially (Jadad, 1998, page 83). We ande�ne meta-analysis as a statistial tool that summarizes evidene from multiple studies ofa partiular topi and attempts to provide an estimate of true e�et. The main purpose ofmeta-analysis is to inrease the preision of the onlusions of a review. With statistial per-spetive, it is able to detet treatment e�ets with greater power and estimate these e�etswith greater preision than any single study. In this thesis, we use two meta-analyses fromsystemati reviews of Antiplatelet Trialists' Collaboration (Collaboration, 1994a,b).Meta-analysis has been widely used in many areas. The term meta-analysis was �rst usedby Glass (1976) in eduation. He distinguished types of statistial analyses in soial sieneand termed the original analysis of a set of data `primary analysis'. Seondary analysisis a re-analysis of data that has already been olleted by another investigator. Some ofthese analyses are onduted to reaÆrm answers to questions raised in the primary anal-ysis, whereas other seondary analyses attempt to answer new questions. In addition, hede�ned other basi features of meta-analysis as it is known and used today. Hedges andOlkin (1985) published their book `Statistial methods for meta-analysis', whih is the �rstbook in meta-analysis. The idea of meta-analysis an be traed bak to Pearson (1904). Hedeveloped a method for summarizing orrelation oeÆients for studies of typhoid vaina-2



Chapter 1. Introdutiontion. Statistial tehniques for ombining study results were also used by Yates and Cohran(1938) in agriulture. Their tehnique has led to an inrease in development and appliationof meta-analysis. One of the �rst meta-analyses in mediine in the modern era was intro-dued by Chalmers et al. (1977). However, it was not until the mid-1980s that meta-analysisstarted to be used frequently in the health are �eld when Yusuf et al. (1985) published theirmeta-analysis and onluded that the long-term beta blokage following disharge from theoronary are unit after a myoardia infartion redued mortality.Over the last few deades, individual partiipant data (IPD) of systemati review for meta-analysis has inreased rapidly. Jennison and Turnbull (1990); Stewart and Parmar (1993)and Oxman et al. (1995) onluded a number of advantages to IPD meta-analysis. In fat,the disadvantages of performing an IPD meta-analysis are the osts in both time and money.In biostatistis, Van Houwelingen (1997) interestingly listed meta-analysis among his night-mares, whih he hoped would not happen in the future. He suggested about analysingsummary measures from seletive studies and he looked forward to a time when IPD fromall studies were available to be synthesized using appropriate random-e�ets models. Sim-monds et al. (2005) argued that the proess of systemati review, within whih the majorityof meta-analyses are now undertaken, has to some extent redued bias due to seletive in-lusion of studies, and analyses involving IPD ontinue to inrease in number. Additionally,the results of meta-analysis need to be reported properly. Mother et al. (1999) suggested theguidelines for presenting the results of RCTs in meta-analysis, see more similar suggestionsin Mother et al. (2001); Bussuyt et al. (2003) and Von Elm and Egger (2004) .Meta-analysis has been extended beyond mediine and health to over various �elds from`astronomy to zoology' (Pettirew, 2001). It has been used in eonomis (Stanley and Jarrel,1989, 1998; Stanley, 1998, 2001), and is beginning to be used in politial siene (Pinello,1999). In industrial organizational psyhology, there have been numerous appliations of3



Chapter 1. Introdutionmeta-analysis (Shmidt, 1988; Shmidt and Hunter, 1981, 1998). A good example of howto explain a meta-analysis is `mixing apples and oranges', introdued by Moayyedi (2004).Meta-analysis has beome important in researh in almost every area. Nowadays, it wouldprobably be diÆult to �nd a researh area in whih meta-analysis is unknown.1.2 Measure of treatment e�etBefore the results of studies an be onsidered for pooling in a meta-analysis, it is neessary todeide a measure to use for evaluating the eÆieny of one treatment relative to another. Inlinial trials, the ontrol treatment (or ontrol group) is a standard treatment or a plaebo.Various terms have been used for the measure inluding `relative eÆay', `eÆay of the(�rst) treatment', and `treatment di�erene', see e.g. Higgins and Whitehead (1996) andHiggins et al. (2001). The term `treatment e�et' is preferred and will be used throughoutthis thesis.1.2.1 Comparative binary outomeMeasures of outome need to be alulated for eah study in a meta-analysis before they anbe quantitatively ombined. Outomes of the data have been ategorized into three groups:binary data, ontinuous data and ordered ategorial data. The data being used in this thesis,desribed in Chapter 2, is a omparative binary outome, where two possible outomes- diagnosis/not diagnosis- are ompared. In this setion, we shall give a measure of thetreatment e�et, whih is the log-odds ratio. The other measures an see from Sutton et al.(2000, page 17); for example, mean di�erene and e�et size. To desribe the log-odds ratio,suppose that two treatments denoted A and C in Table 2.1 of Chapter 2 represent `aspirinplus dipyridamole' and `ontrol group' respetively. Let �A and �C be the probabilities ofpatients that have reolusion (an be treated as failures) on treatments A and C respetively.The odds ratio (OR) of patients that have reolusion on treatment A relative to treatment4



Chapter 1. IntrodutionC an be de�ned by �A(1��C)=�C(1��A). To interpret OR, if an odds ratio estimate is lessthan one, it would indiate an improvement with treatment A. A ratio of greater than onewould imply that treatment A was less e�etive than the ontrol treatment. For the purposeof ombining the studies, it is ommon to transform the data by taking the natural logarithmof the odds ratio and work with the log-odds ratio, as this should provide a measure whihis approximately normally distributed. Thus the log-odds ratio (LOR) an be written byLOR = log��A(1� �C)�C(1� �A)� : (1.1)The other measures that an be used for this type are relative risk (RR), �A=�C , or the riskdi�erene (RD), �A � �C . Eah measure has a di�erent linial meaning.1.3 Signi�ane problems in meta-analysisIn the �rst setion, we saw how bene�ial meta-analysis is and how it has been used in sev-eral areas. In the seond setion, we de�ned the outome measure. In meta-analysis, eahstudy involved is di�erent from all the others. Suh di�erenes ause statistial problemsor diÆulties in deiding the appropriateness of pooling. Several problems have arisen inmeta-analysis, for example, aggregating studies that inlude di�erent measuring tehniques,di�erent de�nitions of variables, and subjets that are too dissimilar results in meta-analysesthat are uninterpretable beause they are from poorly designed studies (Hedges and Olkin,1985). Thus, if meta-analysis is used or analysed improperly, it an lead to erroneous onlu-sions regarding to treatment e�et. Here we will fous on two major problems, heterogeneityand seletion bias, desribed as follows.1.3.1 HeterogenietyHeterogeneity may be de�ned as the variation that arises due to di�erenes aross studiesin populations, interventions, outomes, and designs. Even when all studies are measuring5



Chapter 1. Introdutionthe same underlying average e�et, the results may vary aross studies beause of randomerrors. What auses the heterogeneity in a meta-analysis? Bailey (1987) suggested thepossible auses of heterogeneity an be ategorized as (1) due to hane; (2) spurious, dueto the sale used to measure the treatment e�et; (3) due to treatment harateristis;(4) due to individual data; (5) harateristis of the design and ondut of the studies;(6) unexplainable, if none of the above aount for it. How do we know whether there isheterogeneity or not? A hi-squared test is traditionally undertaken to determine whetherthere is statistially signi�ant evidene against a null hypothesis of no heterogeneity ornot. The null hypothesis is that the true treatment e�ets are the same in all studies,H0 : Æ1 = Æ2 = : : : = ÆM versus the alternative that at least one of the treatment e�etsdi�ers from the remainder. The Æi's are the underlying true treatment e�ets orrespondingto the ith study, whih is de�ned in (1.1) for i = 1; : : : ;M where M is a number of studiesbeing ombined in a meta-analysis. One test statisti is de�ned byQ = MXi=1 wiT 2i � (PMi=1wiTi)2PMi=1wi ;where Ti is the treatment e�et estimate of Æi and wi is the weight in the ith study. Theweight is usually the reiproal of the variane of the outome estimate. We omit the detailhere, more disussion and an example an be found in Sutton et al. (2000, page 39). Thestatisti Q is approximately distributed as a �2 distribution on M � 1 degrees of freedomunder the null hypothesis H0. If the null hypothesis is not signi�ant then there is assumedto be no heterogeneity between studies. An analysis may be performed by a �xed e�etmodel where the treatment e�et is onsidered to be the same for all studies. The standarderror estimate in eah study is based on the sampling variation of the study. The modelmay provide a useful summary of the results. However, the �xed e�et models are spei�to the partiular studies inluded in the meta-analysis and may not be realisti. Di�erentstudies with di�ering designs will not neessarily estimate the same quantity (Matthews,2005, page 134). In ontrast to the above hypothesis, if the null hypothesis is rejeted then6



Chapter 1. Introdutionthe random e�et model would be more appropriate. The model allows the between-studyvariability to be aounted for the overall estimate and, more partiularly, its standard error.One of the ontroversies surrounding meta-analysis has onerned the hoies between a �xede�et model and a random e�et model for providing an overall estimate of the treatmente�et. Many authors have exploited the heterogeneity and the �xed-random e�et model.The popular DerSimonian-Laird approah to random-e�ets meta-analysis uses a simpleestimate of within-study variane, and does not inorporate unertainty in the varianeestimate when making inferene on the mean of the random-e�ets distribution (DerSimonianand Laird, 1986). Aording to the use of test Q, when the sample sizes in eah study are verylarge, the null hypothesis may be rejeted even if the individual treatment e�et estimatesare not very di�erent (Shadish and Haddok, 1987). If the number of ombined studies issmall then the statistial power of tests are, in most ases, very low (Boissel et al., 1989). Thealternative way to deal with heterogeneity is to use a one-way analysis of variane (ANOVA)to investigate heterogeneity between and within groups of studies, where the groups areategorized by study harateristis (Hedges and Olkin, 1985, page 12). Sine the formalQ statisti (in most ases) has a low power, there are a number of graphial informal tests:a plot of normalized sores, a forest plot, a Radial plot (Galbraith diagram) and a L'Abb�eplot (Sutton et al., 2000, hapter 7). To assess heterogeneity, Thompson and Sharp (1999)ompared a number of methods used to investigate whether a partiular ovariate, with avalue de�ned for eah study in the meta-analysis, explained any heterogeneity. The random-e�ets method has also long been assoiated with the problems due to poor estimation ofamong-study variane when there is little information (Hardy and Thompson, 1996; Ziegleret al., 2001). Song et al. (2001) reviewed the methods used in meta-analysis for exploringheterogeneity. Glasziou and Sanders (2002) addressed the ause of heterogeneity in a systemreview. Reently, Hedges and Pigott (2001) and Jakson (2006) disussed theoretially thepower of the test for heterogeneity. In this thesis, we assume all treatment e�ets in the7



Chapter 1. Introdutionmodel to be random e�ets to avoid the problem of heterogeneity and also we do not believethat the results from di�erent studies and di�erent designs an have the same treatmente�et.1.3.2 Seletion biasIt has long been aepted that studies or researhes with statistially signi�ant results(positive results) are potentially more likely to be written up, submitted, seleted or pub-lished more rapidly than studies with non-signi�ant results (negative results), whih leadsto false-positive results. In meta-analysis, ombining only the identi�ed published studiesunritially may lead to an inorret, usually over-optimisti onlusion. This problem isknown as publiation bias or seletion bias. For example, several studies (Greenwald, 1975;Coursol and Wagner, 1986; Sommer, 1987) have surveyed authors, and found that, generally,studies with non-signi�ant results are less likely to be submitted for publiation omparedto those with statistially signi�ant results. Various tools suh as the funnel plot, the rankorrelation test, the linear regression test and trim and �ll to identify publiation bias arebriey desribed below.Funnel plots are a primary visual tool for the investigation of publiation bias in meta-analysis. They are simple satter plots of the treatment e�ets, estimated from individualstudies against a measure of study size. The axis of the treatment e�et an be log-oddsratio, log risk ratio or risk di�erene. The other axis an be one of these hoies: the stan-dard error, the inverse of standard error, the variane, the inverse of variane, the samplesize, log sample size. They an be used in di�erent irumstanes (see Sterne and Egger,2001). Generally, the treatment e�et estimates from individual studies are often plottedagainst their standard errors (or the inverse of the standard error), instead of the orre-sponding sample size. The log-odds ratio and standard error are the best hoies in mostases (Rothstein et al., 2005, page 86). The name `funnel plot' is based on the fat that the8



Chapter 1. Introdutionpreision in the estimation of the underlying treatment e�et inreases as the sample size ofthe studies inreases. In this thesis, the measure of study size is plotted on the horizontal axisand the treatment e�et estimate on the vertial axis. The results from smaller studies willsatter widely on the right-hand side of the graph, with the spread narrowing among largerstudies. In the absene of bias, the plot will resemble a symmetrial funnel. Asymmetryin the funnel plots may indiate publiation bias in meta-analysis. Funnel plots were �rstintrodued in eduational researh and psyhology by Light and Pillemer (1984). In 1995,Egger and Davey Smith (1995) used funnel plots for a meta-analysis that might have alertedinvestigators to the unreliability of small studies on the e�et of magnesium treatment formyoardial infartion that found no or little evidene that magnesium treatment reduedmortality.The `rank orrelation test', desribed by Begg and Mazumdar (1994), examined the asso-iation between the treatment e�et estimates and their varianes, to exploit the fat thatpubliation bias will tend to indue a orrelation between the two fators, and onstrutsthe rank-ordered sample on the basis of one of them. The test is a distribution-free method,whih involves no modelling assumptions, but it su�ers from a lak of power, and so thepossibility of publiation bias annot be ruled out even when the test is non-signi�ant. Totest the asymmetry of a funnel plot, Egger et al. (1997) suggested a method, alled the `lin-ear regression test' based on a regression analysis of Galbraith's radial plot (Galbraith, 1988).To address the problem of publiation bias, the `trim and �ll' method was developed byDuval and Tweedie (2000a,b) to adjust a meta-analysis for the impat of missing studies.The method relies on the srutiny of one side of a funnel plot for asymmetry, assumed to bedue to publiation bias. It appears to give results that math the subjetive visual assess-ment of a funnel plot. This method is based on a strong assumption of symmetry. Copasand Shi (2001, 2002) argued that some parameters linked to seletion bias are inestimable9



Chapter 1. Introdutionsine the number of unseleted studies is impossible to know. They proposed a sensitivityanalysis with whih di�erent patterns of seletion bias an be tested against the �t of thefunnel plot. In a similar way, they disussed the sensitivity analysis for the meta-analysisof 2 � 2 tables using the exat onditional distributions (Shi and Copas, 2002). A Markovhain Monte arlo EM algorithm was used to alulate maximum likelihood estimates.Group dose measures in epidemiologial studies have been another problem for meta-analysis.Shi and Copas (2004) proposed a model that allows for an arbitrarily aggregated dose level,and indiated that the resulting estimates and standard errors an be quite di�erent fromthose given by the usual method.1.4 Multi-arm trialsMost meta-analysis has foused on summarizing treatment e�et measures based on theomparison of two treatments ( alled `arms', sometimes also alled `interventions' or `ex-posures' ). In this omparison, two groups of individual studies are exposed to two di�erenttreatments. Standard two-arm RCTs are frequently used in linial researh due in partto its relative simpliity of design and interpretation. At its most basi, one power, onesigni�ane level and one magnitude of di�erene are analyzed for two-arm omparisons.Conlusions are straightforward: either the two arms are shown to be di�erent or they arenot. The implementation for the model is not ompliated. When more than two arms areinluded in meta-analysis, omplexity ensues. For example, suppose that two treatmentsA and C are onsidered in meta-analysis and the treatment C is a ontrol group. A newtreatment B is inluded whih an be ompared with the ontrol group (C) or a standardative treatment (A). We an obtain the e�etiveness of treatment A versus C, treatment Bversus C and treatment A versus B. These types of dataset are alled multi-arm trials al-though some authors all it mixed treatment omparison (MTC) (Lu and Ades, 2004, 2006).Eddy et al. (1992) said of mixed omparisons, `when there are several interventions that10



Chapter 1. Introdutionan be applied to a partiular problem, the available evidene an ompare di�erent pairs ofinterventions'. In this thesis, we fous on meta-analysis for multi-arm trials. Two data setsof meta-analysis omparing three arms are given in Tables 2.1 and 2.2 of Chapter 2. We willuse both data sets to demonstrate the method we propose.Some issues have arisen in meta-analysis as follows.� Diret-indiret omparison: diret omparison exists in treatment omparison but itmight not provide enough information for a statistial analysis. We may need to`borrow strength' from an indiret omparison (Higgins and Whitehead, 1996). Thisissue will be desribed in detail in Chapter 3.� The onsisteny of multi-arm trials should be onsidered, partiularly, with indiretomparison (Lu and Ades, 2006).� Analyses in multi-arm trials need a large number of studies to ahieve the good results(Green et al., 1997, Chapter 4).1.4.1 Methods of meta-analysisWe have presented an overview of meta-analysis in the �rst setion and desribed partiularproblems suh as heterogeneity and seletion bias in Setion 1.3. In this setion, we willreview the methods that have been used in meta-analysis of two-arm and multi-arm om-parisons.Pagliaro et al. (1992) used RCTs, omparing beta-blokers or slerotherapy with a nonativetreatment (ontrol group) to assess the e�etiveness of those treatments in the prevention of�rst bleeding and the redution of mortality in patients with irrhosis and esophagogastrivaries. The Mantel-Haenszel-Peto method is applied for statistial evaluation of hetero-geneity and for pooling of the results. They estimated the treatment e�ets of beta-blokers11



Chapter 1. Introdutionand the ontrol group, slerotherapy and the ontrol group separately. The results showthat no heterogeneity was found and the inidene of bleeding in the use of beta-blokerswas signi�antly redued.Indiret omparison has been an important issue of two and multi-arm omparisons. Higginsand Whitehead (1996) presented a random e�et meta-analysis for binary data and intro-dued an idea of `borrowing strength' from an indiret omparison. A three-arm omparisonwas also onsidered in the meta-analysis to improve the inferene with both heterogeneityand the treatment di�erene. Two approahes, namely the general parameter approah andthe exat binomial approah, were used to estimate parameters of interest in a meta-analysis.We apply the idea of `borrowing strength' in the thesis. Buher et al. (1997) presented amodel for making indiret omparisons of the magnitude of treatment e�ets that preservedthe randomization of the originally assigned patient group. They illustrated the model withan example that ompared two experimental prophylati regimens against the standardprophylaxis for the prevention of pneumoystis arinii pneumonia in HIV infeted patients.Similarly, Song et al. (2003) examined the validity of adjusted indiret omparisons by usingdata from 44 published meta-analyses (from 28 systemati reviews) of RCTs. Lumley (2002)used `inoherene' in networks of pairwise omparisons to estimate the treatment di�erenesof indiret omparisons. His model isYijk � N(�i � �j + �ik + �jk + �ij; �2ijk); �ij � N(0; � 2); �ij � N(0; !2):The Yijk is the treatment di�erene of treatment i and j in the kth randomized trial and itsstandard error is �2ijk. The parameters �i and �j represent the true average e�ets of thetreatment i and j respetively. Random e�ets �ik and �jk with variane � 2 represent thedi�erene between the average e�ets of treatments i and j and their e�ets in the study;they apture the heterogeniety of treatment e�et. The �ij represents the hange in thee�et of treatment i when it is ompared with treatment j and aptures the inonsisteny.12



Chapter 1. IntrodutionHowever, the network needs a large number of di�erent treatment omparisons and it doesnot guarantee that the onlusions are reliable and generalizable. There is progress in thisarea: see e.g. Hasselblad (1998); Party et al. (2003); Yazdanpanah et al. (2004) and Glennyet al. (2005) along with texts of Eddy et al. (1992); Whitehead (2002).Many authors have onsidered a Bayesian approah to meta-analysis. Domenii et al. (1999)onstruted a hierarhial Bayesian grouped random-e�et model to synthesis existing evi-dene from RCTs of whih treatments were most e�etive and of quantifying the remainingunertainty about treatment e�etiveness. They applied their models to migraine headahetreatments to inorporate expliitly the relationship between the di�erent lasses of treat-ments and reating a ommon sale by using a latent variable to ombine information fromstudies that had a di�erene in results. Ades (2003) introdued the idea of a `hain of evi-dene' struture to mixed treatment omparisons by using the Bayesian Markov Chain MonteCarlo (MCMC) method to �t his models. Lu and Ades (2004) proposed a range of Bayesianhierarhial models using the MCMC to represent meta-analysis of multi-arm trials. Theyextended the Bayesian hierarhial model for two-arm omparisons proposed by Smith et al.(1995) to a general model for multi-arm trials of K-arm omparisons. As mentioned ear-lier, the onsisteny of struture evidene of multi-arm trials should be taken into aount.Lu and Ades (2006) examined inonsisteny using a Bayesian hierarhial model with �xede�ets or random e�ets for �tting multi-arm trials. It is made under the assumption thatthe available evidene soures were onsistent in estimating all treatment ontrasts. Thereis a series of artiles attempting to investigate evidene onsisteny in a variety of di�erentevidene strutures, see e.g. Ades and Cli�e (2002); Ades (2003); Welton and Ades (2005).Some issues about the use of Bayesian methods in meta-analysis are related to sensitivityof prior distribution, estimation of posterior distribution, and omparison of lassial andBayesian approahes (Sutton et al., 2000, page 179).
13



Chapter 1. IntrodutionChootrakool and Shi (2008) propose normal approximation models using an empirial logistitransform to ompare di�erent treatments in multi-arm trials, allowing studies of both diretand indiret omparisons. Additionally a hierarhial struture is introdued in the modelto address the problem of heterogeneity among di�erent studies. The proposed models areperformed with the antiplatelet therapy data.1.5 Gaussian quadrature approximationOur approahes in this thesis involve alulation of integrals in the likelihood. We will useGaussian quadrature approximation to estimate those integrals throughout the thesis. Thisapproximation is a well-known and eÆient tehnique for numerially evaluating integrals ofthe type R 1�1 f(x) dx and has been used in many statistial appliations. By using Gaussianquadrature, see Abramowitz and Stegun (1972), an approximation of the de�nite integral ofa funtion f(x) an be given by Z 1�1 f(x)dx � lXn=1 wnf(xn) (1.2)where xn is a partiular node with weight wn and l is the number of nodes and weights. Anl-point Gaussian quadrature rule, named after Carl Friedrih Gauss, is a quadrature ruleonstruted to yield an exat result for the polynomials of degree 2l� 1, by a suitable hoieof the l points and weights. The domain of integration for suh a rule is onventionally takenas [-1, 1℄. However, the Gaussian quadrature in (1.2) an be expressed in a slightly moregeneral way by introduing a positive weight funtion g into the integrand and allowing aninterval other than [-1, 1℄. That is Z ba g(x)f(x)dx; (1.3)
14



Chapter 1. Introdutionwhere the interval (a; b) and the weight funtion g(x) an be several hoies. For instane,if the interval (a; b) = (�1; 1) and g(x) = (1 � x2)1=2 then this quadrature is alled theChebyshev-Gauss quadrature. The details of other hoies of (a; b) and g(x) an be found inAbramowitz and Stegun (1972, page 875) and Sheid (1988, page 136).1.5.1 Gauss-Hermite integrationIf the interval (a; b) in (1.3) is equal to (�1;1) and the weight funtion g(x) = e�x2 thenthe quadrature is alled Gauss-Hermite Quadrature. Gauss-Hermite quadrature is oftenused for numerial integration in statistis beause of its relation to a normal density. Thequadrature is de�ned in term of an integral of the formZ 1�1 f(x)e�x2dx: (1.4)Using Gauss-Hermite quadrature, the integral (1.4) is approximated byPln=1wnf(xn), wherethe nodes xn are roots of the lth order Hermite polynomial and the wn are suitably orre-sponding weights. Tables of (xn; wn) for l = 1; 2 : : : ; 10; 12; 16; 20 are given by Abramowitzand Stegun (1972, page 924) and for l > 20, omputation formulae are given by Golub andWelsh (1969). Suppose that a parameter Æ is a random e�et and approximately distributedby N(�; � 2) and an integral of Gauss-Hermite quadrature an be in the form ofZ 1�1 f(Æ)�(Æ;�; � 2)dÆ; (1.5)where �(Æ;�; � 2) is the density funtion of a normal distribution: e�(Æ��)2=2�2=(2�)1=2. Thesampling nodes are then at Æn = �+21=2�xn and the weights are modi�ed to wn=p�. Usingthe approximation of Gauss-Hermite quadrature, the integral (1.5) is approximated byZ 1�1 f(Æ)�(Æ : �; � 2)dÆ � lXn=1 wnp�f(�+ 21=2�xn): (1.6)
15



Chapter 1. IntrodutionSimilarly, if the integral (1.5) involves a multivariate normal distribution of Nk(�;
),Z 1�1 f(Æ)�(Æ;�;
)dÆ: (1.7)Then, this integral an be approximated byZ 1�1 f(Æ)�(Æ;�;
)dÆ � ��k=2 l1Xn1=1w(1)n1 : : : lkXnk=1w(k)nk f ��+p2
1=2dn� :The sampling nodes are at �+p2
1=2dn and dn = (x(1)n1 ; : : : ; x(k)nk ).Liu and Piere (1994) onsidered Gauss-Hermite quadrature in numerial integration andalso examined its e�etiveness in Laplae approximation. Crouh and Spiegelman (1990)evaluated the integral form (1.4) to the logisti normal model.1.6 Outline of the thesisEarlier in this hapter, we provided an overview of meta-analysis for multi-arm trials andexisting methods to make inferenes on the treatment e�et. Gaussian quadrature approx-imation has also been desribed. As reviewed in Setion 1.4.1, most existing methods formeta-analysis of multi-arm trials use the logisti regression model with unonditional like-lihood approah, see e.g. Lu and Ades (2004, 2006). In this thesis, we propose the normalapproximation model using empirial logisti transform (e.g. empirial log-odds ratio model)when the sample size is relatively large and also introdue the logisti regression model withonditional likelihood approah. The trial e�ets are eliminated in both models, thus ourmodels give a preise estimate and make the omputation more stable. More details aregiven in Chapter 3 and Chapter 4. A main important objetive of the thesis is to use asensitivity analysis with the models by allowing di�erent amounts of seletion bias.
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Chapter 1. IntrodutionChapter 2 gives a brief introdution to antiplatelet therapy, whih has been used for patientswith a history of oronary artery disease, heart attaks, angina (hest pain) and peripheralartery disease. Two data sets of RCTs: antiplatelet therapy with maintenane of vasulargraft or arterial pateny (W1) and antiplatelet therapy with redution in venous thrombosisand pulmonary embolism (W2), are presented in this hapter.Chapter 3 �rst introdues statistially the struture of multi- arm trials. We propose normalapproximation models using empirial logisti transform to make inferenes on treatmente�ets of multi-arm omparison. The treatment e�et and the trial e�et are also explainedin detail. The indiret omparison plays an important role in multi-arm trials, partiularlyif there is little or no evidene from a diret omparison provided in meta-analysis. Ourmodels allow an indiret omparison by using the idea of `borrowing strength' from indiretomparisons. Additionally, we address the orrelation struture of the ovariane matrix.The proposed models in this hapter are applied to the W1 data.Chapter 4 employs the logisti regression model for the exat binomial distribution. Twoalternative approahes, based on unonditional and onditional likelihoods, are performedto estimate the unknown parameters in the model. All treatment e�ets of the model areassumed to be random and they are normally distributed. This auses the likelihood fun-tion to involve integrals. We use Gaussian-Hermite quadrature to approximate the integral.The logisti regression models for both approahes are illustrated with the W2 data.Chapter 5 investigates the performane of the maximum likelihood estimation (MLE) forthe normal approximation model and the logisti regression model using unonditional andonditional approahes with the simulated data. In omparison of the di�erent ases, weexploit two senarios to generate the data. The simulated data is used to draw inferenes onvarious di�erent models in order to analyse their MLEs. We speially fous an attention on17



Chapter 1. IntrodutionMLEs for the logisti regression model using the unonditional and onditional approahes.Chapter 6 begins by desribing the funnel plot to identify seletion bias in multi-arm trials.We use the normal approximation model for the W1 data as a standard model in this hap-ter. Our main purpose here is to develop inferenes about parameters of interest. We employthe idea of a sensitivity analysis by using a seletion model to the normal approximationmodel, allowing di�erent amounts of seletion bias. We then analyze how the parameter ofinterest hanges when ompared to the results of normal approximation model. Goodness-of-�t tests are used to hek whether taking the seletion model into aount is appropriateor not for the treatment e�et estimates. We also examine the performane of the methodfor sensitivity analysis by the simulation study.Finally, Chapter 7 extends the work of Chapter 6 to the logisti regression model using theonditional method. The idea of a seletion model in Chapter 6 is adapted to the probabilityof seletion in the likelihood funtion. This hapter is strutured in a similar way to thepreeding one.
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Chapter 2
Antiplatelet data
2.1 Overview of antiplatelet therapyPlatelets are remnants of ells irulating in the blood that are neessary for blood lots toform. Platelets initiate the formation of blood lots by lumping together, a proess alledplatelet aggregation, presented in Figure 2.1. Clumps of platelets are further bound togetherby a protein (�brin) formed from lotting fators present in the blood. The lumps ofplatelets and �brin make up the blood lot. Blood lots are important beause they restritthe amount of bleeding when we get ut. However, if a blood lot forms inside an artery, itan blok the ow of blood to the tissue that the artery supplies and an damage the tissue.For example, a blood lot that forms in a oronary artery supplying blood to the heartmusle an ause a heart attak, and a blood lot that forms in an artery supplying bloodto the brain an ause a stroke. Antiplatelet drugs are a group of powerful mediations thathelp to prevent the formation of blood lots. They are e�etive in the arterial irulation,where antioagulants have little e�et. Aspirin is the most widely used antiplatelet drug andis in a group of mediations alled saliylates. Aspirin is heap and relatively safe, despitea possible side e�et of gastri irritation or bleeding. Aspirin is also given to patients withoronary heart disease to redue the risk of a heart attak. It remains the most ommonlyused long-term antiplatelet therapy. Other antiplatelet drugs have been introdued suh as19



Chapter 2. Antiplatelet data

Figure 2.1: Platelet aggregation
tilopidine and lopidogrel. These have a similar antiplatelet e�et of bloking the lottingpathway, though they do this in a slightly di�erent way to aspirin. They seem to have fewerside e�ets of gastri disomfort or bleeding. Tilopidine or lopidogrel are presribed, inthe short term, with aspirin for patients undergoing stent implantation with angioplasty,to redue the extra risk of blood lotting after the proedure. Dipyridamole is often usedwith other drugs to redue the risk of blood lots. It was originally introdued in 1959as an anti-anginal mediation: it has oronary vasodilator properties through inreasingoronary blood ow without a�eting myoardial oxygen onsumption. Its e�etiveness asan antithromboti agent was subsequently demonstrated in the rabbit (Emmons et al., 1965).Antiplatelet drugs may be presribed for patients with a history of: oronary artery disease,heart attaks, angina (hest pain), and peripheral artery disease (PAD). They are oftenpresribed after angioplasty and stent plaement and after heart bypass surgery.Throughout the thesis, we use two olletions of antiplatelet data: antiplatelet therapy withmaintenane of vasular graft or arterial pateny (W1) given in Table 2.1, and antiplatelettherapy with redution in venous thrombosis and pulmonary embolism (W2) given in Table2.2. The W1 data will be applied to the multi-arm trials model using the normal approxi-20



Chapter 2. Antiplatelet datamation approah in Chapter 3 and also will be used with a sensitivity analysis in Chapter6. The multi-arm trials model using exat binomial distribution will be undertaken with theW2 data in Chapter 4 and Chapter 7. Additionally in Chapter 5, the W2 data will be usedfor generating data to ompare the performane of estimations.2.2 Antiplatelet data: maintaining vasular pateny(W1)After oronary artery revasularisation, whether by oronary artery bypass grafting or byperutaneous transluminal oronary angioplasty, angiographi studies show substantial ratesof reolusion (Gillum, 1987). For example, about one �fth of oronary artery bypass graftsolude during the �rst postoperative year (Fuster and Chesebro, 1986) and a few per entper year olude thereafter (Campeau et al., 1984). These olusions are often sublinial,though some may produe linial signs of myoardial infartion. Olusion or reolusionis also seen after peripheral artery revasularisation, though many suh olusions are alsosublinial. Experimental and linial evidene suggests that antiplatelet therapy may helpprevent vasular graft or arterial olusions, partiularly during the period soon after vasu-lar proedures, before any intimal damage has healed (Pirk et al., 1990; Bonhek et al., 1982).Collaboration (1994a) analyzed 46 RCTs of antiplatelet therapy versus the ontrol groupand 14 RCTs omparing one antiplatelet regimen with another by setting RCTs that ouldhave been available by Marh 1990 and in whih vasular graft or arterial pateny was tobe studied systematially. Several treatments are involved in RCTs suh as high dose as-pirin, medium aspirin, aspirin plus dipyridamole, aspirin alone, sulphinpyrazone, tilopidineand the ontrol group. The objetive is to determine the eÆay of antiplatelet therapyin maintaining vasular pateny in patients. The total number of about 8000 patients atvarying degrees of risk of vasular oulusion (by virtue of disease or of having some vasular21



Chapter 2. Antiplatelet dataproedure) were in trials of antiplatelet therapy versus ontrol and 4000 suh patients werein trials diretly omparing di�erent antiplatelet regimens.A forest plot (see the detail in Lewis and Clarke, 2001) was used to present the results ofthe meta-analysis. The treatment e�et estimate of eah study (odds ratio) and respetiveon�dene interval were plotted on one set of axes. They onluded that antiplatelet ther-apy (aspirin plus dipyridamole (A) or aspirin alone (B)) produed a highly signi�ant (2p �0.00001) redution in vasular olusion in a wide range of patients omparing to the ontrolgroup (C). The odds of vasular graft or arterial olusion were redued by about 40% whiletreatment ontinued.Collaboration (1994a) used a forest plot in their systemati review. We will re-analysethe data by using a normal approximation model based on empirial logisti transform inChapter 3. The problem of seletion bias will be addressed in Chapter 6. The data used inthis thesis onsists of 31 RCTs of three-arm trials. We shall all this data set `W1'. Thestudies ompare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and theontrol group (C). Six trials ompare aspirin plus dipyridamole, aspirin alone and the ontrolgroup (i.e. omparing all A, B and C), four trials ompare aspirin plus dipyridamole andaspirin alone (i.e. omparing A and B), thirteen trials ompare aspirin plus dipyridamoleand the ontrol group (i.e. omparing A and C), and seven trials ompare aspirin alone andontrol group (i.e. omparing B and C). The W1 data is given in Table 2.1. The `event' inthe table represents the number of patients who have reolusion on those treatments andthe `total' represents the number of patients in total to enter in those groups.
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Chapter 2. Antiplatelet data2.3 Antiplatelet data: redution in venous thrombosisand pulmonary embolism (W2)During prolonged general anaesthesia or any other period of limited mobility thrombus for-mation may be initiated in the deep veins of the legs. Spei� tests dislose deep venousthrombosis in about a quarter of all patients who have had general surgery and in abouthalf of those who have had orthopaedi surgery (Kakkar, 1981). Most suh thromboses aresublinial and resolve ompletely when mobility is restored (though a few produe per-manent valvular damage and hroni venous insuÆieny), but some may embolise to thelungs, produing slight, substantial, or fatal e�ets. Venous thrombosis and pulmonary em-bolism remain an important ause of morbidity and mortality both in surgial patients andin immobilised medial patients. Various thromboprophylati treatments have thereforebeen devised to prevent or limit thromboembolism (Dalen et al., 1986). An overview of ran-domised trials of perioperative subutaneous heparin showed that among surgial patientssuh treatment an roughly halve the risk not only of deep venous thrombosis but, moreimportantly, of pulmonary embolism. Subutaneous heparin is now widely reommended forsurgial or medial patients at high risk of venous olusion, but antiplatelet therapy still isnot (Gent M., 1986; Collins et al., 1988).Collaboration (1994b) analysed 53 trials (total 8400 patients) of an average of two weeksof antiplatelet therapy versus ontrol in general or orthopaedi surgery; nine trials (600 pa-tients) of antiplatelet therapy versus ontrol in other types of immobility; 18 trials (1000patients) of one antiplatelet regimen versus another. Many treatments are involved in RCTssuh as high dose aspirin, medium aspirin, aspirin plus dipyridamole, aspirin alone, aspirinplus hydroxyhloroquine, tilopidine and the ontrol group. The objetive was to deter-mine the eÆay of antiplatelet therapy as prophylaxis against deep venous thrombosis orpulmonary embolism in surgial and high risk medial patients. It had previously been23



Chapter 2. Antiplatelet datasupposed that antiplatelet therapy did not inuene venous thromboembolism, and manysurgeons and physiians do not use it routinely for thromboprophylaxis, even for patientswho are at substantial risk of deep venous thrombosis or pulmonary embolism.Collaboration (1994b) used a forest plot to present the results of the meta-analysis. Theyonluded that antiplatelet therapy - either alone or, for greater e�et, in addition to otherproved forms of thromboprophylaxis (suh as subutaneous heparin) - should be onsidered.Also antiplatelet therapy produed a highly signi�ant (2p � 0.00001) redution in deepvenous thrombosis by about 67%.As shown in Table 2.2, the sample sizes for many studies are quite small. An exat logistiregression model will therefore be used with both unonditional likelihood approah, see thedetails in Chapter 4. In the thesis, we will investigate 27 RCTs from systemati reviews ofAntiplatelet Trialists' Collaboration (Collaboration, 1994b) in total. We shall all this dataset `W2'. The studies ompare three treatments: aspirin plus dipyridamole (A), aspirin alone(B) and ontrol group (C), where seven trials ompare aspirin plus dipyridamole, aspirinalone and ontrol group (i.e. omparing all A, B and C), ten trials ompare aspirin plusdipyridamole and ontrol group (i.e. omparing A and C) and ten trials ompare aspirin aloneand ontrol group (i.e. omparing B and C) . The W2 data is given in Table 2.2. The `event'in the table represents the number of patients in whom deep venous thrombosis was detetedby systemati �brinogen sans or venography, or both, after general and orthopaedi surgeryand in high risk medial patients. The `total' represents the number of patients ontrolledin eah group.
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Chapter 2. Antiplatelet data
Table 2.1: The W1 data: 31 RCTs of aspirin dataStudy number Number of patientsAspirin + Dipyridamole (A) Aspirin (B) Control (C)event/total event/total event&total1 15/49 10/47 18/512 35/162 37/155 47/1533 83/368 85/373 114/3714 23/100 16/100 39/1005 6/16 2/16 12/176 0/100 6/100 12/1007 20/60 22/648 26/313 27/3179 10/41 6/4010 8/55 15/5511 33/160 37/16012 37/202 81/20513 4/18 9/3014 17/62 20/6315 8/61 24/6416 13/47 27/4617 21/34 14/3518 11/72 15/6819 6/187 13/18920 86/286 86/26321 4/33 15/3222 15/50 12/5023 7/22 19/3124 15/132 13/6725 15/71 16/7126 6/29 15/3127 7/68 17/6928 24/215 47/21329 19/148 28/15030 6/19 18/2531 2/47 11/45
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Chapter 2. Antiplatelet data
Table 2.2: The W2 data: 27 RCTs of aspirin dataStudy number Number of patientsAspirin + Dipyridamole (A) Aspirin (B) Control (C)event/total event/total event&total1 3/31 7/30 13/352 6/12 6/9 4/93 3/30 9/32 13/344 0/100 4/100 5/1005 6/18 8/16 8/256 1/11 2/10 4/117 0/11 2/14 1/148 13/75 35/759 12/85 24/7510 3/38 14/6611 1/30 11/3612 20/32 21/3213 10/20 8/2014 8/21 8/2215 3/13 6/1516 1/19 7/1917 6/40 14/4018 42/153 33/15019 5/702 11/67920 9/56 11/4921 9/357 32/35722 16/50 12/5023 7/138 17/14024 27/66 29/6325 16/44 20/4426 7/26 4/2527 11/58 23/59
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Chapter 3
Meta-analysis of multi-arm trialsusing normal approximation approah
3.1 IntrodutionAs desribed in Chapter 1, in standard two-arm omparison, evidenes from two treatmentshave been ombined diretly in meta-analysis. In multi-arm trials, we aim to summarizethe studies providing more than two arms to estimate the overall treatment e�ets from thepair-wise treatment omparison. Some studies in multi-arm trials might give useful infor-mation on indiret omparison in a situation where the treatments have not been diretlyompared to the ontrol group. Treatment omparisons in meta-analysis have been dividedinto two types (Glenny et al., 2005). One is to ompare two treatments diretly, alled diretomparison, or head-to-head omparison. The other is to use information from indiret om-parisons. For example, from antiplatelet data given in Table 2.1 of Chapter 2, there are threetreatment omparisons available: treatments A, B and C; the ontrol group of meta-analysisis treatment C. Three groups of studies ompare treatment A versus C, treatment B versusC, and treatment A versus B, respetively. If our aim is to ompare treatment A versusB then the studies omparing treatment A versus C and treatment B versus C provide the27



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahindiret omparison for treatment A versus B. The diret and indiret omparisons for RCTsin meta-analysis have been explored by several authors (Buher et al., 1997; Lumley, 2002;Song et al., 2003; Lu and Ades, 2004, 2006). This hapter proposes the model for multi-armtrials approximated by a normal approximation model (Chootrakool and Shi, 2008).The hapter is organized as follows. We begin by introduing the data struture of multi-arm trials in Setion 3.2. Setion 3.3 disusses the normal approximation model using theempirial logisti transform. The model on a log-odds sale is performed in Setion 3.4, andthe diret and indiret omparisons are given. Setion 3.5 desribes the model on a log-oddsratio sale inluding both omparisons. The maximum likelihood method and its propertiesare illustrated in Setion 3.6. We give the standard errors of MLEs in Setion 3.7. In Setion3.8, the proposed models in the hapter are applied with the W1 data, given in Chapter 2.The last setion onludes the ideas of this hapter and gives some omments.3.2 The data struture of multi-arm trialsSuppose that M RCTs of a meta-analysis make multi-arm omparisons between K + 1treatments. The indies i = 1; : : : ;M and j = 0; 1 : : : ; K stand for the studies and thetreatments respetively, where the index j = 0 stands for the ontrol group. For the ithstudy, let rij represent the number of an unsuessful outome on treatment j and let nijdenote the number of observation in the orresponding group. Let �ij be the probability ofan unsuessful outome of a patient given the treatment j (treated as a failure) in the ithstudy. The rij has a binomial distributionrij � Bin(�ij ; nij); i = 1; : : : ;M and j = 0; 1 : : : ; K: (3.1)Some studies might not have all the treatments available. For example, from the W1 data,treatment C is not available in the studies 7 - 10. The data struture is analogous to an28



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahinomplete-bloks design, whih has been investigated by several authors: She�'e (1959,page 161), Pook (1989, page 121) and Hinkelmann and Kempthorne (1994, page 290). Tode�ne a data struture of multi-arm trials, we shall introdue an index set Ji omprising thetreatments involved in the ith study. The data struture of multi-arm trials is representedas D = f(rij; nij) : i = 1; :::; M ; j 2 Jig : (3.2)3.3 Normal approximation model based on empiriallogisti transformAording to the binomial distribution (3.1), the mean and variane of rij are nij�ij andnij�ij(1 � �ij) respetively. An important property of the binomial distribution is thatas the number of observation nij inreases, the degree of asymmetry in the distributiondereases and also the binomial distribution beomes more losely approximated by thenormal distribution (Collett, 1991, page 20). Let  (x) be the funtion log (x=1� x) and letÆij be the parameter of interest, given by Æij =  (�ij). From Cox (1970, page 31) if nij islarge and �ij is not too near 0 or 1, we substitute �ij by rij=nij in  (�ij). Then the Æij isreasonably estimated by Xij =  (rij=nij) = log� rijnij � rij� ; (3.3)whih is nearly normally distributed and we all Xij the empirial logisti transform of(rij; nij). As nij approahes in�nity, the asymptoti mean and variane are respetivelyE(Xij) = log� �ij1� �ij� and V ar(Xij) = nijrij(nij � rij) :Modifying the transformation, the empirial logisti transform Xij and V ar(Xij) need modi-�ation only if rij = 0 or nij when the logisti transform in (3.3) is unde�ned. With extensive29



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahdata, oasional extreme values of rij are to be expeted, even if on the whole the onditionsfor large-sample theory apply. Haldane and Smith (1948) and Ansombe (1956) proposed atransform de�ned by Xij(a) = log� rij + anij � rij + a� : (3.4)The idea is to hoose the onstant a so that the expeted value of (3.4) is as nearly as possibleÆij = log(�ij=(1 � �ij)). As a result an appropriate hoie of a is 1=2. We then have theempirial logisti transform asXij = log� rij + 0:5nij � rij + 0:5� : (3.5)The asymptoti mean and variane are respetivelyE(Xij) = log� �ij1� �ij� and V ar(Xij) = nij + 1(rij + 0:5)(nij � rij + 0:5) : (3.6)3.4 Empirial log-odds modelIn linial trials without a ontrol treatment, it is impossible to be sure that any responseis due solely to the e�et of the treatment and the importane of a new treatment an beover-stated. Thus the ontrol treatment may be the standard treatment (a positive ontroltreatment) or, if one does not exist, may be a negative ontrol treatment, whih an be aplaebo (a treatment whih looks and tastes like the new drug but whih does not ontainany ative ompound) (Petrie and Sabin, 2005, page 34). The ontrol treatment orrespond-ing to eah study shall be alled the `baseline treatment '. In a meta-analysis, more thanone studies are ombined so it is possible to have more than one baseline treatment in themeta-analysis. In omparing in multi-arm trials, we an have only one ontrol treatmentin a meta-analysis, thus we shall all the ontrol treatment for a meta-analysis `ontrol group'.30



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approah
This setion presents the model using the empirial logisti transform and based on therequirement of (rij; nij) that nij is large (larger than 20) and rij is not too small (near 0)and not too lose to nij. We start with a speial ase of the model. Then the general modelwill be explained inluding the diret and indiret omparisons.3.4.1 Meta-analysis of multi-arm trialsWe �rst de�ne a model for a speial ase in whih eah of the M studies inludes all K +1 treatments. For this speial ase, the ontrol group of meta-analysis and the baselinetreatment for all studies are treatment `0'. There is a diret omparison only in this meta-analysis. Suppose that ri0 and rij have binomial distributions Bin(ni0; �i0) and Bin(nij; �ij)respetively for j = 1; : : : ; K. The data struture is given in (3.2) where the set Ji for allMstudies is f0; : : : ; Kg. For the ith study, let Xi0 and Xij be the empirial logisti transforms(or empirial log-odds) for (ri0; ni0) and (rij; nij) respetively, as de�ned in (3.5). Based onthe disussion in Setion 3.3, normal approximation models for Xi0 and Xij on the log-oddssale an be de�ned byXi0 = �i + �i0�i0; (3.7)Xij = �i + Æi;0j + �ij�ij; j = 1; : : : ; K: (3.8)They are alled an empirial log-odds model. The parameters �2i0 and �2ij are the varianesof Xi0 and Xij respetively, approximated from (3.6). The parameters �i0 and �ij are inde-pendent, follow the standard normal distributions and orrespond to the random samplingerrors of the models Xi0 and Xij respetively. The random sampling errors (�i0�i0 and �ij�ij)are therefore independent and normally distributed as N(0; �2i0) and N(0; �2ij) respetively.The �i in both models are the trial e�ets representing the di�erene aross studies. TheÆi;0j is a parameter of interest, whih is the treatment e�et between the ontrol group and31



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahtreatment j in the ith study. It is obtained from Æi;0j = Æij � Æi0, alled the log-odds ratiobetween treatment j and the ontrol group.Trial e�etTwo assumptions are usually made about the trial e�et �i. The �rst one is that the triale�ets are assumed to be study-level e�ets, whih means that the �is are di�erent param-eters and are treated as nuisane parameters in the model. We need to inlude M di�erentunknown parameters in the model. The seond one is that we may assume a model for the�i's. A speial ase is to assume that the trial e�et is a �xed e�et, de�ned by �i = �0.Conversely, it may be assumed to be a random e�et, given by �i � N(��0; � 2�0), where��0 is the overall mean of the trial e�et and ��0 measures the magnitude of the variationbetween the studies. To apture skewness and heavy tails in the distribution of the triale�et, a mixture of normal distributions may be used, see Domenii et al. (1999). However,in pratie the trial e�ets in most meta-analysis would not satisfy any model sine di�erentexperiment designs and di�erent data analysis models are used in di�erent studies. Most ofthe existing methods therefore used the �rst assumption. However, the number of unknownparameters (for the trial e�et) is the same as the number of studies if the �rst assumptionof the trial e�et is used. This will result in some theoretial and omputational problems.The auray of the estimation depends on the sample size of eah study not the overallsample size of the pool in the meta-analysis. The estimates of some parameters may not beonsistent, see Lubin (1981). Due to the large number of parameters, the omputation isusually unstable. We therefore propose the empirial log-odds ratio model in Setion 3.5.Treatment e�etThe treatment e�et an be assumed to be a �xed e�et or a random e�et. The �xed e�etis de�ned as Æi;0j = �0j, where �0j is a �xed treatment e�et between the ontrol groupand treatment j for all studies. There are several di�erent ways to deal with the random32



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahe�ets, for example, see DerSimonian and Laird (1986). The treatment e�et is assumed tobe random and normally distributed as Æi;0j � N(�0j; � 20j)From the models (3.7) and (3.8), we shall assume that the trial e�et follows the �rst as-sumption and the treatment e�et is a random e�et, i.e. all the �is are di�erent parametersand the treatment e�et is a random e�et N(�0j; � 20j). The treatment e�ets Æi;0j and Æi;0kfor j 6= k and j; k 2 f1; : : : ; Kg may be dependent. This is beause they involve Æi0 in thesame way; thus the ovariane between the treatment e�ets Æi;0j and Æi;0k are not equal tozero (Cov(Æi;0j; Æi;0k) 6= 0). Let �jk be the orrelation oeÆient between eah pair (Æi;0j; Æi;0k)for j 6= k and j; k 2 f1; : : : ; Kg. The treatment e�ets Æi;0j, for j = 1; : : : ; K in the ith studyare therefore modelled by the following multivariate normal distribution,0BBBBBBB� Æi;01Æi;02...Æi;0K
1CCCCCCCA �MVN 0BBBBBBB�

0BBBBBBB� �01�02...�0K
1CCCCCCCA ;0BBBBBBB� � 201 �12�01�02 : : : �1K�01�0K�12�01�02 � 202 : : : �2K�02�0K... ... . . . ...�1K�01�0K �2K�02�0K : : : � 20K

1CCCCCCCA
1CCCCCCCA : (3.9)

The �0k is the overall mean e�et between the ontrol group and the treatment k. The � 20kis a measure of between-study heterogeneity of the treatment e�et Æi;0k. The orrelationoeÆient �jk measures the amount of linear assoiation between the Æi;0j and the Æi;0k. Alsothe �jk�0j�0k is the ovariane between the treatment e�ets Æi;0j and Æi;0k. From (3.9), theentries on the diagonal of the ovariane matrix are often alled the heterogeneity param-eters of the treatment e�ets. The heterogeneity parameter measures the variation in thetreatment e�et between studies. If there is a very little variation between studies then a�xed e�et may be appropriate for the treatment e�et. The useful properties of the modelparameterisation are the orrelation struture of the ovariane matrix:1. An important speial ase is that the heterogeneity parameters of the treatment e�etsare assumed to be the same, alled homogeneity of varianes. The orrelation oeÆ-33



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahients between eah pair (Æi;0j; Æi;0k), for j 6= k, and j; k 2 f1; : : : ; Kg are equal andtake the value 1=2 beause the treatment e�ets Æi;0j and Æi;0k involve log (�i0=1� �i0)in the same way. The ovariane matrix in (3.9) for this assumption is
� 20BBBBBBB� 1 � : : : �� 1 : : : �... ... . . . ...� � : : : 1

1CCCCCCCA ; where � = 1=2:
2. The above assumption may not be reasonable in some appliations. We thus allow theheterogeneity parameters of the treatment e�ets to be di�erent for eah treatmente�et, alled heterogeneity of varianes. The ovariane matrix will be in the standardform as shown in (3.9).3.4.2 Meta-analysis of multi-arm trials with both diret and indi-ret omparisonsIn some irumstanes, a meta-analysis may ontain di�erent information to the speialase. For example, some studies might ompare fewer than K + 1 treatments, or somebaseline treatments may be di�erent, or both ases ould our simultaneously. We shallpropose a general model adapted from the speial ase desribed in the previous setion.Let b(i) denote the baseline treatment orresponding to the ith study, whih an be theontrol group or any other treatments. As mentioned earlier about indiret omparison, ina situation that the treatments in some studies an not be ompared diretly to the ontrolgroup, we need to use evidene from the external studies. To make it lear, if b(i) = 0 thenthe diret omparison is involved in this study. Conversely, if b(i) 6= 0 then the study makesindiret omparison. Let J(i) = Jin fb(i)g represent the set of treatments involved in the ithstudy but exluding the baseline treatment b(i). Let ki and ki + 1 denote the number of34



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahtreatments in the sets J(i) and Ji respetively. The rib(i) and rij are binomially distributedas Bin(nib(i); �ib(i)) and Bin(nij ; �ij) for j 2 J(i) respetively. The empirial log-odds modelsfor the general ase in the ith study are de�ned asXib(i) = �i + �ib(i)�ib(i); (3.10)Xij = �i + Æi;b(i)j + �ij�ij; j 2 J(i): (3.11)These models an be used for both omparisons. Aording to above disussion, let D and Ibe sets of studies that make the diret and indiret omparisons respetively. The assump-tions of the trial e�et and the treatment e�et are similar to the speial ase (assumed to bedi�erent parameters and random e�et respetively). The treatment e�et Æi;b(i)j in (3.11)an be diret treatment e�et if i 2 D or indiret treatment e�et if i 2 I: they are de�nedas follows.Æi;b(i)j = 8><>: Æi;0j � N(�0j; � 20j) if i 2 D;Æi;0j � Æi;0b(i) � N(�0j � �0b(i); � 20j + � 20b(i) � 2�jb(i)�0j�0b(i)) if i 2 I: (3.12)where �jb(i) is the orrelation oeÆient between Æi;0j and Æi;0b(i). For example, from the W1data, suppose the treatment A, B, C represent aspirin plus dipyridamole, aspirin alone andontrol group respetively. The baseline treatment for the studies 7-10 is B thus the indirettreatment e�et an be written asÆi;AB = Æi;AC � Æi;BC � N(�AC � �BC ; � 2AC + � 2BC � 2�AB�AC�BC); i = 7; : : : ; 10:Next, we shall onsider the treatment e�et in a matrix form, of whih will be in the form ofan index vetor and the treatment e�et model from the speial ase. From the treatmente�et model (3.9), let Æi;0 and �0 represent the vetors of (Æi;0j; j = 1; : : : ; K)t and (�0j; j =1; : : : ; K)t respetively where the supersript t stands for matrix transposition and let 
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahrepresent the K �K ovariane matrix. The model (3.9) an be written asÆi;0 �MVN(�0;
0): (3.13)This is alled the basi model of random treatment e�et. Let Fij be the index vetor oflength K onsisting of elements 0 and 1 orresponding to Æi;b(i)j, given by
Fij = 8>>>><>>>>: (0; : : : ; 0|{z}b(i)th; : : : 1|{z}jth ; : : : ; 0) if i 2 D;(0; : : : ; �1|{z}b(i)th; : : : ; 1|{z}jth ; : : : ; 0) if i 2 I: (3.14)

Now, the random e�et Æi;b(i)j an be written in the form of (3.13) and (3.14):Æi;b(i)j = FijÆi;0 � N(Fij�0;Fij
0Ftij): (3.15)As before, the ovariane between the treatment e�ets Æi;b(i)j and Æi;b(i)k for j 6= k andj; k 2 J(i) may be dependent. For the ith study, let Fi be the following ki �K matrixFi = (Fij)ki�K; for j 2 J(i); (3.16)where Fij is as de�ned in (3.14). Let Æi denote the vetor (Æi;b(i)j ; j 2 J(i))t then we haveÆi = FiÆi;0 �MVN(�i;
i); (3.17)where �i = Fi�0 and 
i = Fi
0Fti: (3.18)Referring to the assumptions of ovariane matrix 
0 in the previous subsetion, the orre-lation struture of Æi an be onsidered aordingly. More disussion will be given in Setion3.8. 36



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approah3.5 Empirial log-odds ratio modelTo avoid the problem of many nuisane parameters and inonsistent estimate, the trial e�etsan be eliminated from the empirial log-odds models by using the empirial log-odds modelon the log-odds ratio sale. Those models in Setion 3.4.1 and 3.4.2 are onsidered here asfollowing subsetions.3.5.1 Meta-analysis of multi-arm trialsLet Yi;0j be the empirial log-odds ratio between (rij; nij) for j = 1; : : : ; K and (ri0; ni0).This an be written as Yi;0j = Xij �Xi0. Aording to the empirial log-odds models (3.7)and (3.8) in the speial ase, they an be de�ned on the log-odds ratio sale asYi;0j = Æi;0j + �i;0j�i;0j; j = 1 : : : ; K: (3.19)We shall all this an empirial log-odds ratio model. Notie that the trial e�et is eliminatedin the model. The Æi;0j is a random treatment e�et de�ned in (3.9). The variane �2i;0j isobtained from a summation of �2i0 and �2ij. For notational onveniene, let ei;0j denote arandom sampling error �i;0j�i;0j for the model Yi;0j and normally distributed as N(0; �2i;0j).The model an be written as Yi;0j = Æi;0j + ei;0j. The ei;0j and ei;0k are not independent forj 6= k and j; k 2 f1; : : : ; Kg, derived asCov(ei;0j; ei;0k) = Cov(Xij �Xi0; Xik �Xi0) = V ar(Xi0) = �2i0: (3.20)
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahThe random sampling errors ei;0j are distributed as a multivariate normal distribution, givenby 0BBBBBBB� ei;01ei;02...ei;0K
1CCCCCCCA �MVN 0BBBBBBB�

0BBBBBBB� 00...0
1CCCCCCCA ;0BBBBBBB� �2i;01 �2i0 : : : �2i0�2i0 �2i;02 : : : �2i0... ... . . . ...�2i0 �2i0 : : : �2i;0K

1CCCCCCCA
1CCCCCCCA ; (3.21)

where �2i;0j = V ar(Yi;0jjÆi;0j) = �2i0+�2ij. If we assume a random e�et model for Æi;0j as givenin (3.9), the empirial log-odds ratio model for the ith study is the following multivariatenormal distribution:0BBBBBBB� Yi;01Yi;02...Yi;0K
1CCCCCCCA �MVN 0BBBBBBB�

0BBBBBBB� �01�02...�0K
1CCCCCCCA ;0BBBBBBB� � 201 + �201 �12�01�02 + �2i0 : : : �1K�01�0K + �2i0�12�01�02 + �2i0 � 202 + �202 : : : �2K�02�0K + �2i0... ... . . . ...�1K�01�0K + �2i0 �2K�02�0K + �2i0 : : : � 20K + �20K

1CCCCCCCA
1CCCCCCCA :(3.22)The �0k is the overall mean e�et between the ontrol group and the treatment k obtainingfrom the mean of the treatment e�et. The term � 20k + �20k is the variane of Yi;0k. The term�jk�0j�0k + �2i0 is the ovariane between Yi;0j and Yi;0k where j 6= k and j; k 2 f1; : : : ; Kg.3.5.2 Meta-analysis of multi-arm trials with both diret and indi-ret omparisonAs in the previous subsetion, let Yi;b(i)j be the empirial logisti transform between (rij; nij)and (rib(i); nib(i)). The empirial log-odds models (3.10) and (3.11) an be de�ned on thelog-odds ratio sale by Yi;b(i)j = Æi;b(i)j + �i;b(i)j �i;b(i)j ; j 2 J(i): (3.23)
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahThe variane of �2i;b(i)j is approximated by d�2ib(i)+�2ij. The random treatment e�et model forÆi;b(i)j is given in (3.15). As de�ned in the previous setion, let ei;b(i)j represent the randomsampling error �i;b(i)j�i;b(i)j . The ei;b(i)j an be given in the form of the index vetor andrandom sampling errors model. From (3.21), let ei;0 be the vetor (ei;0j; j = 1; : : : ; K)t andlet �i;0 be the K � K ovariane matrix. The model for random sampling errors given in(3.21) an then be rewritten as ei;0 �MVN(0;�i;0): (3.24)We all it as a basi model of random sampling errors. Using the index matrix de�ned in(3.14), the random sampling error ei;b(i)j is taken in the form ofei;b(i)j = Fijei;0 � N(0;Fij�i;0Ftij): (3.25)Let ei be the vetor (ei;b(i)j ; j 2 J(i))t. From (3.21), we haveei = Fiei;0 �MVN(0;�i); (3.26)where Fi is given in (3.16) and �i = Fi�i;0Fti. Similarly, let Yi;0 be the vetor (Yi;0j; j =1; : : : ; K)t. The basi model for empirial log-odds ratio model (3.22) an be de�ned asYi;0 �MVN(�0;
0 +�i;0); (3.27)and the model (3.23) an be de�ned byYi;b(i)j = FijYi;0 � N(�i;Fij
0Ftij + Fij�i;0Ftij): (3.28)
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahLet Yi be the vetor (Yi;b(i)j, j 2 J(i))t, whih may be written as Yi = FiYi;0. In matrixnotation, the model (3.23) is Yi = Æi + ei �MVN(�i;Vi); (3.29)where Æi and ei are given in (3.17) and (3.26) respetively. The �i is given in (3.18) and theovariane matrix Vi = 
i +�i.3.6 Maximum likelihood estimationFrom model (3.29), Yi is distributed as a multivariate normal distribution MVN(�i;Vi).The probability density funtion for Yi is in the formp(Yi) = 1(2�)ki=2 jVij1=2 e�(Yi��i)0V�1i (Yi��i)=2: (3.30)We aim to estimate the unknown parameters for the meta-analysis onsisting of M studies.Let � be the olletion of all unknown parameters of � and 
. Suppose that � an take anyvalue within an admissible range �. Let Y denote the olletion Yi for i = 1; : : : ;M . Thelikelihood funtion for the meta-analysis is de�ned as L(�jY), taking the formL(�jY) = 1QMi=1(2�)k2i =2 jVijki=2 e�PMi=1(Yi��i)0V�1i (Yi��i)=2: (3.31)The method of maximum likelihood (ML) is to �nd the value b� within � whih maximisesthe likelihood funtions of �. In other wordsb� = arg max�2�L(�jY):This is the maximum likelihood estimator of �. The likelihood funtion L(�jY) representsthe joint probability, or likelihood of observing data that has been olleted in the meta-40



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahanalysis. The term joint probability means a probability that ombines the ontributionsof all the studies in the meta-analysis. Let ln stand for the log-likelihood funtion in thenormal approximation model based on the empirial logisti transform. The MLE is usuallydetermined by maximizing the log-likelihood funtion ln(�jY) = logL(�jY). Di�erentiatingln(�jY) with respet to �, termed as a sore funtion, givesU(�) = �ln(�jY)�� :By setting the sore funtion to zero and solving for �, the MLE b� an be obtained.3.7 Standard error of parameter estimationFollowing the estimation of the unknown parameters in the empirial log-odds ratio model,suppose that m unknown parameters �1; �2; : : : ; �m are in the set � of a meta-analysis. Them derivatives of the log-likelihood funtion with respet to �1; �2; : : : ; and �m are alled theeÆient sores, whose jth omponent is �ln(�jY)=��j for j = 1; 2; : : : ; m. Now let H(�) bethe m�m matrix of seond partial derivatives of ln(�jY) ,where the (j; k)th entry of H(�)is �2ln(�jY)��j��k ;for j = 1; 2; : : : ; m and k = 1; 2; : : : ; m. The observed Fisher information (Palmgren, 1981)I(�) with (j; k)th entry is given by(I(�))j;k = ���2ln(�jY)��j��k � ; (3.32)for j = 1; 2; : : : ; m and k = 1; 2; : : : ; m. The observed Fisher information matrix I(�)plays a partiularly important role in maximum likelihood estimation. The inverse of I(�),denoted by I(�)�1, is the asymptoti variane-ovariane matrix of the maximum likelihoodestimates of the unknown parameters. Additionally, standard errors for MLEs an be found41



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahapproximately by removing the dependene of I(�) on �, i.e. I(�) � I(b�). In other words,the asymptoti standard error (s.e.) of b�j is the square root of the jth diagonal entry ofI(b�)�1, given by s:e:(b�j) �qI(b�)jj; (3.33)for j = 1; 2; : : : ; m. We an also determine approximately the ellipsoidal on�dene regionsfor � using (b� � �)tI(b�)(b� � �) � �2m:From the standard error of b�j, 100(1-)% on�dene limits for the orresponding true value�j are b�j � z=2s:e:(b�j); (3.34)where z=2 is the upper =2 point of the standard normal distribution. By the propositionof onsisteny (Bulmer, 1979), suppose that the estimator b� = (b�1; : : : ;�m) is the MLE for� = (�1; : : : ; �m). Then the b�j are onsistent for �j where j = 1; : : : ; m. By the propositionof asymptoti normality (Bulmer, 1979), the estimator b� is approximately distributed asb� � N(�; I(�)�1).3.8 Appliation to antiplatelet therapy data (W1)In this setion, we shall use the proposed model to the W1 data given in Table 2.1 of Chapter2. Aording to this data, most of total number of patients are large (larger than 20), thusthe normal approximation model an be applied.3.8.1 The modelFrom the W1 data, there are 31 studies (or RCTs) in total, investigating the use of aspirinplus dipyridamole or aspirin alone in omparison with the ontrol group. The studies om-pare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and ontrol group42



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approah(C). Six studies ompare A, B and C, four studies ompare A and B, thirteen studies om-pare A and C and seven studies ompare B and C. For onveniene, we partition the datasetinto four groups of studies,G1 = f1; : : : ; 6g; G2 = f7; : : : ; 10g; G3 = f11; : : : ; 24g and G4 = f25; : : : ; 31g;omparing treatment A versus B versus C, A versus B, A versus C and B versus C, respe-tively. Let riA, riB and riC be the numbers of patients who have reolusions on treatmentsA, B and C respetively where the ith study is in G1[G2[G3, G1[G2[G4 and G1[G3[G4,respetively. The total numbers of patients are niA, niB and niC respetively. Let �iA, �iBand �iC be the probabilities of patients that have reolusions on treatments A, B and Crespetively in the ith study. The riA; riB and riC are thus binomially distributed asriA � Bin(�iA; niA); i 2 G1 [G2 [G3;riB � Bin(�iB ; niB); i 2 G1 [G2 [G4;riC � Bin(�iC ; niC); i 2 G1 [G3 [G4:Suppose that XiA; XiB and XiC are the empirial logisti transforms for (riA; niA); (riB; niB)and (riC ; niC) respetively and are formulated in (3.5). For example, the empirial logistitransform of XiA is de�ned by log(riA+0:5)=(niA�riA+0:5). From the disussion in Setion3.3, the XiA, XiB and XiC have approximate normal distributions with means and varianesgiven in (3.6). For example, the XiA has an approximate normal distribution with meanlog(�iA=(1� �iA)) and variane �2iA = (niA + 1)=((riA + 0:5)(niA � riA + 0:5)). The normalapproximation models using the empirial logisti transforms an therefore be applied withthe data.The baseline treatment for G1, G3 and G4 is the ontrol group, an be written as b(i) = Cfor i 2 G1 [G3 [G4. While the baseline treatment for G2 is the treatment B, b(i) = B for43



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahi 2 G2. The meta-analysis involves the diret omparison in G1, G3 and G4 and indiretomparison in G2. The sets for both omparisons are D = fG1; G3; G4g and I = fG2grespetively. First, by using the models (3.7) and (3.8), the empirial log-odds models foreah group an be given by
i 2 G1; 8>>>><>>>>: XiC = �i + �iC�iC ;XiA = �i + Æi;AC + �iA�iA;XiB = �i + Æi;BC + �iB�iB;i 2 G2; 8><>: XiB = �i + �iB�iB;XiA = �i + Æi;AB + �iA�iA;i 2 G3; 8><>: XiC = �i + �iC�iC ;XiA = �i + Æi;AC + �iA�iA;i 2 G4; 8><>: XiC = �i + �iC�iC ;XiB = �i + Æi;BC + �iB�iB:The trial e�ets are assumed to be di�erent and the treatment e�ets Æi;AC , Æi;BC and Æi;ABare assumed to be random as in (3.12). The �iA, �iB and �iC are independent, following thestandard normal distributions and orresponding to the random sampling errors of XiA, XiBand XiC respetively. All random sampling errors are therefore independent and normallydistributed as N(0; �2iA), N(0; �2iB) and N(0; �2iC), respetively.Next, we will determine the basi model for the random treatment e�et. Let Æi;0 and �0 rep-resent the vetors (Æi;AC ; Æi;BC)t and (�AC ; �BC)t respetively and let 
0 denote the 2�2 o-variane matrix orresponding to Æi;0. Thus, the model Æi;0 is distributed as MVN(�0;
0),i.e. 0B� Æi;ACÆi;BC 1CA �MVN 0B�0B� �AC�BC 1CA ;0B� � 2AC ��AC�BC��AC�BC � 2BC 1CA1CA : (3.35)
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahThe �AC and �BC are the overall mean e�ets between the ontrol group C and treatmentsA and B, respetively. The � 2AC and � 2BC measure the between-study heterogeneities of thetreatment e�ets Æi;AC and Æi;BC respetively. For notational onveniene, we let � be theorrelation oeÆient between Æi;AC and Æi;BC . By using the index matrix given in (3.16),the index matrix Fi for G1 is the 2 � 2 identity matrix; the Fi for G2, G3 and G4 are(1;�1), (1; 0) and (0; 1) respetively. The treatment e�et for the ith study is de�ned asÆi = FiÆi;0 � MVN(Fi�0;Fi
0Fti). The model Æi for G1 onsisting of three arms whih ismodelling by the basi model (3.35). The Æi for G2 is given byÆi;AB = FiÆi;0 = Æi;AC � Æi;BC � N(�AC � �BC ; � 2AC + � 2BC � 2��AC�BC): (3.36)Similarly the Æi;AC and Æi;BC for G3 and G4 are normally distributed as N(�AC ; � 2AC) andN(�BC ; � 2BC) respetively. Now we have the treatmenet e�et models for eah group. Asmentioned before, we have 31 nuisane parameters in the models. To overome the problemof inonsisteny, the empirial log-odds ratio models are suggested here in order to eliminatethe trial e�ets.To present the empirial log-odds ratio models for the data, we �rst need to identify thebasi model for random sampling errors and empirial log-odds ratio models. Let ei;0 be thevetor (ei;AC ; ei;BC)t and let �i;0 denote the 2� 2 ovariane matrix of ei;0. The basi modelei;0 is normally distributed as MVN(0;�i;0), given by0B� ei;ACei;BC 1CA �MVN 0B�0B� 00 1CA ;0B� �2i;AC �2iC�2iC �2i;BC 1CA1CA : (3.37)To obtain the basi model for empirial log-odds ratio models, letYi;0 be the vetor (Yi;AC; Yi;BC)t.
45



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahThen, Yi is distributed as MVN(�0;
0 +�i;0), i.e.0B� Yi;ACYi;BC 1CA � N 0B�0B� �AC�BC 1CA ;0B� � 2AC + �2i;AC ��AC�BC + �2iC��AC�BC + �2iC � 2BC + �2i;BC 1CA1CA : (3.38)By setting Yi = FiYi;0, the Yis for G1, G2, G3 and G4 are (Yi;AC; Yi;BC)t, Yi;AB, Yi;AC andYi;BC respetively. The Æi for eah group is the same as de�ned in the empirial log-oddsmodels. The random sampling error ei for eah group is Fiei;0 � MVN(0;�i); where�i = Fi�i;0Fti. Speially, the log-odds ratio models are
i 2 G1; 8><>: Yi;AC = Æi;AC + ei;AC ;Yi;BC = Æi;BC + ei;BC ; (3.39)i 2 G2; Yi;AB = Æi;AB + ei;AB; (3.40)i 2 G3; Yi;AC = Æi;AC + ei;AC; (3.41)i 2 G4; Yi;BC = Æi;BC + ei;BC : (3.42)The trial e�ets are no longer in the models. The model (3.39) is normally distributed asshown in (3.38). Additionally the empirial log-odds ratio models (3.40)-(3.42) for G2 - G4are normally distributed asN(�AC��BC ; � 2AB+�2i;AB), N(�AC ; � 2AC+�2i;AC) andN(�BC ; � 2BC+�2i;BC) respetively, where � 2AB = � 2AC + � 2BC � 2��AC�BC .3.8.2 Maximum likelihood estimationTo make inferenes, the maximum likelihood method is used to estimate the unknown pa-rameters in the empirial log-odds ratio models (3.39) - (3.42). The aim is to estimatethe unknown parameters for the meta-analysis onsisting of 31 studies. The log-likelihood
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahfuntion ln(�) for the empirial log-odds ratio models is performed asXi2G1 log p(Yi;AC; Yi;BC j�) +Xi2G2 log p(Yi;ABj�) +Xi2G3 log p(Yi;ACj�) +Xi2G4 log p(Yi;BC j�):The ln(�) is the summation of the log-likelihoods from G1 to G4 where G1, G3 and G4 are inthe set D and G2 is in the set I. The p(Yi;AC; Yi;BCj�), p(Yi;ABj�), p(Yi;ACj�) and p(Yi;BC j�)represent the joint probabilities of observing data that has been olleted in G1, G2, G3 andG4 respetively. We used the funtion nlme in the software R to alulate the MLEs (RDevelopment Core Team, 2007). As desribed in Setion 3.4.1, there are two assumptions ofheterogeneity parameters: homogeneity and heterogeneity varianes. Sine there are only 4studies in G2, in absene of additional information, we assume homogeneity of variane forthe model. The heterogeneity parameters for the models (3.39) - (3.42) are assumed to bethe same: �AC = �BC = �AB = � and the orrelation oeÆient between the ÆAC and ÆBCtakes the value 1=2. The olletion of unknown parameters is therefore � = f�AC; �BC ; � 2g.For onveniene, let �1, �2 and �3 stand for �AC , �BC and � 2 respetively. To estimate thestandard error of maximum likelihood estimator, let lij stand for the related partition of theseond derivatives of the log likelihood funtion in terms of �i and �j. Using the equation(3.32), the 3� 3 observed Fisher information matrix I(�) is written as
I(�) = �0BBBB� l�1�1(�) l�1�2(�) l�1�3(�)l�2�1(�) l�2�2(�) l�2�3(�)l�3�1(�) l�3�1(�) l�3�3(�)

1CCCCA : (3.43)
Standard errors an be alulated from the inverse matrix of I(�).3.8.3 Numerial resultsThe estimates of the unknown parameters �AC , �BC and � are shown in Table 3.1.
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahTable 3.1: The results for the empirial log-odds ratio models on the log-odds ratio (LOR)and odds ratio (LO) salesÆAB ÆAC ÆBC�AB �AB �AC �AC �BC �BCLOR 0.108146 0.275320 -0.568930 0.275320 -0.677076 0.275320(SD) (0.118645) (0.136747) (0.161554) 0.136747) (0.150660) (0.136747)95%CI (-0.12,0.34) (0.007,0.54 (-0.88,-0.25) (0.007,0.54) (-0.97,-0.38) (0.007,0.54)OR 1.114210 0.566130 0.50810095%CI (0.88,1.40) (0.41,0.77) (0.37,0.68)
They are denoted by d�AC , d�BC and b� , respetively. Note that the estimate of �AB is obtainedfrom d�AC � d�BC . The overall means of the treatment e�ets A versus B, A versus C andB versus C are 0.108146, -0.568930 and -0.677076 respetively and the variations betweenstudies in those omparisons are the same, 0.275320. Taking the inverse of the observedFisher information matrix (3.43), the asymptoti variane-ovariane matrix of the unknownparameters for the models (3.39) - (3.42) is

I(b�)�1 = 0BBBB� 0:026110 0:013530 �0:00400:013530 0:022732 �0:001220�0:0040 �0:001220 0:018778
1CCCCA (3.44)

From this matrix, the asymptoti varianes of d�AC, d�BC and b� are the entries on the diagonalof the matrix, 0.26110, 0.022732 and 0.018778 respetively. As a result their asymptotistandard errors are 0.161554, 0.150660 and 0.136747 respetively. The variane of d�AB isestimated from V ar(d�AB) = V ar(d�AC) + V ar(d�BC)� 2� se(d�AC)se(d�BC):The standard error of this estimate is 0.118645. Using these results, approximate 95%48



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahon�dene intervals on the log-odds-ratio sale for the estimators of �AB, �AC,�BC and � are(�0:12; 0:34), (�0:88;�0:25), (�0:97;�0:38) and (0:007; 0:54) respetively. All treatmente�ets are estimated on the LOR sale. The overall means of the treatment e�ets ÆAB, ÆACand ÆBC are 1.114210, 0.566130 and 0.508100 on the OR sale. The results indiate thatboth treatment A and treatment B redue the rates of reolusion signi�antly by over 40%ompared to the ontrol group. However the di�erene between treatment A and treatmentB is almost negligible although treatment B is slightly better than treatment A (improvedby about 11%). The on�dene intervals for the true values, �AB, �AC and �BC on the ORsale an be alulated for the related CI on the LOR sale, whih are (0.88,1.40), (0.41,0.77)and (0.37,0.68) respetively.3.9 DisussionThis hapter has demonstrated the normal approximation model based on the empiriallogisti transform to multi-arm trials data. We �rst proposed the speial ase of empiriallog-odds model with eah of M studies omprising all K +1 treatments. The model did notover all possible ases of multi-arm trials, e.g. if baseline treatments in some studies aredi�erent. Thus the general ase of the empirial log-odds model was onsidered to modelany multi-arm trial data set, inluding the diret and indiret omparisons. The treatmente�et was de�ned in term of both omparisons using the basi model of random treatmente�et. The mean and variane of the model that involves the indiret omparison annot beestimated diretly. Note that whenever there is no or insuÆient evidene of diret ompar-ison from RCTs, the indiret omparison may provide useful or supplementary informationon the treatment e�et. However the validity of the indiret omparisons depends on theinternal validity and similarity of the inluded studies, see Song et al. (2003); Lu and Ades(2006). Additionally, we also desribed the assumptions of heterogeneity parameters { ho-mogeneity and heterogeneity of varianes - for the model. Generally, the assumption ofvariane homogeneity has been most used , see e.g. Higgins and Whitehead (1996); Lu and49



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahAdes (2004, 2006).In pratie the trial e�ets in most meta-analysis would not satisfy any model (�xed e�etor random e�et) sine di�erent experiment designs and di�erent data analysis models areused in di�erent studies. Most of the existing methods assume that they are study-levele�et. We also use this assumpiton in this thesis. Additionally, the treatment e�ets areassumed to be random beause we do not believe that results from di�erent studies anddi�erent designs an have the same treatment e�et.From the empirial log-odds model mentioned above, the trial e�ets are di�erent, thus thenumber of unknown parameters (from the trial e�et) are the same as the number of studies.The estimation may be unstable as many parameters are involved in the model, espeiallyif the number of studies is large. The auray of estimation thus depends on the number ofindividual observations from eah study, e.g. if this number is large enough then the estimatemay be aurate. Also this may lead to a problem of inonsistent estimate. To avoid thisproblem, we suggested the empirial log-odds ratio model to eliminate the trial e�ets fromthe empirial log-odds model. There are at least three advantages of using the empiriallog-odds ratio model over other methods:(1) the model exludes the trial e�ets and give aonsistent estimate for treatment e�et while the other methods (e.g. the empirial log-oddsmodel) may give an inonsistent estimate in some irumstanes;(2) the approximation isusually quite good if the number of individual observations is not too small (the numberof samples in a single study should usually be larger than 20); (3) the omputation is veryeÆient and very stable, it onverges very fast for almost any starting point. It takes lessthan 2 seonds to get the results.From the appliation to the W1 data, the studies 7� 10 (G2) involve the indiret treatmente�et Æi;AB, obtained from Æi;AC � Æi;BC . As mentioned before, the orrelation oeÆients50



Chapter 3. Meta-analysis of multi-arm trials using normal approximation approahbetween the treatment e�ets under the assumption of variane heterogeneity are estimableif enough information is provided in the indiret omparison. Sine there is not enoughinformation in G2 thus the orrelation oeÆient between treatment e�ets Æi;AC and Æi;BCannot be estimated. The assumption of variane heterogeneity is not valid for the model.Conversly, if the numbers of studies in G1 and G2 were 24 and 12 respetively, the orrelationoeÆient ould be estimated by borrowing strength from indiret omparison (Higgins andWhitehead, 1996). Collaboration (1994a) onluded that antiplatelet therapy (aspirin plusdipyridamole (A) or aspirin alone (B)) produed a highly signi�ant (2p � 0.00001) redu-tion in vasular olusion in a wide range of patients. The odds of vasular graft or arterialolusion were redued by about 40% while treatment ontinued. Our numerial results inTable 3.1 are similar to those of Collaboration (1994a).Even though the eÆieny of omputation for the empirial log-odds ratio model is goodand the model gives a onsistent estimate omparing to other methods, the model requiresthe large number of individual observations (larger than 20) and the probability of an un-suessful outome �ij to be not too near zero or one. The MLEs of the model may notbe aurate when ompared to the model with the exat binomial distribution. We shallintrodue the exat binomial model in the next hapter.
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Chapter 3. Meta-analysis of multi-arm trials using normal approximation approah
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Chapter 4
Meta-analysis of multi-arm trialsusing binomial approah
4.1 IntrodutionIn the previous hapter, we proposed the normal approximation model using an empiriallogisti transform. The model requires a large number of individual observations nij and theprobability of an unsuessful outome �ij to be not too near zero or one. If the number ofindividual observations is small, the model in Chapter 3 is not suitable. In this hapter, weintrodue an exat binomial model to �t the binary multi-arm trials data. There are twoalternative maximum likelihood approahes that an be used to make inferenes for the un-known parameters in the logisti regression model. These are the unonditional method andonditional method. The logisti regression model has beome inreasingly popular with theeasy availability of appropriate omputer routines. Many authors have desribed maximumlikelihood estimation proedures whih turn out to be iterative, for example Cox (1970, page61). Albert and Anderson (1984) dealt with the existene of maximum likelihood in logistiregression models and proved on existene theorem by onsidering the possible pattern ofdata points. The use of the onditional likelihood in logisti models is well established and53



Chapter 4. Meta-analysis of multi-arm trials using binomial approahroutines for �tting it are provided by major statistial software (Pendergast et al., 1996).Hirji (1994) proposed an eÆient algorithm to generate the exat distribution for the bi-variate logisti model with ommon and sub-unit-spei� ovariates and also presented theexat unonditional and onditional distribution of the model. Bellio and Sartori (2003)proposed the modi�ed pro�le likelihood as an ideal extension of the onditional likelihood ingeneralized linear models for binary data with the generi link funtion, and also suggestedthat an important feature of the implementation was the standard outputs of routines forthe generalized linear models. With an appliation in biology, Zhao and Aragaki (2000) in-vestigated a onditional likelihood approah of andidate genes and showed analytially theonsisteny of this approah. There have been a large number of studies about unonditionaland onditional methods, for example, see Cox (1972); Prentie (1976); Trithler (1984) andSartori (2003).As mentioned in Chapter 1, most existing methods for meta-analysis of multi arm trials usethe logisti regression model with the unonditional approah. Thompson and Sharp (1999)used the random e�ets logisti regression model with the unonditional method to explainheterogeneity in meta-analysis of serum holesterol redution. Lu and Ades (2004) intro-dued the Bayesian hierarhial model for multi-arm trials using the unonditional methodto estimate unknown parameters. More examples an be found in Lu and Ades (2006); Luet al. (2007). Using the unonditional maximum likelihood approah, note that if the num-ber of studies is large and the number of individual observations is small then the estimatemay be biased or misleading (Cox and Snell, 1989, page 103). For example, if the individualobservations ni0 and nij are equal to 1 then for large M , the estimate of unonditional max-imum likelihood[Æi;b(i)j is lose to 2Æi;b(i)j (Cox and Snell, 1989, page 59). We thus introduethe logisti regression model using the onditional approah in this hapter.The struture of this hapter is arranged as follows. We introdue the logisti regression54



Chapter 4. Meta-analysis of multi-arm trials using binomial approahmodel for the diret and indiret omparisons in Setion 4.2. Unonditional maximumlikelihood approah for the model inluding the standard error of MLEs are desribed inSetion 4.3. Similarly, onditional maximum likelihood approah for the model is presented inSetion 4.4. In Setion 4.5, we illustrate the logisti regression model with the unonditionaland onditional approahes with the W2 data. We disuss the advantages and the limitationsof the two approahes in the �nal setion.4.2 Fitting the logisti regression modelThis setion illustrates how to �t the logisti regression model to the binary data relatedto multi-arm trials inluding the diret and indiret omparisons. Logisti regression is aregression model for a binomially distributed response/dependent variable. It is useful formodelling the probability of an event ourring as a funtion of other fators. Logisti re-gression is part of a ategory of statistial models alled generalized linear models and usesthe logit as its link funtion. Logisti regression an be used only with two types of de-pendent variables: one is a ategorial dependent variable that has exatly two ategories(i.e. a binary or dihotomous variable). The other is a ontinuous dependent variable thathas values in the range 0 to 1 representing the probability values or the proportions. Thenames for logisti regression used in various other appliation areas are logisti model orlogit model. Logisti regression is similar to linear regression in that we are interested inthe relationship of a group of independent variables with a response or dependent variable.In linear regression, the ultimate objetive for the study may be either estimation of theoeÆient values, or predition of the response value. One signi�ant di�erene betweenlogisti and linear models is that the linear model has a ontinuous response variable andthe logisti model uses a binary or dihotomous response.All notations used in this hapter are the same as de�ned in Chapter 3 unless stated. Sup-pose that the rib(i) and rij are binomially distributed, respetively as Bin(nib(i); �ib(i)) and55



Chapter 4. Meta-analysis of multi-arm trials using binomial approahBin(nij ; �ij) for i = 1; : : : ;M and j 2 J(i). Logisti regression models for the ith study anbe de�ned by log� �ib(i)1� �ib(i)� = �i; (4.1)log� �ij1� �ij� = �i + Æi;b(i)j; j 2 J(i): (4.2)The assumptions of the trial e�et and the treatment e�et are the same as were assumedin the empirial log-odds models: the �i's are assumed to be di�erent and the Æi;b(i)j areassumed to be random as presented in (3.17). The above models an be used for bothtreatment omparisons. From model (4.2), we all log �ij=(1� �ij) the logisti transform ofprobability �ij, or alternatively log odds �ij or logit �ij. Having onsidered the properties oflogit �ij, the term �ij=(1��ij) is the odds of an unsuessful outome from a patient treatedwith treatment j and so logit �ij is the log odds of an unsuessful outome. It is easilyseen that a value of �ij in the range (0; 1) orresponds to a value of logit �ij in (�1;1).As �ij ! 0, logit �ij ! �1; as �ij ! 1, logit �ij ! 1 and for �ij = 0:5, logit �ij =0. After some rearrangement, the logisti regression models (4.1) and (4.2) have equivalentformulations as �ib(i) = � e�i1 + e�i� and �ij = � e�i+Æi;b(i)j1 + e�i+Æi;b(i)j � : (4.3)There are two alternative ML approahes, the unonditional and onditional approahes,that an be used to estimate the unknown parameters in a logisti regression model. Theywill be performed in the following setions.4.3 Unonditional maximum likelihood approahGenerally, unonditional ML estimation is prefered if the number of parameters in the modelis small relative to the number of studies in a meta-analysis (Kleinbaum, 1994, page 106).56



Chapter 4. Meta-analysis of multi-arm trials using binomial approah4.3.1 Probability funtionsTo demonstrate the unonditional ML estimation, let p(rib(i)j�i) and p(rijj�i; Æi;b(i)j) denotethe probability funtions assoiated with the distributions of rib(i)j�i and rijj�i; Æi;b(i)j re-spetively for i = 1; : : : ;M and j 2 J(i), de�ned as follows.For the baseline treatment,p(rib(i)j�i) = 0B� nib(i)rib(i) 1CA�rib(i)ib(i) (1� �ib(i))nib(i)�rib(i) = 0B� nib(i)rib(i) 1CA e�irib(i)(1 + e�i)nib(i) : (4.4)For the treatments j, j 2 J(i)p(rijj�i; Æi;b(i)j) = 0B� nijrij 1CA �rijij (1� �ij)nij�rij = 0B� nijrij 1CA e(�i+Æi;b(i)j)rij(1 + e(�i+Æi;b(i)j))nij : (4.5)The ombination in (4.4) represents the number of possible ombinations of observationsnib(i) taken rib(i) at a time. The �ib(i) in the middle term of (4.4) is substituted from (4.3)and (1� �ib(i)) beomes 1=1 + e�i . The ombination in (4.5) an be onsidered in the sameway.4.3.2 The unonditional likelihoodFrom the probability funtions (4.4) and (4.5), the trial e�ets �i's are study-level e�ets.They are assumed to be di�erent and also inluded in both probability funtions. Whilethe Æi;b(i)j is a random e�et, thus the p(rijj�i; Æi;b(i)j) involves the vetor of random e�ets,Æi, given in (3.17). The standard method of handling a probability funtion whih involvesrandom variables that have a fully spei�ed probability is to integrate the probability funtionwith respet to the distribution of those variables. To deal with the random e�ets Æi, letr(i) be the vetor (rij; j 2 J(i))t. We shall integrate the probability funtion p(rijjÆi) withrespet to Æi. The p(r(i)) ontains ki integrals, whih is the number of treatments in the set57



Chapter 4. Meta-analysis of multi-arm trials using binomial approahJ(i), and is given by p(r(i)) = ZÆi Yj2J(i) p(rijjÆi)�(Æi;�i;
i)dÆi; (4.6)where �(Æi;�i;
i) is the probability density funtion of the normal distribution with mean�i and ovariane 
i de�ned in (3.17), given by�(Æi;�i;
i) = 1(2�)ki=2 j
ij1=2 e�(Æi��i)0
�1i (Æi��i)=2: (4.7)The integral (4.6) an be alulated numerially; one way to do it is to use the Gauss-Hermitemethod. To apply Gauss-Hermite approximation, the probability funtion p(r(i)) for the ithstudy an be estimated byp(r(i)) � ��ki=2 l1Xn1=1w(1)n1 : : : lkiXnki=1w(ki)nki 8><>: Yj2J(i)0B� nijrij 1CA e��i+(�i+p2
1=2i di;n)�rij�1 + e�i+(�i+p2
1=2i di;n)�nij9>=>; ;(4.8)where the sampling nodes are at �i + p2
1=2i di;n and di;n = (x(1)n1 ; : : : ; x(ki)nki ). The vetordi;n depends on the number ki, whih is the number of treatments omprising in the ithstudy. The resulting funtion (4.8) does not depend on the Æi. For most pratial purposes,lki need not be greater than 20, although some authors suggest using even smaller values(Collett, 1991, page 208). The assumptions of the heterogeneity parameters (varianes forÆi) are similar to those desribed in Setion 3.4.2 of Chapter 3.As before, let � be the olletion of all unknown parameters for the meta-analysis inludingall trial e�ets (�1; : : : ; �M), � and 
 and let ri be the vetor (rij; j 2 Ji). The likelihoodfuntion for the ith study an be written asL(�jri) = Yj2Ji p(rij) = p(rib(i)j�i):p(r(i)); (4.9)where p(rib(i)j�i) and p(r(i)) are given in (4.4) and (4.8) respetively. Let lu;i = logL(�jri),58



Chapter 4. Meta-analysis of multi-arm trials using binomial approahstanding for the unonditional log-likelihood funtion of the logisti regression model for theith study. The log-likelihood funtion of � for the models (4.1) and (4.2) is given bylu(�) = MXi=1 lu;i: (4.10)Bear in mind that the number of �i's is the same as the number of studies. The omputationof MLEs may be quite unstable if the number of studies is large while the sample size ofeah study is small. As disussed at the beginning of this hapter, this may also result in abiased or misleading estimate. We thus suggest using a onditional approah to eliminateall nuisane parameters in Setion 4.4.4.3.3 Asymptoti variane-ovariane matrixIn this setion, we will show how to alulate the standard errors for the MLEs of thelogisti regression model using the unonditional approah. Sine there are random e�etsin the model, some integrals are involved in the likelihood funtion. The unonditionallog-likelihood funtion (4.10) an be written aslu(�) = MXi=1 log p(rib(i)) + MXi=1 log p(ri);= MXi=1 log p(rib(i)) + MXi=1 log ZÆi Yj2J(i) p(rijjÆi)�(Æi;�i;
i)dÆi: (4.11)We let l1 and l2 stand for the �rst and seond terms of the above log-likelihood funtion,given by lu(�) = l1 + l2. Three types of unknown parameters are involved in �; the triale�ets, �i's, the overall mean e�ets �'s (for �), and the varianes � 's and the orrelationoeÆients �'s in the ovariane matrix 
. For onveniene, we let � represent a parameter(either � or �) involved in 
. There is no random e�et involved in l1.First, the seond-order partial derivative �2l1=��2i an be alulated in the usual way; while59



Chapter 4. Meta-analysis of multi-arm trials using binomial approahthe other terms are�2l1��i�j = �2l1��i� = �2l1��i� = 0; i 6= j and i; j 2 f1; :::;MgNext, let us onsider the seond term of (4.11), for notational onvinene, let Pi(Æi) representthe funtion Qj2J(i) p(rijjÆi) in l2. Now the term l2 takes the forml2(�1; :::; �M ;�;
) = MXi=1 log ZÆi Pi(Æi)�(Æi)dÆi = MXi=1 l2i;where �(Æi) is the density of the multivariate normal distribution with mean �i and varianematrix
i, and l2i is a summand of the log-likelihood involving the integrals (log RÆi Pi(Æi)�(Æi)dÆi).The �rst-order partial derivatives relating to l2 are shown as follows�l2��i = MXi=1 e�l2i ZÆi �Pi(Æi)��i �(Æi)dÆi ;�l2�� = MXi=1 e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi ;�l2�� = MXi=1 e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi :Similarly, the seond-order partial derivatives are�2l2��2i = MXi=1  e�l2i ZÆi �2Pi(Æi)��2i �(Æi)dÆi � �e�l2i ZÆi �Pi(Æi)��i �(Æi)dÆi�2! ; (4.12)�2l2��2 = MXi=1  e�l2i ZÆi Pi(Æi)�2�(Æi)��2 dÆi � �e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi�2! ; (4.13)�2l2�� 2 = MXi=1  e�l2i ZÆi Pi(Æi)�2�(Æi)�� 2 dÆi � �e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi�2! ; (4.14)�2l2���� = MXi=1 �e�l2i ZÆi Pi(Æi)�2�(Æi)���� dÆi � �e�l2i ZÆi Pi(Æi)��(Æi)�� dÆi��2 : (4.15)Note that the seond-order partial derivative �2l2=��i��j is equal to zero. The seond-order60



Chapter 4. Meta-analysis of multi-arm trials using binomial approahpartial derivatives of �2l2=��i��j and �2l2=��i��j an be expressed in similar equations to(4.13) and (4.14). The integrals in the �rst-order and seond-order partial derivatives anbe approximated by Gaussian quadrature.From the log-likelihood (4.11), the seond-order partial derivatives for the observed Fisherinformation matrix an be alulated as�2lu��2i = �2l1��2i + �2l2��2i ; �2lu��2 = �2l2��2 ; �2lu��i��j = �2l2��i��j ;�2lu�� 2 = �2l2�� 2 ; �2lu��i��j = �2l2��i��j ; �2lu���� = �2l2���� :As set earlier, the seond partial derivatives of �2lu=��2 and �2lu=���� (and �2lu=����)an be alulated in similar equations to �2lu=�� 2 and �2lu=���� respetively. Notie thatthe seond-order derivative of l1 is only related in �2lu=��2i . We an partition the matrix ofseond partial derivatives into a blok matrix with null matries in the o� diagonals:H(�) = 0B� H�(�) 00 H���(�) 1CA ;where H�(�) and H���(�) are the seond-order partial derivatives about �i, and �, � and� respetively. By multiplying H(�) by -1, the observed Fisher information matrix I(�) isobtained. The inverse of I(�) is the asymptoti variane-ovariane matrix of MLEs andtheir standard errors are the square roots of the diagonal of I(�)�1.4.4 Conditional maximum likelihood approahConditional likelihood is widely used in logisti regression models with binary data. Inpartiular, this leads to aurate inferenes for the parameters of interest and eliminatesall nuisane parameters (Kleinbaum, 1994). We shall de�ne the onditional likelihood and61



Chapter 4. Meta-analysis of multi-arm trials using binomial approahdesribe the maximum likelihood estimation in this setion.4.4.1 Conditional likelihoodFrom the logisti regression models (4.1) and (4.2), the onditional likelihood ri given thatCi =Pj2Ji rij = i for the ith study, is given byf(rijCi = i; Æi) = f(rijXj2Ji rij = i; Æi) = f(rijÆi)f(Pj2Ji rij = ijÆi) : (4.16)The onditional likelihood reets the probability of the observed data on�guration relativeto the probability of all possible on�gurations of the given data. The numerator f(rijÆi) isexatly the same as the unonditional likelihood obtained from (4.4) and (4.5) . The denom-inator is what makes the onditional likelihood di�erent from the unonditional likelihood;it sums the joint probability for all possible on�gurations. To derive the equation (4.16),the onditional likelihood ri given Ci an be simpli�ed as
f(rijCi = i; Æi) = Qj2Ji0B� nijrij 1CA e(Æirij)Pui2Ui0B� ni0i �Pj2J(i) uij 1CAQj2J(i)0B� nijuij 1CA e(Æiuij) ; (4.17)

where ui = (uij; j 2 J(i))t andUi = 8<:ui : 0 � uij � nij; j 2 J(i)and i � ni0 � Xj2J(i) uij � i9=; :Notie that this likelihood funtion does not involve any nuisane parameters �i's and isa funtion of Æi alone. The removal of the trial e�ets from the onditional likelihoodis important beause it means that when the onditional likelihood is used, estimates areobtained only for the parameters of interest in the model and not for the �i's.62



Chapter 4. Meta-analysis of multi-arm trials using binomial approah4.4.2 EstimationThe onditional likelihood (4.17) has ki random e�ets so the likelihood f(rijPj2Ji rij = i)involves ki integrations:f(rijXj2Ji rij = i) = ZÆi f(rijXj2Ji rij = i; Æi)�(Æi;�i;
i)dÆi; (4.18)where �(Æi;�i;
i) is the probability density funtion of multivariate normal distributionwith mean �i and ovariane 
i, given in (4.7). Similar to the disussion in the previoussetion, we apply Gauss-Hermite approximation to (4.18) and obtain:f(rijXj2Ji rij = i) � ��ki=2 l1Xn1=1w(1)n1 : : : lkiXnki=1w(ki)nki f(rijXj2Ji rij = i; Æi;n); (4.19)where f(rijPj2Ji rij = i; Æi;n) is obtained from (4.17) where the sampling nodes is Æi;n =�i + p2
1=2i di;n and di;n = (d(1)n1 ; : : : ; d(ki)nki ). Again, let � be the olletion of all unknownparameters for the meta-analysis. The likelihood for the ith study L(�jri) an be written asL(�jri) = f(rijXj2Ji rij = i; Æi):The log-likelihood funtion of the logisti regression models using the onditional approahis l(�) = logL(�jr) = MXi=1 logL(�jri); (4.20)By maximising the onditional likelihood funtion over � we obtain an exat parameterestimate for �, alled the onditional maximum likelihood estimate. To alulate the standard
63



Chapter 4. Meta-analysis of multi-arm trials using binomial approaherror of their MLEs, the log-likelihood funtion (4.20) an be written asl(�) = MXi=1 log f(rijXj2Ji rij = i);= MXi=1 logZÆi f(rijXj2Ji rij = i; Æi)�(Æi;�i;
i)dÆi: (4.21)Let Pi(Æi) represent f(rijPj2Ji rij = i; Æi) in the above equation. The seond-order partialderivatives of �2l=��2, �2l=�� 2 and �2l=���� are similar to the equations (4.13) - (4.15)respetively. In a similar way to the previous setion, the standard errors for the MLEs areobtained.4.5 Appliation to antiplatelet therapy data (W2)From the W2 data given in Table 2.2 of Chapter 3, the number of individual observations issmall thus the empirial log-odds model is not appropriate. In this setion, we shall applythe logisti regression model using the unonditional and onditional approahes with theW2 data.4.5.1 Unonditional infereneFrom the W2 data, there are 27 studies investigating the use of aspirin plus dipyridamole oraspirin alone in omparison with the ontrol group. The studies ompare three treatments:aspirin plus dipyridamole (A), aspirin alone (B) and the ontrol treatment (C). Seven studiesompare A, B and C, ten studies ompare A and C and ten studies ompare B and C. Thereis no indiret omparison for this dataset, so the set D is f1; : : : ; 27g. The baseline treatmentfor all studies is the ontrol group (b(i) = 0).The indies i = 1; : : : ; 27 and j = 0; 1; 2 stand for the studies and the treatments C, A andB, respetively. The data is partitioned into three groups: G1 = f1; : : : ; 7g; G2 = f8; : : : ; 17g64



Chapter 4. Meta-analysis of multi-arm trials using binomial approahand G3 = f18; : : : ; 27g. The sets Ji and J(i) are given by8>>>><>>>>: Ji = f0; 1; 2g ; J(i) = f1; 2g for i 2 G1;Ji = f0; 1g ; J(i) = f1g for i 2 G2;Ji = f0; 2g ; J(i) = f2g for i 2 G3: (4.22)
Let ri0; ri1 and ri2 be the numbers of patients who su�ered reolusions on treatments C, Aand B respetively, where the ith study is in G1[G2[G3, G1[G2 and G1[G3, respetively.The total numbers of patients are ni0; ni1 and ni2. Let �i0; �i1 and �i2 be the probabilitiesthat patients have reolusions on treatments C, A and B respetively in the ith study. Theri0, ri1 and ri2 are binomially distributed asri0 � Bin(�i0; ni0); i 2 G1 [G2 [G3;ri1 � Bin(�i1; ni1); i 2 G1 [G2;ri2 � Bin(�i2; ni2); i 2 G1 [G3:The treatment e�et models an be obtained in the same way to that desribed in Setion3.8 of Chapter 3. For example, the treatment e�et Æi for G1 is de�ned as0B� Æi;01Æi;02 1CA �MVN 0B�0B� �01�02 1CA ;0B� � 201 ��01�02��01�02 � 202 1CA1CA : (4.23)Logisti regression models for the data an be �tted using the equations (4.1) and (4.2)where b(i) = 0 and J(i) is given in (4.22). Note that the trial e�ets are assumed to bedi�erent in eah study. To de�ne the unonditional likelihood funtion, let r(i) represent thevetor (ri1; ri2). The probability funtions p(ri0) and p(r(i)) are formulated from (4.4) and(4.8) respetively.From Æi for G1, the orrelation oeÆient � between Æi;01 and Æi;02 is in the form � 20 =�01�02,where is obtained from Æi0 � N(�0; � 20 ). Note that �0 and � 20 are not estimable unless65



Chapter 4. Meta-analysis of multi-arm trials using binomial approahsome other information is used. We shall onsider the assumption of homogeneity vari-ane here. Suppose that all heterogeneity parameters are the same: �01 = �02 = � andthe orrelation oeÆient takes the value 1=2. The unknown parameter � for the models isf�1; �2; : : : ; �27; �01; �02; � 2g. The log-likelihood funtion lu(�) is obtained from (4.10). Bymaximizing the log-likelihood funtion, the MLEs an be estimated. Also we alulate theirstandard errors from the observed Fisher information matrix given in Setion 4.3.3.The results for the treatment e�ets Æ01 and Æ02 are given in Table 4.1. The trial e�ets arepresented in Table 4.2. The overall means on the LOR sale for Æ01 and Æ02 are -1.17849 (SD0.08499) and -0.63700 (SD 0.03728), and the heterogeneity parameter is 0.0372 (SD 0.04752).On the OR sale, the means are 0.30774 and 0.52800 respetively. Their on�dene intervalan be alulated from the related CI on the LOR sale. We onlude that treatments aspirinplus dipyridamole and aspirin only in antiplatelet therapy redue deep venous thrombosisby over 70% and 45% respetively. The average of both treatments redue deep venousthrombosis by over 55 %.Table 4.1: The results of the treatment e�ets for the model using the unonditional methodÆ01 Æ02�01 �01 �02 �02LOR sale -1.17849 0.00372 -0.63700 0.00372(SD) (0.08499) (0.04752) (0.03728) (0.04752)95%CI (-1.33,-1.00) (-0.08,0.09) (-0.64,-0.62) (-0.08,0.09)OR sale 0.30774 0.5280095%CI (0.26,0.36) (0.52,0.53)
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Chapter 4. Meta-analysis of multi-arm trials using binomial approahTable 4.2: The trial e�ets of the model using the unonditional methodStudy 1-5 -0.72387 1.20619 -0.54688 -3.01061 0.55283(SD) (0.01021) (0.00934) (0.00993) (0.0117) (0.00926)95%CI (-0.74,-0.70) (1.18, 1.22) (-0.56,-0.52) (-3.03, -2.98) ( 0.53,0.57)Study 6-10 -0.85773 -1.69947 -0.34480 -0.65231 -1.29308(SD) (0.01206) (0.01264) (0.00735) (0.00770) (0.01087)95%CI (-0.88,-0.83) (-1.72,-1.67) (-0.35,-0.33) (-0.66, -0.63) (-1.31,-1.27)Study 11-15 -2.18147 1.68130 1.17724 0.68567 -0.14132(SD) (0.01231) (0.00636) (0.00811) (0.00869) (0.01102)95%CI (-2.20,-2.15) (1.66,1.69) (1.16,1.19) (0.66,0.70) (-0.16,-0.11)Study 16-20 -1.53114 -0.57320 -0.33486 -4.24972 -1.05748(SD) (0.01214) (0.00941) (0.00661) (0.01367) (0.01199)95%CI (-1.55,-1.50) (-0.59, -0.55) (-0.34,-0.32) (-4.27,-4.22) (-1.08,-1.03)Study 21-25 -3.01727 -0.11773 -2.23388 0.24853 0.04007(SD) (0.01184) (0.00977) (0.01252) (0.00802) (0.00987)95%CI (-3.04,-2.99) (-0.13,-0.09) (-2.25,-2.20) (0.23,0.26) (0.02,0.05)Study 26-27 -0.37573 -0.76995(SD) (0.01277) (0.01098)95%CI (-0.40,-0.35) (-0.79,-0.74)
4.5.2 Conditional infereneThe models and other parameters are similar to those de�ned in the unonditional method.The funtion Ci for the data an be de�ned by8>>>><>>>>: Ci = ri0 + ri1 + ri2 for i 2 G1;Ci = ri0 + ri1 for i 2 G2;Ci = ri0 + ri2 for i 2 G3: (4.24)
Let ri denote the vetor (ri0; ri1; ri2). The onditional likelihood f(rijCi) for the ith study isgiven in (4.18). To handle the random treatment e�et Æi, the likelihood funtion is approx-67



Chapter 4. Meta-analysis of multi-arm trials using binomial approahimated by Gaussian-Hermite approximation as de�ned in (4.19). The unknown parameter �for the models is f�01; �02; �g : By using the log-likelihood funtion (4.20), the results of themodels are given in Table 4.3. On the LOR sale, the overall mean e�ets for both treatmente�ets are -0.87516 (SD 0.04340) and -0.39000 (SD 0.31160) while their variation betweenstudies is 0.37000 (SD 0.03900). Those means on the OR sale are 0.41679 and 0.67434.As before their on�dene intervals are obtained from the related CI on the LOR sale.The results indiate that treatments aspirin plus dipyridamole and aspirin only produe aredution in deep venous thrombosis by over 55% and 30% respetively. The average of bothtreatments in antiplatelet therapy redues deep venous thrombosis by over 40 %.As seen from Tables 4.1 and 4.3, the results from using the unonditional likelihood (on theLOR sale) are smaller than from using onditional likelihood. Note that those results arenegative. That is to say that estimation with unonditional likelihood may ause underes-timation or bias. Collaboration (1994b) summarized that antiplatelet therapy produed ahighly signi�ant (2p � 0.00001 ) redution in deep venous thrombosis of about 40%. Theresults from the model using the onditional likelihood support this.Table 4.3: The results of the treatment e�ets for the model using the onditional methodÆ01 Æ02�01 �01 �02 �02LOR sale -0.87516 0.37000 -0.39000 0.37000(SD) (0.04340) (0.03900) (0.31160) (0.03900)95%CI (-0.96,-0.79) (0.29,0.44) (-1.00,0.22)OR sale 0.41679 0.6743495%CI (0.38,0.45) (0.36,1.24)
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Chapter 4. Meta-analysis of multi-arm trials using binomial approah4.6 DisussionIn Chapter 3, we presented the normal approximation model for a large number of individualobservations. In this hapter, we have introdued the logisti regression model for the exatbinomial distribution. Two types of omparisons, diret and indiret, an be used with themodel. Two alternative approahes for making inferenes were presented. The unonditionallikelihood involves nuisane parameters (from the trial e�ets). If the number of studies (M)is large, it may lead to inonsistent estimate. Cox and Snell (1989, page 103) onluded forthe unonditional likelihood that if the number of studies (M) is large and the number ofindividual observations (nij) is small then it makes estimation inaurate and inonsistent.Thus we introdued the onditional maximum likelihood approah for the model to elimi-nate all nuisane parameters. In making a hoie between the two approahes, we need toonsider the number of studies and the number of individual observations. However, the useof this method an be expensive in term of the ost of omputer running time, espeiallyif the number of individual observations is large. Simulation studies will be onduted inthe next hapter to ompare these two approahes. Some other methods an be used in thelogisti regression model, for example, using a pseudo-loglikelihood, see Severini (1998); orthe modi�ed pro�le likelihood, see Bellio and Sartori (2003).Gaussian-Hermite quadrature was used to alulate the integral forms of the probabilitiesinluding random e�ets in the likelihood funtions for both approahes. The approximationis reasonably e�etive for low-oder integrations (Crouh and Spiegelman, 1990). Implement-ing Gaussian-Hermite approximation, we used the funtion `gauss.quad' in the software R toestimate MLEs for the model. The number of integrands depends on the number of treat-ments involved in those studies. If this number is large then it makes the dimensionalityof the integral large and so it annot be approximated aurately. Other approximationssuh as Laplae approximation or Monte Carlo method an be used, see Ripatti and Palm-gren (2000); Shi and Copas (2002). Laplae approximation ould make the alulation of69



Chapter 4. Meta-analysis of multi-arm trials using binomial approahseond-order derivatives for the observed Fisher information matrix easier than using Gaus-sian approximation sine there is no weight term in the approximation (Liu and Piere, 1994).
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Chapter 5
Simulation study
5.1 IntrodutionWe saw the normal approximation model used with an empirial logisti transform with theW1 data in Chapter 3. Computation of the model is eÆient and onverges very fast foralmost any starting point. The approximation of the model is quite good if the numberof individual observations is large (Chootrakool and Shi, 2008). In Chapter 4, the logistiregression model was introdued for the exat binomial distribution inluding the unondi-tional and onditional approahes to making inferenes. We applied the logisti regressionmodel with the W2 data beause some of the numbers of individual observations were notlarge enough (less than 20) to use the normal approximation model. By omparing the resultsfrom both approahes in Chapter 4, we onluded that the results from the unonditionalapproah may be inonsistent. This bias an be eliminated by onsidering the onditionalapproah to the logisti regression model (Prentie and Breslow, 1978; Lubin, 1981). Thus,the onditional maximum likelihood estimate may be more aurate in a ertain situation.The theory of exat onditional logisti regression analysis (or exat inferene) was �rstproposed by Cox (1970) (MCarthy, 2007). The unonditional approah (or asymptoti in-ferene) is suitable for the small number of parameters in the model (Kleinbaum, 1994).71



Chapter 5. Simulation studyIn this hapter, we examine the performane of various inferene methods from the normalapproximation model and the logisti regression model using the unonditional and ondi-tional methods. The main aim is to ompare the unonditional and onditional methods ofthe logisti regression model in di�erent ases. We demonstrate the proedure for generat-ing data in Setion 5.2. The models that are used to make inferenes in the simulation arepresented in Setion 5.3. We disuss and ompare some models in Setion 5.4. Simulationdetails and the results are given in Setions 5.5 and 5.6 respetively. Finally, Setion 5.7onludes and gives some disussions about the hapter.5.2 Simulated dataIn this setion, we aim to generate the data set whih will be used in the simulation study.The basi data struture is the same as the W2 data. The baseline treatment for all studies isthe ontrol group, whih means there is only diret omparison here. The data is generatedfrom binomial distribution (3.1) with logisti regression models given in (4.1) and (4.2) whereb(i) = 0. The indies i = 1; : : : ;M and j 2 J(i) represent the studies and the treatments,respetively. The general sheme of generating the data is given as follows:1. Give the numbers of individual observations ni0 and nij;2. Generate the trial e�et �i;3. Generate the treatment e�et Æi;0j;4. Calulate the probabilities �i0 and �ij: substituting the generated trial e�et andthe generated treatment e�et into models (4.1) and (4.2), and the probabilities areobtained;5. Generate the ri0 and rij from binomial distribution (3.1) ;6. Repeat steps 1-5 until the data is generated for all M studies.72



Chapter 5. Simulation studySimilar to the W2 data, we onsider three treatments in the simulation study. Two senariosare employed here.� S1: The values of �i's are di�erent. The treatment e�ets are Æi;01 � N(�1:0; 0:22)and Æi;02 � N(�0:30; 0:052).� S2: The values of �i's are generated from a distribution N(�0:92; 0:22). The treatmente�ets are Æi;01 � N(�1:0; 0:22) and Æi;02 � N(�0:30; 0:052).Note that there is no assoiation between the treatment e�ets Æi;01 and Æi;02. In S1, thevalues of �i's are quite di�erent (this is the ase we usually enounter in pratie). In S2,we assume �i's ome from a normal distribution.5.3 The modelsEight di�erent models related to the normal approximation model and the logisti regressionmodel will be onsidered. For onveniene, let `M1', `M2' and `M3' represent the empiriallog-odds ratio model and the logisti regression model using the unonditional and ondi-tional methods, respetively. The orrelation oeÆients between the treatment e�ets inthis setion are assumed to be zero. This may be written as �jk = 0 where j 6= k andj; k 2 J(i). Therefore, the ovariane between the treatment e�ets is Cov(Æij; Æik) = 0. Let`F' and `R' denote the �xed-treatment e�et model and the random-treatment e�et model,respetively. For the logisti regression model, let `d' and `N' represent the di�erent-triale�et and the random-trial e�et model, respetively.5.3.1 The empirial log-odds ratio modelWe ompare the empirial log-odds ratio model with the �xed-treatment e�et and therandom-treatment e�et. The empirial log-odds ratio model is given in (3.29), and thetreatment e�ets are assumed to be random; this is model `M1-R'. By setting the varianes73



Chapter 5. Simulation studyof all the treatment e�ets in the `M1-R' model equal to zero, then the model `M1-F' isobtained.5.3.2 The logisti regression modelThe logisti regression models given in (4.1) and (4.2) are applied here with di�erent hoiesof treatment e�et (`R' or `F') and trial e�et (`d' or `N'). The following logisti regressionmodels are used to make inferenes with the unonditional maximum likelihood approah asdesribed in Chapter 4.� M2-F-d: the treatment e�ets are �xed: Æi;0j = �0j and the trial e�ets are di�erentparameters.� M2-R-d: the treatment e�ets are assumed to be random and normally distributedas Æi;0j � N(�0j; � 20j) and the trial e�ets are di�erent parameters.� M2-F-N: the treatment e�ets are �xed as above and the trial e�et is assumed tobe random as N(��0; � 2�0). Hene, the probability funtion for the baseline treatmentp(ri0j�i) has a random e�et �i. By integrating p(ri0j�i) with respet to �i, we obtainp(ri0) = Z p(ri0j�i)�(�i;��0; � 2�0)d�i; (5.1)where p(ri0j�i) is de�ned in (4.4) where the trial e�et is normally distributed. The�(�i;��0; � 2�0) is the normal distribution with mean ��0 and variane � 2�0. As disussedin Chapter 4, the integral (5.1) an be alulated numerially by a Gauss-Hermiteapproximation, taking the formp(ri0) � ��1=20B� ni0ri0 1CA lXn=1 wn( e(��0+p2��0dn)ri0�1 + e(��0+p2��0dn)�ni0) ; (5.2)where the sampling nodes are at ��0 +p2��0dn for n = 1; : : : ; l.74



Chapter 5. Simulation study� M2-R-N: the treatment e�ets and the trial e�et are assumed to be random asde�ned above. The probability funtion p(ri0) here is the same as (5.2). The proba-bility funtion p(rijj�i; Æi;0j) involves two random e�ets of the trial e�et �i and thetreatment e�et Æi;0j. The probability p(rij) is given byp(rij) = Z Z p(rijj�i; Æi;0j)�(�i;��0; � 2�0)�(Æi;0j;�0j; � 20j)d�idÆi;0j; (5.3)where �(�i;��0; � 2�0) and �(Æi;0j;�0j; � 20j) are the probability density funtions of normaldistributions for �i and Æi;0j respetively. As before, the p(rij) an be approximatedbyp(rij) � ��10B� nijrij 1CA l1Xn1=1w(1)n1 l2Xn2=1w(2)n2 8<: e((��0+p2��0dn1 )+(�0j+p2�0jdn2 ))rij�1 + e(��0+p2��0dn1 )+(�0j+p2�0jdn2 )�nij9=; ;(5.4)where the sampling nodes are at (��0+p2��0dn1)+ (�0j +p2�0jdn2) for n1 = 1; : : : ; l1and n2 = 1; : : : ; l2.For the onditional maximum likelihood approah, we onsider the �xed-e�et model (fortreatment e�et) denoted by `M3-F', and the random-e�et model denoted by `M3-R'. Wedo not need to onsider the trial e�ets sine they are eliminated.5.4 Comparison of modelsWe shall ompare three models, M1-R, M2-R-d and M3-R, in terms of limitations, ompu-tation and drawbaks. Those are the mostly used models in pratie. Assuming that themulti-arm trials data is similar to the speial ase given in Setion 3.4.1. The treatmente�ets for all models are assumed to be random and the trial e�ets are assumed to bedi�erent parameters for the logisti regression model. The brief onlusions are summarizedin Table 5.1. 75



Chapter 5. Simulation study
Table 5.1: Conlusions of the modelsModel Limitations Computation DrawbaksEmpirial log-odds ratio ni0 and nij are large fast not aurate if(M1-R) �i0 and �ij are sample size isnot near 0 or 1 smallLogisti regression - medium biased estimate andwith unonditional method unstable omputation(M2-R-d) if ni0 and nij are smalland M is largeLogisti regression - slow time onsumingwith onditional method if ni0,nij and K are large(M3-R)Regarding the limitations of eah model, if the number of individual observations ni0 andnij is reasonable large (larger than 20) and the probability �ij is not near 0 or 1 then theempirial log-odds ratio model is appropriate (Shi and Copas, 2002; Chootrakool and Shi,2008). Aording to the disussion in Setion 3.3 of Chapter 3, with the opposite onditions,the empirial log-odds ratio model is not valid beause the empirial logisti transformsfor (ri0; ni0) and (rij; nij) are not approximately normally distributed. While the logistiregression model an be used for the exat binomial distribution without any limitations.The unonditional or onditional maximum likelihood approahes an be employed with thelogisti regression model for making inferenes.In term of omputation, the empirial log-odds model is distributed as a multivariate normaldistribution. Its likelihood funtion is straightforward, as shown in (3.31). If the numbers ofstudies (M) and/or treatments (K) are large, it will not a�et the omputation muh om-pared to the other models. Therefore, the omputation of MLEs for the empirial log-oddsmodel is fast. For the logisti regression model, we use the Gaussian-Hermite approximationto deal with random variables for both inferene methods. This is one of the reasons to make76



Chapter 5. Simulation studythe alulation for the logisti regression model take more time than the empirial log-oddsmodel. By omparing both inferene methods, as desribed in Chapter 4, the numerator ofthe onditional likelihood is exatly the same as the likelihood for the unonditional likeli-hood but the denominator of the onditional likelihood requires summing ui terms, wherethe ui are de�ned byUi = (ui : 0 � uij � nij; and i � ni0 �Xj uij � i; j = 1; : : : ; K) :This is often omputationally prohibitive. The omputation is tedious and slow, partiu-larly if ni0, nij and K are large (Lubin, 1981; Prentie and Breslow, 1978). Consequentlythe onditional maximum likelihood estimation is slower than the unonditional maximumlikelihood estimation.To onlude the drawbaks, the estimate from the empirial log-odds model is not as aurateas from the model using exat binomial distribution unless the sample size for eah studiesis suÆiently large. The logisti regression model using the unonditional method inludesnuisane parameters; the model should be used with a small number of studies. The estimatemay be biased if the number of observations ni0 and nij are small and the number of studiesM is large (Lubin, 1981; Cox and Snell, 1989). As mentioned above, if ni0, nij andK are largefor the logisti regression model using the onditional method, it an be time onsuming.The main advantage of the onditional likelihood approah is that the likelihood dependsonly on the parameter of interest.5.5 Simulation detailsIf the sample size of eah individual study is large, the empirial logisti transform modelis always the best hoie. Here, we just ompare the di�erent models in two di�erent ases:small number of individual observations with a medium number of studies, and very small77



Chapter 5. Simulation studynumber of individual observations with a large number of studies. By using the sheme ofgenerating data in Setion 5.2, we use the numbers of individual observations ni0 and nijfrom the two original data sets as follows:� 27 studies with small number of individual observations (ni0 and nij are the same asfor the W2 data but ri0 and rij are generated as disussed in Setion 5.2 );� 54 studies with very small number of individual observations. To onstrut this dataset, we double the data set from 27 to 54 studies but the number of eah individualstudy is halved from the W2 data.For notational onveniene, let `M = 27' and `M = 54' represent two types of the simu-lated data sets respetively. Following the steps given in Setion 5.2, the trial e�et and thetreatment e�et are generated from the models S1 and S2. For eah generated data set, theeight models disussed in Setion 5.3 are used. The estimates of treatment e�ets and otherparameters are alulated for eah model.We ompute 1000 repliations in our simulation study. The root mean squared error (r.m.s.e.)is used to measure the performane for di�erent models. Suppose that �0 is the true valueand b�i is the value of estimation obtained in the ith repliation. The r.m.s.e for � is de�nedas r:m:s:e(b�) =  1nr nrXi=1 (b�i � �0)2!1=2 :where nr is the number of repliations, and nr = 1000 in our simulation study. The value ofr.m.s.e and the sample means of b�i's are alulated. The results of the simulation study forS1 and S2 are shown in Tables 5.2 and 5.3, and 5.4 and 5.5 (see the end of this hapter).
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Chapter 5. Simulation study5.6 Results5.6.1 Senario 1(i). S1 with M = 27Table 5.2 gives the simulation study results based on the data generated from S1with M = 27. The sample size for eah individual study is quite small. Note thatsimulation model S1 is the logisti regression model with the di�erent-trial e�ets andrandom-treatment e�ets thus the models with random-treatment e�ets may givegood estimates. The true values from S1 are �01 = �1:0, �01 = 0:2, �02 = �0:3 and�02 = 0:05. The trial e�ets in S1 are di�erent. We ompare eight di�erent models, andthe sample means and r.m.s.e.'s are reported in Table 5.2. The following onlusionsare our �ndings.(a) Overall, the sample means from model M3-R (the logisti regression model withrandom-treatment e�ets by using the onditional likelihood) are the ones mostlose to the true values. That is to say that the model gives the least bias. Alsothe values of r.m.s.e for this model give the best performane.(b) Sine the sample size for some studies is very small, as expeted, the auray ofthe estimates (sample means) from the empirial log-odds ratio models (M1) arenot good as the logisti regression models (M2 and M3) exept the models withrandom-trial e�et by using the unonditional likelihood (M2-F-N and M2-R-N).() By omparing the unonditional and onditional methods for the logisti regres-sion models with random-treatment e�et, the estimates and the values of r.m.s.efrom M3-R give respetively the better results and performane than M2-R-d.(d) We shall use the quantile-quantile plot (or Q-Q plot) to test the normality ofthe trial e�et assumption we used in M2-F-N and M2-R-N. The Q-Q plot for�i's is shown in Figure 5.1. Some plotted values fall o� on a straight-line. Thismeans that the trial e�ets do not follow the normal distribution. The normality79



Chapter 5. Simulation studyassumption for the trial e�et fails in models M2-F-N and M2-R-N. The simulationstudy results given in Table 5.2 indiate that those two models perform badlyomparing to other models.(ii). S1 with M = 54The sample means from the models in Table 5.3 are based on the data generated fromS1 with M = 54. The sample size in eah individual studies is very small but thenumber of studies is large. The true values for �01, �01, �02 and �02 are the same asS1 with M = 27. In addition, we shall ompare the sample means and performanefrom the models in Tables 5.2 (27 studies) and 5.3 (54 studies). The data generatedfrom S1 with M = 27 has small sample size of eah individual study and mediumnumber of studies. While the data from S1 with M = 54 has very small sample sizeof eah individual study and large number of studies. We expet these results fromthe omparison: (1) the empirial log-odds ratio models (M1) from M = 54 shouldperform even worse than those from M = 27, beause the sample size of individualstudies in M = 54 is even smaller; (2) the logisti regression model with unonditionalmethod (M2) fromM = 54 may give inonsistent or biased estimates due to very smallsample size of individual studies and the large number of study in meta-analysis. Theresults from our simulation study are summarized as follows.(a) As expeted, the model M3-R gives the best estimates.(b) Similar to S1 with M = 27, the sample means from models M1 are least a-urate. In omparison models M1 from M = 27 and M = 54, the empirialmodel with M = 54 has larger bias and less auray, this is beause the normalapproximation is deteriorated for smaller sample size.() The estimates from M3-R give the better estimates than M2-R-d. By omparingmodels M2 and M3 from M = 27 and M = 54, as expeted, models M2 fromM = 27 give the less bias than from M = 54. The performane of models M280



Chapter 5. Simulation studyfrom M = 27 is better than those from M = 54 exept models M2-F-N andM2-R-N.(d) Models M2-F-N and M2-R-N assume normality for the trial e�et wrongly, themodels fail for the data. The Q-Q plot of the trial e�ets (from 54 studies) isgiven in Figure 5.2. The plot does not support the normality of trial e�ets either.Similar to S1 with M = 27, the trial e�et annot be assumed to be normallydistributed in models M2-F-N and M2-R-N.5.6.2 Senario 2(i). S2 with M= 27In Table 5.4, the means and r.m.s.e.'s of the models are obtained from simulation modelS2 with 27 studies; this is the logisti regression model with the random-trial e�etand random-treatment e�ets. The true values for S2 are ��0 = �0:92, ��0 = 0:2,�01 = �1:0, �01 = 0:2, �02 = �0:3 and �02 = 0:05. Notie that this simulationmodel assume a normal distribution for the trial e�et. We expet the same results asdesribed in S1 with M = 27 but models M2-F-N and M2-R-N would perform better.The simulation results are summarized as follows.(a) Again, the estimates from the empirial log-odds ratio model are least aurate;beause the sample size of eah individual study is small as used in S1 withM = 27.(b) By omparing the unonditional and onditional methods for the logisti regres-sion models, the estimates and the values of r.m.s.e from M2-R-N give the betterresults and performane than M3-R beause the model M2-R-N is exatly thesame model as S2 although the performane of onditional likelihood method forM3 is still very good.(ii). S2 with M= 54 81



Chapter 5. Simulation studyThe estimates from the models are obtained from the data generated from S2 withM = 54. The results from the simulation study are the same as S2 with M = 27. Forexample, model M2-R-N gives the best estimates; means of models M1 give the mostbias. The summaries of omparisons between S1 with M = 27 and S1 with M = 54are similar from as desribed in (ii) of Setion 5.6.1.5.7 DisussionThe simulation provides opportunities to analyse the data that are not available when usingthe real data set alone. Generally, the results from the simulation give more robust and de-pendable solutions. The empirial log-odds ratio model was proposed for a ertain situationin Chapter 3. In Chapter 4, we introdued the exat binomial model (logisti regressionmodel) for binary multi-arm trials data. We also expeted that the onditional maximumlikelihood estimation of the model would be more aurate than the unonditional maximumlikelihood estimation beause there were no nuisane parameters involved. In this hapterwe have examined the performane of estimation in those models in di�erent situations.Additionally we made some general onlusions on the omparisons of mostly used models.The sample means and r.m.s.e.'s from the empirial log-odds ratio models (M1) betweenM = 27 and M = 54 suggest that the models are suitable for large individual observationsonly (Cox and Snell, 1989; Shi and Copas, 2002). The individual observations from 27 stud-ies are larger than from 54 studies thus their MLEs are lose to the true values than from54 studies.For the logisti regression models using the unonditional method (M2), there are nuisaneparameters involved in the model. The auray of estimates depends on the number of in-dividual observations and nuisane parameters. The estimates from M2 from the simulationwith 54 studies on�rm that the use of the unonditional method leads to biased estimates82



Chapter 5. Simulation studyif the number of individual observations is small and the number of studies is large (Cox andSnell, 1989; Hirji et al., 1987), although their standard errors are very small (Lubin, 1981).The logisti regression models using the onditional method (M3) perform well in almostall the ases. However, as desribed in Setion 5.4, one obstale of the onditional methodis the omputational omplexity. From simulation study results of M = 27 (from S1 andS2), the large number of individual studies makes the estimation of models M3 diÆult toompute, see e.g. Prentie and Breslow (1978); Hirji et al. (1987). The number of individualobservations in M = 54 is small and the number of studies is large. The omputation is notheavy as for M = 27.Overall, we have the following onlusions for meta-analysis of multi-arm trials. If thesample size in eah individual study is large enough (larger than 20), see Chootrakool andShi (2008), we shall use an empirial logisti transform model; otherwise we should usean exat logisti regression model with onditional likelihood. However, in the ase thatthe number of studies is not very large but the sample size in eah individual study is notvery small, the performane of onditional and unonditional likelihood approahes are quitesimilar (Cox and Snell, 1989, page 103), we an use the unonditional likelihood approahto redue the omputation burden.
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Chapter 5. Simulation study
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Figure 5.1: The Q-Q plot: the trial e�ets for M =27
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Figure 5.2: The Q-Q plot: the trial e�ets for M =5484



Chapter 5. Simulation study
Table 5.2: Simulation study results based on the data generated from S1 with M = 27� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -1.0 0.2 -0.3 0.051) M1-F mean -0.90123 -0.28788r.m.s.e 0.17720 0.106962) M1-R mean -0.90360 0.08654 -0.28828 0.04605r.m.s.e 0.17578 0.18135 0.10718 0.091323) M2-F-d mean -1.00566 -0.30219r.m.s.e 0.16261 0.112594)M2-R-d mean -1.00931 0.02977 -0.31490 0.03803r.m.s.e 0.16640 0.20307 0.27665 0.160845) M2-F-N mean -0.67698 1.00675 -1.01345 -0.73103r.m.s.e 0.20104 0.509086) M2-R-N mean -0.92330 0.96800 -0.99082 0.04267 0.08951 0.03030r.m.s.e 0.20110 0.29985 0.53850 0.539327) M3-F mean -0.99176 -0.29990r.m.s.e 0.16034 0.111688) M3-R mean -1.00000 0.17030 -0.30141 0.03026r.m.s.e 0.16245 0.20459 0.11229 0.14836
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Chapter 5. Simulation study
Table 5.3: Simulation study results based on the data generated from S1 with M = 54� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -1.0 0.2 -0.3 0.051) M1-F mean -0.78602 -0.26570r.m.s.e 0.25923 0.137182) M1-R mean -0.78706 0.02606 -0.26569 0.01536r.m.s.e 0.25834 0.19311 0.13737 0.067923) M2-F-d mean -1.02375 -0.31619r.m.s.e 0.19243 0.160914) M2-R-d mean -1.02501 0.02784 -0.30247 0.03933r.m.s.e 0.19728 0.21311 0.25730 0.178555) M2-F-N mean -0.92121 0.96196 -1.00059 -0.08400r.m.s.e 0.19461 0.315556) M2-R-N mean -0.92330 0.96800 -0.99082 0.04267 -0.08951 0.03038r.m.s.e 0.21176 0.36846 0.31422 0.358297) M3-F mean -0.98839 -0.30544r.m.s.e 0.18460 0.154888) M3-R mean -1.00021 0.25955 -0.30686 0.09526r.m.s.e 0.18862 0.28027 0.15710 0.24840
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Chapter 5. Simulation study
Table 5.4: Simulation study results based on the data generated from S2 with M = 27� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -0.92 0.2 -1.0 0.2 -0.3 0.051) M1-F mean -0.91355 -0.30170r.m.s.e 0.15194 0.077692) M1-R mean -0.91863 0.11031 -0.30098 0.02966r.m.s.e 0.15035 0.07223 0.19608 0.062113) M2-F-d mean -1.03935 -0.30879r.m.s.e 0.16839 0.082444) M2-R-d mean -1.04805 0.05279 -0.33293 0.04529r.m.s.e 0.17288 0.23431 0.15533 0.093805) M2-F-N mean -0.93680 0.19283 -1.02629 -0.36060r.m.s.e 0.09379 0.10139 0.15523 0.161956) M2-R-N mean -0.93793 0.11769 -1.04984 0.06497 -0.35672 0.00826r.m.s.e 0.09579 0.17453 0.17591 0.38942 0.15960 0.173267) M3-F mean -0.97811 -0.31870r.m.s.e 0.16480 0.278338) M3-R mean -0.91198 0.19711 -0.31237 0.11499r.m.s.e 0.34845 0.30415 0.22113 0.27201
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Chapter 5. Simulation study
Table 5.5: Simulation study results based on the data generated from S2 with M = 54� Æ01 Æ02Model parameters ��0 ��0 �01 �01 �02 �02(True value) -0.92 0.2 -1.0 0.2 -0.3 0.051) M1-F mean -0.76590 -0.25500r.m.s.e 0.27700 0.134292)M1-R mean -0.76642 0.01049 -0.25519 0.01110r.m.s.e 0.27647 0.19779 0.13428 0.066173)M2-F-d mean -1.01269 -0.31020r.m.s.e 0.19552 0.152374)M2-R-d mean -1.01784 0.03457 -0.31176 0.02672r.m.s.e 0.20172 0.22038 0.27105 0.133035)M2-F-N mean -0.94138 0.15866 -0.97917 -0.30087r.m.s.e 0.11654 0.16723 0.19263 0.231586)M2-R-N mean -0.94216 0.15912 -1.00124 0.07353 -0.30892 0.01922r.m.s.e 0.11721 0.17700 0.20349 0.33496 0.23695 0.291877) M3-F mean -0.97882 -0.27944r.m.s.e 0.18996 0.147118) M3-R mean -1.00012 0.25748 -0.30244 0.11425r.m.s.e 0.19574 0.28954 0.14917 0.26059
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Chapter 6
Sensitivity analysis to bivariatenormal approximation model
In Chapter 3, we used the empirial log-odds ratio model for the W1 data without onsid-ering seletion bias. In fat, we do not know how the studies in the W1 data were seletedin the meta-analysis. As explained in Chapter 1, various tools to detet seletion bias anbe used in meta-analysis and in this thesis, we use the funnel plot. If studies with posi-tive results were mostly seleted in the meta-analysis then it ould make the meta-analysispositively biased. Conversely, if more studies with negative results were seleted then themeta-analysis would be negatively biased. In either ase, the results may give us inorretresults. To solve this problem, we will use a seletion model to investigate the mehanismof seletion proess. The empirial log-odds ratio model will be used as a standard meta-analysis model in this hapter. The exat logisti regression model will be disussed in thenext hapter.The funnel plot has been widely used to detet seletion bias in medial researh. Eggeret al. (1997) onluded from the investigation of the funnel plot with 37 meta-analyses thatthe funnel plots provided a useful test for the likely presene of bias in meta-analyses, but89



Chapter 6. Sensitivity analysis to bivariate normal approximation modelthe apaity to detet bias will be limited to a small number of studies in meta-analysis.Copas and Shi (2000) used the funnel plot (the relative risk against the standard deviation)to reanalyse the 37 published epidemiologial studies of passive smoking and lung anerdata and proposed a sensitivity analysis method to address the problem of seletion bias.Song et al. (2002) examined a funnel plot along with three other statistial methods: rankorrelation, regression analysis and Trim and Fill, to 28 meta-analyses from the Database ofAbstrats of Reviews of E�etiveness (DARE).There are various approahes that a researher onfronting the problem of seletion biasmay take. One is to apply a seletion model for bias using a weight funtion to representthe proess of seletion. Several lasses of seletion model have been proposed. Iyengar andGreenhouse (1988) employed the seletion model, or weighted distributions, to deal withbias and orreted the results. They also suggested using families of weight funtions tomodel plausible biasing mehanisms to study the sensitivity analysis of inferenes about thetreatment e�ets. A similar idea was studied in the area of eduation, see Hedges (1984).Alternatively, the weight funtion of the seletion model an be de�ned depending on thetreatment e�et estimate and its standard error (Copas, 1999; Copas and Shi, 2001, 2002);beause some parameters are inestimable and a sensitivity analysis has to be onduted.We will use the similar idea to address the problem of seletion bias in meta-analysis formulti-arm trials.The hapter is outlined as follows. Setion 6.1 desribes how to detet seletion bias in themulti-arm trials model. Setion 6.2 illustrates seletion bias inluding the population andseletion models, and some mathematial onsequenes are also given. Setion 6.3 presentsthe likelihood of ombined models between the empirial log-odds ratio models and theseletion models. Setion 6.4 shows a goodness-of-�t test for the funnel plots of ombinedmodels. The details of the proedure for sensitivity analysis are desribed in Setion 6.5.90



Chapter 6. Sensitivity analysis to bivariate normal approximation modelSetion 6.6 examines the use of sensitivity analysis with the simulated data. Some relatedtheorems and derivations applying to this hapter are proved in Setion 6.7. Finally, someomments are made in Setion 6.8. Throughout the hapter, the W1 data will be used toillustrate the idea and the model. There is no diÆulty to extend to other data sets.6.1 Identifying seletion bias in multi-arm trialsThe basi idea of funnel plot is to plot the estimated treatment e�ets from individual stud-ies (e.g. empirial log-odds ratios) against their standard errors. If a set of studies is a goodsample of a meta-analysis, the funnel plot will be symmetrial between the negative andpositive on the treatment e�et estimate axis. Asymmetry is a sign of seletion bias (seedetailed disussion in Rothstein et al., hapter 4, 2005 ). In multi-arm trials data, there aremultiple-pairwise omparisons in RCTs. We thus need to onsider the funnel plot in eahpairwise-omparison involved in those studies. By using the empirial log-odds ratio modelfor the W1 data in Chapter 3, it would be onvenient and reasonable to use the empiriallog-odds ratio and its standard error on the axes beause these quantities are already avail-able in the data set.Reall that the W1 data is partitioned into four groups of studies: G1 = f1; : : : ; 6g; G2 =f7; : : : ; 10g; G3 = f11; : : : ; 24g and G4 = f25; : : : ; 31g where the studies in G1, G2, G3 andG4 ompare treatments A versus B versus C, A versus B, A versus C, B versus C respetively.Let Yi;AC, Yi;BC and Yi;AB be the empirial log-odds ratios between the treatments A versusC, B versus C and A versus B, and let si;AC, si;BC and si;AB be their respetive standarderrors. To detet seletion bias, we shall apply the funnel plot to the individual studies ineah group of multi-arm trials with the empirial log-odds ratio on the vertial axis and thestandard error on the horizontal axis. Note that the studies in G2 are not onsidered heresine there are only indiret omparisons in G2.91



Chapter 6. Sensitivity analysis to bivariate normal approximation modelFor the W1 data, we onsider the number of `event' that the patients in whom reolu-sion on treatments (A, B and C) was deteted. Thus, the negative value of, for example,Yi;AC means positive e�et. For onveniene, we multiplied the value -1 to all the empiriallog-odds ratios in our analysis. Thus, the larger positive value of Yi;AC means the morepositive e�et of treatment A omparing to the ontrol group C. The two funnel plots forG1: Yi;AC against si;AC and Yi;BC against si;BC , are displayed in Figures 6.1(a) and 6.1(b)respetively. The funnel plots orresponding to G3 and G4 are given in Figures 6.1() and6.1(d) respetively. There are strong tendenies in the funnel plots displayed in Figures6.1(a) and 6.1(b). Also, signs of seletion bias an be seen in the top right-hand orner ofboth funnel plots { smaller studies (larger standard errors) give more positive results thanlarger studies (smaller standard errors). Figure 6.1() shows a set of studies in G3 with noevidene of seletion bias. Plot 6.1(d) is asymmetrial with a suggestive lak of studies in thebottom right-hand orner. It shows that small studies with negative results are missing inG4.From Figures 6.1(a), 6.1(b) and 6.1(d), the problem of seletion bias has arisen in G1 andG4. As a result, we suspet that there might be other small studies, omparing treatmentsA, B and C and treatments B and C, respetively whih have been arried out or published,but whih have not been seleted in our meta-analysis.6.2 Seletion biasThe empirial log-odds ratio models for the W1 data are de�ned in (3.39) - (3.42) of Chap-ter 3. All treatment e�ets are assumed to be random. The estimated treatment e�ets(empirial log-odds ratios) Yi;AC, Yi;BC , and Yi;AB, and their standard errors si;AC, si;BC , andsi;AB are known from the meta-analysis.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model
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(d)Figure 6.1: The funnel plots:(a) Yi;AC against si;AC for G1; (b) Yi;BC against si;BC for G1;()Yi;AC against si;AC for G3;(d) Yi;BC against si;BC for G4.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.2.1 Assumption for population modelFrom the previous setion, there is a presene of seletion bias in G1 and G4. Reall theempirial log-odds ratios models for G1 and G4:8><>: Yi;AC = Æi;AC + �i;AC�i;AC ;Yi;BC = Æi;BC + �i;BC�i;BC ; (6.1)Yi;BC = Æi;BC + �i;BC�i;BC : (6.2)We will make some assumptions for both models to allow us to explore the seletion proess.We assume that the models (6.1) and (6.2) represent the population of studies, omparingtreatment A versus B versus C and treatment B versus C respetively, that have been orould be arried out. In theory, the empirial log-odds ratios are not dependent on theirstandard errors (Copas and Shi, 2002). For example, Yi;AC and si;AC are independent to eahother. From now on, the models (6.1) and (6.2) are our population models.6.2.2 Seletion modelWe �rst de�ne a seletion model for studies in G1 via a latent variable Zi1. The ith study isseleted when Zi1 is greater than zero. The latent variable Zi1 is de�ned byZi1 = a1 + b1'i + �i; (6.3)where �i is a standard normal distribution N(0; 1). By adding this seletion model to thepopulation model (6.1), the random residuals (�i;AC ; �i) and (�i;BC ; �i) are bivariate normaldistributions with both means equal to zero and both varianes equal to one. Also theirorrelations %1 and %2 are respetively asorr(�i;AC ; �i) = %1 and orr(�i;BC ; �i) = %2:94



Chapter 6. Sensitivity analysis to bivariate normal approximation modelThe latent variable Zi1 in (6.3) an be interpreted as the inlination for the seletion.The quantity 'i is the average of the standard errors involved in the ith study, given by(si;AC+si;BC)=2. Thus, larger study will have smaller value of 'i. The parameter a1 ontrolsthe overall proportion of the studies seleted; parameter b1 ontrols how fast the probabilityof seletion inreases as 'i dereases. In pratie, the parameters b1, %1 and %2 are expetedto be positive. We will explain this later.As mentioned earlier, the outome (Yi;AC; Yi;BC) in the population model (6.1) will be se-leted only if Zi1 is greater than 0. In other words, a study omparing treatments A, B andC will be seleted in the meta-analysis if and only if the value of the random quantity Zi1 ispositive. Therefore, the available data from G1 (the 6 studies from Table 1 of Chapter 2) anbe written as (Yi;AC; Yi;BC)jZi1 > 0 and the related density funtion for those observationsis p(Yi;AC; Yi;BC jZi1 > 0).If the population and the seletion models are independent then the orrelations %1 and %2are zero. This will be the ordinary bivariate normal distribution of (Yi;AC; Yi;BC). Also, itindiates that the set of studies from the original model is a well-seleted sample of themeta-analysis (no seletion bias in the model). If %1 > 0 or %2 > 0 then the seleted studieswill have Zi1 > 0, and are more likely to have positive �i and positive �i;AC or �i;BC , leadingto a positive bias value of (Yi;AC; Yi;BC).We an de�ne a seletion model for studies in G4 similarly. Let Zi2 be a latent variable, theseletion model is de�ned by Zi2 = a2 + b2si;BC + �i; (6.4)where �i is normally distributed as N(0; 1). The ith study in G4 is seleted when Zi2 isgreater than zero. The random residual (�i;BC ; �i) is a bivariate normal distribution withboth means equal to zero and both varianes equal to one. The orrelation between �i;BC95



Chapter 6. Sensitivity analysis to bivariate normal approximation modeland �i is %3. Notie that the denominator of b2 is the standard error of si;BC beause thereare only two arms in G4.6.2.3 Relating mathematial onsequenesSome related mathematial onsequenes for the population model (6.1) and the seletionmodel (6.3) for Zi1 are given here. All proofs are given in Setion 6.7. The equations belowan be derived in a similar way to the population model (6.2) and the seletion model (6.4).(i). The probability of seletionFrom the seletion model (6.3), the marginal probability of seletion an be alulatedas p(Zi1 > 0j'i) = ��a1 + b1'i� ; (6.5)where � is a standard normal umulative distribution (see the proof of (6.5) in Theorem6.7.1). If the parameters a1 and b1 are �xed in the seletion model then the probabil-ity will depend only on the funtion 'i. For example, if 'i is small (small si;AC andsi;BC , from a large study) then the probability of seletion is lose to 1. In ontrast, itmakes the seletion probability less than 1 for large 'i (i.e. the small study). Thus, if b1is positive then large studies (small 'i) are more likely to be seleted than small studies.From (6.5), the seletion probability is determined by both parameters a1 and b1.As mentioned in the previous setion, the value of a1 ontrols the overall level ofseletion probability while b1 ontrols how the hane of seletion depends on thestudy size. In pratie, we need to restrit that b1 is greater than zero beause theresults of large studies are usually required to report, no matter that the �nding ispositive or negative (i.e have large seletion probability). While the small studies withnegative results are easy to be ignored (either rejeted by journals or onstrained byresearhers themselves). It is important to note that a1 and b1 annot be estimated96



Chapter 6. Sensitivity analysis to bivariate normal approximation modelfrom the available data beause the unseleted studies in the population model (6.1)are unknown.(ii). The probability of seletion for a typial studyThe probability of a study with the same observations as ith study being seleted anbe alulated by p(Zi1 > 0j(Yi;AC; Yi;BC)) = ���2i1�2i1� ; (6.6)where �2i1 and �22i1 are given by�2i1 = �a1 + b1'i�+w12w�122 0B� Yi;AC � �ACYi;BC � �BC 1CA ; (6.7)�22i1 = w11 �w12w�122 w21; (6.8)where w11 = (1), w12 = �%1pv1i; %2pv2i�, w21 = (%1pv1i; %2pv2i)t and w22 is0B� v1i v12iv21i v2i 1CA = 0B� � 2AC + �2i;AC ��AC�BC + �2iC��AC�BC + �2iC � 2BC + �2i;BC 1CA :The proof of (6.6) is given in Theorem 6.7.2. The probability (6.6) is a measure todetermine that how muh hane the outome of ith study will be seleted. Theequation (6.6) will give a larger seletion probability for larger values of Yi;AC or Yi;BC .(iii). The means for seleted studiesThe means of the log-odds ratios for seleted studies areE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �AC�BC 1CA +0B� %1�iAC%2�iBC 1CA��a1 + b1'i� : (6.9)The �(�) is Mill's ratio �(�)=�(�), where � and � are the density and distributionfuntions respetively, of the standard normal distribution (see the proof of (6.9) in97



Chapter 6. Sensitivity analysis to bivariate normal approximation modelTheorem 6.7.3). The equation (6.9) gives the average of log-odds ratios for seletedstudies from the population model, allowing di�erent amounts of seletion bias. Thisaverage depends on the pair (a1; b1) in the seletion model (6.3). It is also an inreasingfuntion of (�i;AC ; �i;BC) and a dereasing funtion of 'i. Sine the seond term in(6.9) is larger than zero, the seleted studies has a larger mean than overall mean(�AC ; �BC). For smaller studies of (Yi;AC; Yi;BC), it has even larger mean sine Mill'sratio �(a1 + b1='i) has larger values. Thus, the model an be used to model the datashown in Figure 6.1.(iv). Variane of seleted studiesFrom equation (6.9), the variane of the seleted outomes an be de�ned asV ar0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �2i;AC(1 + d2i1%21) �2iC�2iC �2i;BC(1 + d2i1%22) 1CA ; (6.10)where d2i1 = ��a1 + b1'i��a1 + b1'i + ��a1 + b1'i�� :The proof of (6.10) is given in Theorem 6.7.4. Now, we need to distinguish between(�2i;AC ; �2i;BC) and (s2i;AC; s2i;BC). The �2i;AC and �2i;BC are the varianes of the populationmodels and may be written as�2i;AC = V ar(Yi;ACjÆi;AC) and �2i;BC = V ar(Yi;BC jÆi;BC):The parameters s2i;AC and s2i;BC are the varianes of our meta-analysis, estimating froms2i;AC = V ar(Yi;ACjZi1 > 0) and s2i;BC = V ar(Yi;BC jZi1 > 0):
98



Chapter 6. Sensitivity analysis to bivariate normal approximation modelFor example, �2i;AC , �2i;BC and �2iC in (6.10) may be written, respetively, as�2i;AC = s2i;AC(1 + d2i1%21) ; �2i;BC = s2i;BC(1 + d2i1%22) and �2iC = s2iC : (6.11)Note that the �2i;AC and �2i;BC in equation (6.9) are replaed by (6.11).6.3 LikelihoodIn this setion, we will alulate MLEs of all unknown parameters by assuming that the valuesof (a1; b1) and (a2; b2) are given. As the previous setion, we still use the W1 data as ourillustrative example. The population models (6.1) and (6.2) are ombined with the seletionmodels (6.3) and (6.4) for G1 and G4 respetively; the empirial log odds ratio models forG2 and G3 are the same (without seletivity) as de�ned in Chapter 3 (models (3.40) and(3.41)). The log-likelihood funtion for the empirial log odds models with seletion models(with seletivity) an be written asl(�) = Xi2G1 log p((Yi;AC; Yi;BC)jZi1 > 0) +Xi2G2 log p(Yi;ABj�)+Xi2G3 log p(Yi;ACj�) +Xi2G4 log p(Yi;BCjZi2 > 0): (6.12)As disussed in Chapter 3, the heterogeneity parameters are assumed to be the same: � 2AC =� 2BC = � 2AB = � 2 and the orrelation oeÆient between the treatment e�ets Æi;AC and Æi;BCtakes the value 1=2. The olletion of all unknown parameters is� = ��AC; �BC ; � 2; %1; %2; %3	 : (6.13)The likelihoods p(Yi;ABj�) and p(Yi;ACj�) are the same as given in Chapter 3. The log-
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Chapter 6. Sensitivity analysis to bivariate normal approximation modellikelihood funtion for G1 (the �rst term of (6.12)) an be written aslG1 = Xi2G1 log p((Yi;AC; Yi;BC)jZi1 > 0)= Xi2G1 (log p(Zi1 > 0j(Yi;AC; Yi;BC)) + log p(Yi;AC ; Yi;BC)� p(Zi1 > 0j'i)) :The formulae of p(Zi1 > 0j(Yi;AC; Yi;BC)) and p(Zi1 > 0j'i) are given by Theorems 6.7.2and 6.7.1 respetively. Note that (Yi;AC; Yi;BC) has a bivariate normal distribution shown in(3.38), we therefore havelG1 = 6Xi=1 ��12 log(� 2 + �2i;AC)(� 2 + �2i;BC)(1� R2i ) + log�(�2i1=�2i1)� log�(a1 + b1='i)�� 6Xi=1 12(1� R2i ) 0�(Yi;AC � �AC)2� 2 + �2i;AC � 2Ri(Yi;AC � �AC)(Yi;BC � �BC)q� 2 + �2i;ACq� 2 + �2i;BC + (Yi;BC � �BC)2� 2 + �2i;BC 1A ;where Ri = �� 2 + �2iCq� 2 + �2i;ACq� 2 + �2i;BC :The �(�2i1=�2i1) is obtained from the funtion p(Zi1 > 0j(Yi;AC; Yi;BC)) where �2i1 and �22i1are given in (6.7) and (6.8) respetively. The �(a1 + b1='i) is derived from p(Zi1 > 0j'i).The parameter Ri is the orrelation between Yi;AC and Yi;BC . Its numerator �� 2+�2i;C is theovariane of Yi;AC and Yi;BC ; the �rst term (�� 2) is the ovariane of Æi;AC and Æi;BC , andthe seond (�2iC) is the ovariane of the random sampling errors from both models. In thedenominator of Ri, the � 2 + �2i;AC and � 2 + �2i;BC are the varianes of the models Yi;AC andYi;BC respetively. The �2i;AC , �2i;BC and �2iC are replaed by (6.11).

100



Chapter 6. Sensitivity analysis to bivariate normal approximation modelSimilarly, we an alulate the log-likelihood for studies in G4, whih islG4 = Xi2G4 log p(Yi;BCjZi2 > 0);= Xi2G4 (log p(Zi2 > 0jYi;BC) + log p(Yi;BC)� p(Zi2 > 0jsi;BC)) :The formulae p(Yi;BC jZi2 > 0) and p(Zi2 > 0jYi;BC) an be expressed in the same wayas Theorems 6.7.2 and 6.7.1 respetively. The p(Yi;BC) is a density funtion of normaldistribution. Therefore, the log-likelihood lG4 islG4 = Xi2G4 12 log(� 2 + �2i;BC)� (Yi;BC � �BC)22(� 2 + �2i;BC) � log�(a2 + b2=si;BC) + log(�2i2=�2i2)! ;where �2i2 and �2i2 are E(Zi2jYi;BC) and V ar(Zi2jYi;BC) respetively, given by�2i2 = a2 + b2si;BC + %3 (Yi;BC � �BC)(� 2 + �2i;BC)1=2 ;�2i2 = (1� %23)1=2:Also, the �2i;BC in lG4 is replaed by �2i;BC = s2i;BC(1 + d2i2%23) whered2i2 = ��a2 + b2si;BC��a2 + b2si;BC + ��a2 + b2si;BC�� :From the log-likelihood funtions lG1 and lG4, the parameters (a1; b1) and (a2; b2) are notestimable beause we do not know how many unpublished studies, omparing treatments A,B and C and treatments B and C, may have been arried out. Therefore, these parameterswill be treated as free parameters in the sensitivity analysis. If the pairs (a1; b1) and (a2; b2)are given then the MLE for � an be estimated by maximizing the log-likelihood funtiondiretly.It would be of interest to test the overall means of the treatment e�et. For example, to test101



Chapter 6. Sensitivity analysis to bivariate normal approximation modelthe hypothesis H0 : �AC = 0 and H1 : �AC 6= 0 , we an use the following likelihood ratiostatisti: 2�l(b�)� l(b��AC=0)� � �21 under H0; (6.14)where b� is the MLE of � and b��AC=0 is the MLE of � with restrition �AC = 0. Thehypothesis test for H0 : �BC = 0 an be onsidered in the same way.6.4 Goodness of �tIn this setion, we suppose that the pairs (a1; b1) and (a2; b2) are given in the seletion models(6.3) and (6.4) or the log-likelihood funtion (6.12). We will explain how to infer these pairsin the next setion. From the pro�le of the log-likelihood funtion in the previous setion,if a set of spei� parameters (a1; b1; a2; b2) is a possible set for the seletion models (6.3)and (6.4), then we need to hek that the resulting models (ombined models) from theseseletion models give reasonable �ts to the data in funnel plots. For a study in G1, if aseletion model with a spei� pair (a1; b1) is used, the mean of seleted studies is given by(6.9). If another pair (a�1; b�1) is used, the di�erene of the means by seletion model withthese two pairs is given byE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a�1; b�11CA� E0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a1; b11CA� � +0B� %1%2 1CA (�(a�1)� �(a1))0B� si;ACsi;BC 1CA ; (6.15)where � is onstant (see the proof of (6.15) in Theorem 6.7.5) when (a�1; b�1) is lose to (a1; b1).The equation (6.15) is a linear equation in terms of si;AC and si;BC . This suggests that loaldepartures of the model in terms of (a1; b1) will be similar to adding the linear term �1 insi;AC and �2 in si;BC to the expeted value of (Yi;AC ; Yi;BC). Therefore, testing that if there102



Chapter 6. Sensitivity analysis to bivariate normal approximation modelis another pair (a�1; b�1) better than (a1; b1) is equivalent to test H0 : �1 = 0 and �2 = 0 in thefollowing models. Yi;AC = Æi;AC + �1si;AC + �i;AC�i;AC ;Yi;BC = Æi;BC + �2si;BC + �i;BC�i;BC ;Zi1 = a1 + b1'i + �i:In a similar way to the seletion model (6.4), the di�erene of the means with these twopairs (a2; b2) and (a�2; b�2) isE(Yi;BC jZi2 > 0; si;BC ; a�2; b�2)� E(Yi;BC jZi2 > 0; si;BC; a2; b2)� � + %3(�(a�2)� �(a2))si;BC : (6.16)The proof of (6.16) an be obtained in a similar way as Theorem 6.7.5. Similar idea to(6.15), we add the term �3 in si;BC to the expeted value of Yi;BC . The re�tted populationmodel (6.2) and its seletion model an be written asYi;BC = Æi;BC + �3si;BC + �i;BC�i;BC ;Zi2 = a2 + b2si;BC + �i:The purpose here is to onsider the �t tests for the ombined models (Yi;AC ; Yi;BCjZi1 > 0)and (Yi;BCjZi2 > 0) at the same time in the meta-analysis. To test whether or not the set(a�1; b�1; a�2; b�2) is better than (a1; b1; a2; b2), we use the likelihood ratio testH0 : � = 0 versus H1 : � 6= 0;where � is the vetor (�1; �2; �3). If the null hypothesis is aepted it means that the se-letion models (6.3) and (6.4) have satisfatorily explained the linear relationships between103



Chapter 6. Sensitivity analysis to bivariate normal approximation model(Yi;AC; Yi;BC) and (si;AC ; si;BC), and between Yi;BC and si;BC . The other meaning is that theset (a1; b1; a2; b2) makes the funnel plots of ombined models �t well.To test a goodness-of-�t for any given (a1; b1; a2; b2), the log-likelihood funtion (6.12) an beextended by adding the term �1si;AC to �AC and the term �2si;BC to �BC in the log-likelihoodfuntion lG1 , and adding the term �3si;BC to �BC in the log-likelihood funtion lG4 . Thusl�(�;�) = l�G1(�;�) + lG2(�) + lG3(�) + l�G4(�;�); (6.17)where lG2(�) and lG3(�) are the same as given in Chapter 3. The log-likelihood l�G1(�;�) isgiven by6Xi=1 ��12 log((�2 + �2i;AC)(�2 + �2i;BC)(1�R2i ) + log�(��2i1=��2i1)� log�(a1 + b1='i)�� 6Xi=1 12(1�R2i ) 0�(Yi;AC � �AC � �1si;AC)2�2 + �2i;AC � 2Ri(Yi;AC � �AC � �1si;AC)(Yi;BC � �BC � �2si;BC)q�2 + �2i;ACq�2 + �2i;BC 1A+ 6Xi=1 12(1�R2i )  (Yi;BC � �BC � �2si;AC)2�2 + �2i;BC ! :Note that ��2i1 and ��2i1 are similar as de�ned before but they are added the term �1si;AC to�AC and the term �2si;BC to �BC . The log-likelihood l�G4(�;�) an be alulated similarly.Then, the likelihood ratio statisti for the null hypothesis H0 : � = 0 is2�l�(b�; b�)� l�(b��=0;� = 0)� � �23 under H0; (6.18)where (b�; b�) is MLEs by maximizing (6.17) while (b��=0;� = 0) is the MLEs from (6.17)with restrition � = 0.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.5 Sensitivity analysisThe idea of a sensitivity analysis is to use the seletion models (6.3) and (6.4) to the popula-tion models (6.1) and (6.2) respetively by allowing di�erent amounts of seletion probabilityin the ombined models (Yi;AC; Yi;BC)jZi1 > 0 and (Yi;BC)jZi2 > 0, and investigate how sensi-tive the main interest parameters are hanged when ompared to the results of the standardmodel (without seletivity). The main parameters of interest in our meta-analysis are �ACand �BC , whih are the overall mean e�ets from the treatment e�ets Æi;AC and Æi;BC re-spetively. The proedure of sensitivity analysis is given as follows� Step 1Determine the possible ranges of (a1; b1) and (a2; b2) for the seletion models (6.3) and(6.4) by using the marginal seletion probabilities p(Zi1 > 0j'i) and p(Zi2 > 0jsi;BC)respetively.� Step 2For eah ombination of (a1; b1; a2; b2), we estimate d�AC and d�BC by maximizing (6.17)and use the goodness-of-�t test to test how the meta-analysis model with seletionmodels �t in funnel plots. P-value will be alulated for eah test.� Step 3We ondut a sensitivity analysis based on p-value of the goodness-of-�t test given instep 2 and other quantities. For example, the overall estimates d�AC and d�BC obtainingfrom the ombined models with p-value < 0:05 should be disarded. We will disussthe details for eah step in the following subsetions.6.5.1 The possible range of (a1; b1) and (a2; b2) (Step 1)As mentioned earlier, the parameters (a1; b1) and (a2; b2) annot be estimated in the usualway; they need to be given in the log-likelihood funtion. In this setion, we shall identifyranges of (a1; b1) and (a2; b2) whih over all reasonable possibilities for the seletion models105



Chapter 6. Sensitivity analysis to bivariate normal approximation model(6.3) and (6.4) respetively. We use the seletion model forG1 in the W1 data to demonstratehow to hoose suh a range. Sine the seletion probabilityp(Zi1 > 0j'i; a1; b1) = �(a1 + b1='i)is a dereasing funtion of 'i, we obtainPmin(seletion) = p(Zi1 > 0j'max; a1; b1) and Pmax(seletion) = p(Zi1 > 0j'min; a1; b1);(6.19)where 'max and 'min are the maximum and minimum values of f'i; i = 1; : : : ; 6g. Thus, theseletion probability p(Zi1 > 0j'i; a1; b1) an be written asPmin(seletion) � p(Zi1 > 0j'i; a1; b1) � Pmax(seletion): (6.20)If we take a grid in the following area0:01 � Pmin(seletion) � Pmax(seletion) � 0:99: (6.21)This should over all reasonable possibilities of seletion. Eah pair of (Pmin; Pmax) is orre-sponding to a pair of (a1; b1). For example, if (Pmin; Pmax) = (0:7; 0:8) , we havePmin = �(a1 + b1='max) = 0:7 and Pmax = �(a1 + b1='min) = 0:8:For the W1 data, the smallest and largest values of ' are 0.16718 and 0.97771 respetivelythus the pair (a1; b1) is (0.4589681, 0.06397397)(as shown on row 2 of Table 6.1).So the �rst step of sensitivity analysis is to take a grid in the area (6.21) and then transferthem to a set of pairs (a1; b1). The range of (a2; b2) an be hosen similarly.
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelIn the following setions, we will report the detailed results of the following six typial pairsin the area (6.21):(0.8,0.7), (0.8,0.5),(0.7,0.4),(0.6,0.3),(0.4,0.1) and (0.2,0.01).For these pairs, the related (a1; b1) for G1 and (a2; b2) for G4 in the W1 data are given inTables (6.1) and (6.2) respetively. The �rst row in the table is orresponding to the modelwithout assuming seletion bias.Table 6.1: The pairs (a1; b1) for the seletion model (6.3)Seletion probability pairs a1 b1(1.0,1.0) 6.0 0.0(0.80,0.70) 0.4589681 0.06397397(0.80,0.50) -0.1735993 0.16972995(0.70,0.40) -0.4137713 0.15684854(0.60,0.30) -0.6848247 0.15684854(0.40,0.10) -1.4936369 0.20735823(0.20,0.01) -2.6325990 0.29942516Table 6.2: The pair of (a2; b2) for the seletion model (6.4)Seletion probability pairs a2 b2(1.0,1.0) 6.0 0.0(0.80,0.70) 0.33930785 0.1358371(0.80,0.50) -0.49107105 0.3603908(0.70,0.40) -0.70714903 0.3330395(0.60,0.30) -0.97820244 0.3330395(0.40,0.10) -1.88149062 0.4402876(0.20,0.01) -3.19265952 0.6357751From Table 6.1, we an interpret a seletion from the population model (6.1). The pair(a1; b1) = (0:4589681; 0:06397397) (row 2 of Table 6.1) is alulated from the seletion prob-ability pair (0:80; 0:70). This means that the marginal seletion probability take 80% and70% for the largest observed studies (smallest standard errors) and the smallest observedstudies (largest standard errors) respetively in the population model (6.1). Also 80% of thelargest studies will be seleted but 70% of the smallest studies will be seleted. Other pairsan be interpreted in the same way. 107



Chapter 6. Sensitivity analysis to bivariate normal approximation model6.5.2 Estimation and goodness-of-�t test (Step 2)In the sensitivity analysis, we onsider the use of the pairs (a1; b1) and (a2; b2) together toselet the studies from the population models (6.1) and (6.2) respetively. Eah ombinationof (a1; b1; a2; b2) is orresponding to a partiular seletion model. The seond step in oursensitivity analysis is to alulate the relative statistial quantities (e.g. the p-value ofgoodness-of-�t test) to judge if the underlying model is a reasonable hoie. To do so, thefollowing quantities are alulated for eah ombination of (a1; b1; a2; b2) for the W1 data.1. d�AC ;2. p-value for testing H0 : �AC = 0;3. lower limit of the 95% on�dene interval for �AC ;4. upper limit of the 95% on�dene interval for �AC;5. Pmax(seletion) for the seletion model (6.3);6. Pmin(seletion) for the seletion model (6.3);7. estimated number of seleted and unseleted studies given forG1 byPi fp(Zi1 > 0j'i)g;8. d�BC ;9. p-value for testing H0 : �BC = 0;10. lower limit of the 95% on�dene interval for �BC ;11. upper limit of the 95% on�dene interval for �BC ;12. Pmax(seletion) for the seletion model (6.4);13. Pmin(seletion) for the seletion model (6.4);14. estimated number of seleted and unseleted studies given forG4 byPi fp(Zi2 > 0jsi;BC)g ;108



Chapter 6. Sensitivity analysis to bivariate normal approximation model15. p-value for the �t for the funnel plot orresponding to the null hypothesis H0 : � = 0.The 7th and 14th quantities present the overall severities of the seletion models (6.3) and(6.4) respetively. The 15th quantity gives the p-value of goodness-of-�t test disussed inSetion 6.4. For the W1 data, we listed the detailed results for seven typial ombinationsin Table 6.3. The quantities in eah row of the table are alulated from the ombination(a1; b1; a2; b2) orresponding to the same row in Tables 6.1 and 6.2. The �rst row representsthe empirial log-odds ratio model without assuming seletion bias. The onlusions forTable 6.3 are as follows.Table 6.3: The W1 data with seletion model: summary of outputs[; 1℄ [; 2℄ [; 3℄ [; 4℄ [; 5℄ [; 6℄ [; 7℄ [; 8℄[1; ℄ 0.5689296 1.7901e-06 0.2386970 0.8991622 1.0 1.00 6 0.6770754[2; ℄ 0.5438695 9.0884e-06 0.5311785 0.5565605 0.8 0.70 8 0.5802389[3; ℄ 0.5203228 1.8689e-05 0.4642864 0.5763592 0.8 0.50 9 0.5270842[4; ℄ 0.5029442 3.5987e-05 0.4417334 0.5641550 0.7 0.40 12 0.4703732[5; ℄ 0.4840191 6.3934e-05 0.3825303 0.5855079 0.6 0.30 15 0.4085832[6; ℄ 0.4446604 2.1316e-04 0.4196116 0.4697092 0.4 0.10 37 0.2726371[7; ℄ 0.4134910 3.9836e-04 0.3018102 0.5251718 0.2 0.01 264 0.1496556[; 9℄ [; 10℄ [; 11℄ [; 12℄ [; 13℄ [; 14℄ [; 15℄[1; ℄ 7.8409e-07 0.294571394 1.0595794 1.0 1.00 7 0.02812794[2; ℄ 4.5603e-05 0.477201709 0.6832761 0.8 0.70 9 0.07719169[3; ℄ 1.9897e-04 0.472615769 0.5815526 0.8 0.50 11 0.19807872[4; ℄ 8.4598e-04 0.276823211 0.6639232 0.7 0.40 13 0.32012129[5; ℄ 3.4631e-03 0.318677969 0.4984884 0.6 0.30 17 0.54505213[6; ℄ 3.3151e-02 0.183261054 0.3620131 0.4 0.10 42 0.93498257[7; ℄ 3.0103e-01 -0.004106355 0.3034176 0.2 0.01 292 0.55372482
(i). The estimates of d�AC and d�BC orresponding to di�erent amounts of seleiton bias arepresented in olumns 1 and 8 respetively. By using the asymptoti variane-ovarianematrix in Chapter 3, their standard errors from eah row of d�AC and d�BC areSD(d�AC) = f0:16848; 0:00647; 0:02859; 0:03123; 0:05178; 0:01278; 0:05698g;109



Chapter 6. Sensitivity analysis to bivariate normal approximation modelSD(d�BC) = f0:19515; 0:05257; 0:02779; 0:09875; 0:04587; 0:0456; 0:07845g:The lower and upper limits of the 95% on�dene intervals for d�AC and d�BC are givenin olumns 3 and 4, and olumns 10 and 11 respetively.(ii). The inferenes of standard model are presented in the �rst row of the table. Thed�AC and d�BC of the standard models are 0.5689296 and 0.677075 respetively. Thetest for the presene of seletion bias is obtained from the likelihood test for the nullhypothesis H0 : � = 0. The p-value 0.02812794 in the �rst row on�rms that there isstrong evidene to rejet H0, i.e, there is seletion bias in G1 and G4. The p-value of thegoodness-of-�t test for the seond row (0.077191) is lose to 0.05 . This is the evidenethat d�AC = 0:5689296 and 0.5438695, and that d�BC = 0:677075 and 0.5802389 areoverestimated.(iii). To onsider the number of unseleted studies for G1 and G4 (olumns 7 and 14), rows 2- 7 show that the numbers of unseleted studies (or the study populations of treatmentsA vs B vs C and B vs C) inrease while the estimates of d�AC and d�BC (olumns 1 and8) derease gradually when reading downwards. However, the extreme number givenin row 7 indiates that the underline model is not aeptable.(iv). The p-values of the null hypothesis H0 : d�AC = 0 (olumn 2) are signi�ant on allrows while the p-value at row 7 (olumn 9) of the null hypothesis H0 : d�BC = 0 is notsigni�ant.(v). To analyze a goodness-of-�t test for the meta-analysis, we onsider the p-value ofH0 : � = 0 (olumn 15). The p-values from rows 3 - 7 give good �ts for the funnel plotsfor the models (Yi;AC; Yi;BC jZi1 > 0) and (Yi;BC jZi2 > 0) while the others inluding thestandard estimates are overestimates.(vi). Overall, the models orresponding to row 1,2 and 7 are not aeptable. The othersare plausible. The �ts of funnel plot for G1 given by di�erent values of (a1; b1; a2; b2)110
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Figure 6.2: Funnel plot: Yi;AC against 'i for G1- the solid line represents the estimatewithout seletivity d�AC = 0:5689296; the dashed lines represent the �tted values forgiven (a1; b1; a2; b2) whih (a1; b1; a2; b2;d�AC) are equal to (0.458,0.063,0.339,0.135, 0.54),(-0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.50).
(rows 2, 3 and 4 from Tables 6.1 and 6.2) are presented by the dashed lines in Figures6.2 and 6.3 respetively. These urves are alulated from the equation (6.9) (meanfor seleted studies). As desribed in Setion 6.2.3, note that the smaller number ofstudies of population model (6.1) (olumn 7) gives larger means as shown in olumns7. Two values of (a1; b1; a2; b2) obtained from the seletion probability pairs (0:80; 0:50)(row 3 in Tables 6.1 and 6.2) and (0:70; 0:40) (row 4 in Tables 6.1 and 6.2) give good�ts while the �rst one (the �rst dashed line, near the solid line) is unaeptable.Similarly, the �t of funnel plot for G4 given in Figure 6.4 is evaluated from d�BC +%3�i;BC�(a2 + b2=si;BC). The �t for G4 in Figure 6.4 gives similar results as for G1.
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Figure 6.3: Funnel plot: Yi;AC against 'i for G1- the solid line represents the estimatewithout seletivity d�BC = 0:6770754; the dashed lines represent the �tted values forgiven (a1; b1; a2; b2), whih (a1; b1; a2; b2;d�AC) are equal to (0.458,0.063,0.339,0.135, 0.58),(-0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.47).

0.3 0.4 0.5 0.6 0.7

0.
0

0.
5

1.
0

1.
5

standard error

em
pi

ric
al

 lo
g 

od
ds

 r
at

io

Figure 6.4: Funnel plot: Yi;BC against si;BC for G4- the solid line represents the esti-mate without seletivity d�BC = 0:6770754; the dashed lines represent the �tted values forgiven (a1; b1; a2; b2), whih (a1; b1; a2; b2;d�BC) are equal to (0.458,0.063,0.339,0.135, 0.58),(-0.17,0.16,-0.49,0.36,0.52) and (-0.41,0.15,-0.70,0.33,0.47).112



Chapter 6. Sensitivity analysis to bivariate normal approximation model6.5.3 Sensitivity analysis (Step 3)The idea of sensitivity analysis is to alulate all the statistial quantities for any ombi-nations of (a1; b1; a2; b2) transformed from a grid in (6.21) for G1 and a similar grid for G4.Then, we an plot the estimates for example d�AC against the p-value of the goodness-of-�ttest. All the estimates with p-value less than a signi�ant level (say 0.05) an be disarded.The estimates orresponding to model with p-value around 0.5 an be treated as the mostplausible estimates. Some other quantities an also be used to �nd plausible estimates.For the W1 data and all ombinations of seletion probability pairs presented in Tables 6.1and 6.2, the plots of d�AC against p-value of H0 : � = 0 and d�BC against p-value of H0 : � = 0are given in Figures 6.5 and 6.6 respetively. The plots indiate that the d�AC and d�BC anbe anything less than 0.55 and 0.60 respetively. The overall d�AC and d�BC should ome fromthe models with p-value greater than 0.05 and plausible overall estimates should be the onesfrom the models with p-value around 0.5. Therefore the plausible estimates for d�AC andd�BC should be around 0.47 and 0.40 respetively.Bear in mind that we put a negative sign for all the empirial log-odds ratios in this hapter.That means that the overall log-odds ratio having reolusion for treatment A omparing tothe ontrol group should be around -0.47 (OR = 0.625, i.e redued the rates of reolusion37%). The estimate from the standard model (row 1 of Table 6.3) is -0.5689296 (OR =0.566, redued the rate of reolusion by over 40%), whih is overestimated.Comparing treatment B and the ontrol group, the overall log-odds ratio is around -0.40 (OR= 0.67, redued the rate of reolusion 33%), while the model without assuming seletionbias gives the estimate of �BC -0.677075 (OR = 0.50, redued the rate of reolusion 50%),whih is learly overestimated.
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Figure 6.5: The W1 data: d�AC against the p-value of H0 : � = 0.
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Figure 6.6: The W1 data: d�BC against the p-value of H0 : � = 0.
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.6 Simulation studyThis setion aims to examine a sensitivity analysis of the bias from the generated three-armdata. The steps of the sensitivity analysis with the generated data are as follows.1. The population dataWe generate the three-arm data with 24 studies to represent the population data oftreatment A versus B versus C. Note that the simulation model is from the di�erent-trial e�ets and the treatment e�ets Æi;AC � N(0:90; 0:102) and Æi;BC � N(0:60; 0:102).The orrelation oeÆient between both treatment e�ets is assumed to be zero. Thisimplies that the ovariane between both treatment e�ets is zero. The main parame-ters �AC and �BC obtained from the generated data are 0.96 and 0.62 respetively.2. Make the seletion biasWe shall selet eah study by the seletion probability for a typial study given in(6.6). The parameters %1 and %2 are seleted from the pair (0:80; 0:80). We hoose thevalues of (Pmax(seletion); Pmin(seletion)) as (0.90,0.10), (0.80,0.20) and (0.60,0.30)then determine the values of (a1; b1) for the seletion probability (6.6).The requirement of seletion for a study from the population model is that largerstudies are likely to be seleted than smaller studies. Let Pi be a probability of thepopulation data being seleted. The probability of seletion for the ith study isPi = p(Zi1 > 0j(Yi;AC; Yi;BC)) = ���2i1�2i1� ; (6.22)where �2i1 and �22i1 are the same as (6.7) and (6.8). Let Ui be a random numbergenerated from an uniform distribution U(0; 1). The ith study from the populationdata in (i) will be seleted if Pi is greater than Ui.
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelIt is lear that the above steps would generate a set of studies with seletion bias. We �rstalulated the MLEs for �AC and �BC by using the model without assuming seletion bias.The results are given in Table 6.4. The p-value in the table is the one for goodness-of-�ttest with H0 : �1 = �2 = 0. The p-value 0.06705 of the model (the last row of Table 6.4)shows a good �t for funnel plots while the other p-values are signi�ant at signi�ane level0.5. The funnel plots for Yi;AC against si;AC and Yi;BC against si;BC orresponding to the�rst two models in Table 6.4 are given in Figures 6.7(a)-(b) and 6.8 (a)-(b). All funnel plotsshow signs of seletion bias, i.e. some studies may be unseleted. Thus, we shall use thesensitivity for the �rst two models in Table 6.4.The proedure of sensitivity analysis is as disussed in the previous setion. To save spae,we present only the satter plots of �AC and �BC against their p-values of the goodness-of-�t test H0 : �1 = �2 = 0, given in Figures 6.7()-(d) and 6.8 ()-(d). The dashed linein the plots represents the true mean e�et of the standard model (from the simulated data).Table 6.4: The simulated three-arm data: summary of outputs%1 %2 Pmax(seletion) Pmin(seletion) d�AC d�BC p-value number of(0.96) (0.62) seleted studies0.8 0.8 0.90 0.10 1.34348 1.02130 0.03032 110.80 0.20 1.34701 0.96602 0.04459 90.60 0.30 1.39359 1.06687 0.06705 11
(i). The estimates for �AC and �BC from the models without assuming seletion bias ( seeTable 6.4) are overestimated omparing to their true mean e�ets and presented in theblue and red solid irles in () and (d) of all �gures respetively.(ii). By using the sensitivity analysis to those models, we an onlude as follows(a) The estimates for �AC and �BC with p-value less than 0.05 an be disarded, thus116



Chapter 6. Sensitivity analysis to bivariate normal approximation modeld�AC and d�BC orresponding to the �rst two rows of Table 6.4 an be anythingless than 1.33 and 0.98 , and 1.33 and 0.93 respetively.(b) As desribed in Setion 6.5, the most plausible estimates should ome from themodel with p-value around 0.5. Therefore, the plausible estimates for �AC and�BC should be around 1.26 and 0.62, and 1.0 and 0.64 respetively. Notie theseestimates are quite lose to the true mean e�ets of �AC and �BC (0.96 and 0.62).Based on the simulation study, sensitivity analysis approah used in this thesis an be usedto adjust the over-estimates whih the standard model usually give when there is seletionbias.6.7 Some theorems of mathematial onsequenesIn this setion, we will prove the statistial theorems presented in Setion 6.2.3.Theorem 6.7.1 (The probability of seletion). Suppose that there is seletion bias in G1and the empirial log-odds ratio model (6.1) is assumed to be population model. The seletionmodel is de�ned as Zi1 = a1 + b1='i where a1 and b1 ontrol the marginal probability andthe 'i is the average of the standard errors involved in the ith study. Then the probability ofbeing seleted for the ith study isp(Zi1 > 0j'i) = �(gi1); where gi1 = a1 + b1'i :Proof. The seletion model Zi1 is normally distributed with mean gi1 and variane 1: Zi1 �N(gi1; 1) where gi1 = a1 + b1='i. The marginal probability of the seletion model an bewritten as p(Zi1 > 0j'i) = p(Zi1 � gi1 > �gi1) = �(gi1):Theorem 6.7.2 (The probability of seletion for a typial study (Yi;AC; Yi;BC)). Fromthe population model (6.1) and the seletion model (6.3), the probability of being seleted for117
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Figure 6.7: The generated data with bias where %1 = %2 = 0:8 orresponds to(Pmin(seletion); Pmax(seletion) =(0.90,0.10): (a) funnel plot of Yi;AC against si;AC; (b)funnel plot of Yi;BC against si;BC ; () d�AC against the p-value of H0 : �1 = �2 = 0; (d)d�BCagainst the p-value of H0 : �1 = �2 = 0
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Figure 6.8: The generated data with bias where %1 = %2 = 0:8 orresponds to(Pmin(seletion); Pmax(seletion) =(0.80,0.20): (a) funnel plot of Yi;AC against si;AC; (b)funnel plot of Yi;BC against si;BC ; () d�AC against the p-value of H0 : �1 = �2 = 0; (d)d�BCagainst the p-value of H0 : �1 = �2 = 0
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Chapter 6. Sensitivity analysis to bivariate normal approximation modela typial study (Yi;AC; Yi;BC) isp(Zi1 > 0j(Yi;AC; Yi;BC)) = ���2i1�2i1� ;where �2i1 = E(Zi1j(Yi;AC; Yi;BC)) and �22i1 = V ar(Zi1j(Yi;AC; Yi;BC)) are given in (6.7) and(6.8) respetively.Proof. The seletion model Zi1 is normally distributed as N(gi1; 1) where gi1 = a1 + b1='i.The outome (Yi;AC ; Yi;BC) is normally distributed as presented in (3.38) of Chapter 3. Thevariane-ovariane matrix of (3.38) is0B� v1i v12iv21i v2i 1CA = 0B� � 2AC + �2i;AC ��AC�BC + �2iC��AC�BC + �2iC � 2BC + �2i;BC 1CA : (6.23)The variane-ovariane matrix between the seletion modelZi1 and the distribution (Yi;AC; Yi;BC)is Cov(Zi1; (Yi;AC; Yi;BC)) = 0B� w11 w12w21 w22 1CA ;where w11 = (1), w12 = �%1pv1i; %2pv2i� , w21 = (%1pv1i; %2pv2i)t and w22 is given in(6.23). From the property of onditional distribution, the onditional distribution of theseletion model (6.3) given (Yi;AC; Yi;BC) is a multivariate normal distribution with meanE(Zi1j(Yi;AC; Yi;BC) and variane V ar(Zi1j(Yi;AC; Yi;BC)). The E(Zi1j(Yi;AC; Yi;BC) an bealulated as E(Zi1j(Yi;AC ; Yi;BC)) = gi1 +w12w�122 0B� Yi;AC � �ACYi;BC � �BC 1CA = �2i1: (6.24)Likewise, V ar(Zi1j(Yi;AC; Yi;BC)) is formulated asV ar(Zi1j(Yi;AC; Yi;BC)) = w11 �w12w�122 w21 = �22i1: (6.25)120



Chapter 6. Sensitivity analysis to bivariate normal approximation modelHene, the probability of being seleted for a typial study (Yi;AC; Yi;BC) may be written asp(Zi1 > 0; 'ij(Yi;AC; Yi;BC)) = p�Zi1j(Yi;AC ;Yi;BC)�E(Zi1j(Yi;AC ;Yi;BC)pV ar(Zi1j(Yi;AC ;Yi;BC)) > � E(Zi1j(Yi;AC ;Yi;BC))pV ar(Zi1j(Yi;AC ;Yi;BC))� ;= �� E(Zi1j(Yi;AC ;Yi;BC))pV ar(Zi1j(Yi;AC ;Yi;BC))� ;where E(Zi1j(Yi;AC; Yi;BC)) and V ar(Zi1j(Yi;AC; Yi;BC)) are given in (6.24) and (6.25) respe-tively.Theorem 6.7.3 (The means for seleted studies). From the population model (6.1) andthe seletion model (6.3), the means for seleted studies areE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �AC�BC 1CA+0B� %1�i;AC%2�i;BC 1CA��a1 + b1'i� :Proof. The expeted value of the onditional distribution (Yi;AC; Yi;BC) given Zi1 is estimatedby E(Zi1j(Yi;AC; Yi;BC)) = 0B� �AC�BC 1CA +0B� %1�iAC%2�iBC 1CA (Zi1 � gi1): (6.26)
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelThe expeted value of the onditional distribution (Yi;AC; Yi;BC) given Zi1 > 0 isE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA= Z 1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC)jZi1 > 0; 'i)d(Yi;AC; Yi;BC);
= R10 R1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC); Zi1)d(Yi;AC; Yi;BC)dZi1R10 p(Zi1)dZi1 ;
= R10 R1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC)jZi1)p(Zi1)d(Yi;AC; Yi;BC)dZi1R10 p(Zi1)dZi1 ;
= R10 p(Zi1) R1�1 p(Yi;AC; Yi;BC)p((Yi;AC; Yi;BC)jZi1)d(Yi;AC; Yi;BC)dZi1R10 p(Zi1)dZi1 ;
= R10 p(Zi1)E((Yi;AC; Yi;BC)jZi1)dZi1R10 p(Zi1)dZi1 ; (6.27)
= 0B� �AC�BC 1CA+0B� %1�i;AC%2�i;BC 1CA��a1 + b1'i� :Inserting equation (6.26) in equation (6.27), results are obtained in the above formula.Theorem 6.7.4 (The variane of seleted studies). From the population model (6.1)and the seletion model (6.3), the variane of seleted studies isV ar0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i1CA = 0B� �2i;AC(1 + d2i1%21) �2iC�2iC �2i;BC(1 + d2i1%22) 1CA ;where d2i1 = �(gi1)(gi1 + �(gi1)): and gi1 = a1 + b1='i.122



Chapter 6. Sensitivity analysis to bivariate normal approximation modelProof. The variane from the above equation an be written as0B� V ar(Yi;AC jZi1 > 0; 'i) Cov(Yi;AC jZi1 > 0; Yi;BC jZi1 > 0)Cov(Yi;BC jZi1 > 0; Yi;AC jZi1 > 0) V ar(Yi;BC jZi1 > 0; 'i) 1CA : (6.28)We shall prove the entries on the diagonal �rst.1. The entry on the diagonal V ar(Yi;ACjZi1 > 0; 'i) an be written in the formV ar(Yi;ACjZi1 > 0; 'i) = E(Y 2i;ACjZi1 > 0; 'i)� (E(Yi;ACjZi1 > 0; 'i1))2 : (6.29)The last term of (6.29) is alulated as(E (Yi;ACjZi1 > 0; 'i))2 = (�AC + %1�i;AC�(gi1))2 ;= �2AC + 2�AC%�i;AC�(gi1) + %21�2i;AC(�(gi1))2: (6.30)The �rst term of equation (6.29) an alulateE �Y 2i;ACjZi1; 'i� = E (Yi;ACjZi1; 'i) + (E(Yi;ACjZi1; 'i))2 ; (6.31)= �2i;AC(1� %21) + (�AC + %1�i;AC(Zi1 � �BC))2:
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelThe �rst term of (6.29) is an integralE(Y 2i;ACjZi1 > 0; 'i)= Z 1�1 Y 2i;ACp(Yi;ACjZi1 > 0; 'i)dYi;AC;
= R1�1 Y 2i;AC R10 p(Yi;AC; Zi1)dZi1dYi;ACR10 p(Zi1; 'i)dZi1 ;
= R1�1 Y 2i;AC R10 p(Yi;ACjZi1)p(Zi1)dZi1dYi;ACR10 p(Zi1; 'i)dZi1 ;
= R10 p(Zi1) R1�1 Y 2i;ACp(Yi;ACjZi1)dYi;ACdZi1R10 p(Zi1; 'i)dZi1 ;
= R10 p(Zi1)E(Y 2i;ACjZi1)dZi1R10 p(Zi1; 'i)dZi1 ; (6.32)
= R10 p(Zi1)(�2i;AC(1� %21) + (�AC + %1�i;AC(Zi1 � �BC))2)dZi1R10 p(Zi1; 'i)dZi1 ;
= �2i;AC � %21 + �2AC + 2�AC%1�i;AC�(�BC) + %21�2i;AC(�BC�(�BC) + 1): (6.33)Using the results from (6.30) in (6.32), the equation (6.33) is obtained. Substitutingequations (6.30) and (6.33) into the �rst term and the seond term of (6.29) respetively
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelgives V ar(Yi;ACjZi1 > 0; 'i) = �2i;AC + %21�2i;AC�BC�(�BC) + %21�2i;AC(�(�BC))2;= �2i;AC(1 + d2i1%21);where d2i1 = �(gi1)(gi1 + �(gi1)): In similar way, we have V ar(Yi;BCjZi1 > 0; 'i) =�2i;BC(1 + d2i1%22):2. Considering the ovariane of V ar0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i11CA, the G1 has the treat-ment C as the baseline treatment thusCov(Yi;ACjZi1 > 0; Yi;BCjZi1 > 0) = Cov(Yi;BC jZi1 > 0; Yi;ACjZi1 > 0) = �2iC :Theorem 6.7.5 (The di�erene of means). From the population model (6.1) and theseletion model (6.3), we assume that there is another pair (a�1; b�1) for the seletion modelwhih is better than (a1; b1). The di�erene of the means by the seletion model (6.3) withthe two pairs (a1; b1) and (a�1; b�1) isE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a�1; b�11CA� E0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a1; b11CA� � +0B� %1%2 1CA (�(a�1)� �(a1))0B� si;ACsi;BC 1CA :where � is onstant where (a�1; b�1) is lose to (a1; b1).
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Chapter 6. Sensitivity analysis to bivariate normal approximation modelProof. The above equation an be written asE0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a�1; b�11CA� E0B�0B� Yi;ACYi;BC 1CA jZi1 > 0; 'i; a1; b11CA= 0B� �AC�BC 1CA+0B� %1�iAC%2�iBC 1CA�(a�1 + b�1='i)�0B� �AC�BC 1CA�0B� %1�iAC%2�iBC 1CA�(a1 + b1='i);� � +0B� %1siAC%2siBC 1CA�(a�1 + b�1='i)� �(a1 + b1='i): (6.34)By using Theorem 6.7.4, we obtain �2i;AC = s2i;AC=(1 + d2i1%21) and �2i;BC = s2i;BC=(1 + d2i1%22).We substitute �2i;AC and �2i;BC by s2i;AC and s2i;BC in the above equation. From Taylor seriesf(x+�) = f(x) +�xf 0(x) + �x22 f 00(x) + : : :By using the Teylor series, the funtions �(a�1 + b�1='i) and �(a1 + b1='i) in (6.34) are givenby �(a�1 + b�1='i) = �(a�1) + b�'i + � b�'i�2 �00(a�1)2 + : : :�(a1 + b1='i) = �(a1) + b'i + � b'i�2 �00(a1)2 + : : : :Hene, the equation (6.34) is approximated by� +0B� %1%2 1CA�(a�1)� �(a1)0B� siACsiBC 1CA :
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Chapter 6. Sensitivity analysis to bivariate normal approximation model6.8 DisussionAn important role of meta-analysis is to ombine information from di�erent studies to sum-marize an overall estimate of a treatment e�et. Studies with a greater e�et may be morelikely to be seleted or published than studies with a less statistially signi�ant e�et.Chapter 3 presented the empirial log-odds ratio model for the W1 data without onsideringthe problem of seletion in the meta-analysis. In this hapter, we employed the sensitivityanalysis using the seletion model to examine the seletion bias and orreted the resultsunder the ontrolled assumptions for the model. We regard the seletion model as a tool ofsensitivity analysis.The funnel plot was used to test a seletion bias in this thesis. For studies with the binaryoutomes, the standard error is the best measure of study size, while risk ratios or oddsratios should be used for the measure of treatment e�et. We plotted the empirial log-oddsratios against their standard errors for the funnel plot. From the funnel plot 6.1(d), thestudies missed at the bottom right-hand orner an be treated as non-ignorable missing datain meta-analysis, see e.g Little and Rubin (2002). Note that a funnel plot is a simple graph-ial tool for the investigation of seletion bias in meta-analysis. It annot be laimed thatvisually interpreted asymmetry of a plot always reets seletion bias. For example, studiesof lower quality may exaggerate the estimate of the treatment e�ets. Seletion bias is onlyone of a number of possible auses of funnel plot asymmetry. Other soures of asymmetry infunnel plots may be true heterogeneity, data irregularities, artefat and hane (Egger et al.,1987). These may give the low power of tests for the funnel plot asymmetry.The basi idea of the seletion model is that the probability of seletion depends on boththe empirial log-odds ratio and its standard error. Also the model is made under the re-quirement that larger studies are more likely to be seleted than smaller studies. Whenthe number of studies is small, two problems arise for the seletion model. There may be127



Chapter 6. Sensitivity analysis to bivariate normal approximation modelnumerial problems in obtaining stable estimates of the parameters. More importantly, thestandard errors of estimates will be large, perhaps so large as to make any spei� inferenesimpossible or meaningless. In this ase, we need to use an exat logisti regression model asdisussed in Chapter 4. The related seletion model will be disussed in the next hapter.In addition, the pairs (a1; b1) and (a2; b2) for the seletion models Zi1 and Zi2 annot beestimated from the log-likelihood funtion in the usual way, beause we do not know thathow many unseleted studies are there in the population of treatment omparisons A vs B vsC and B and C. Thus, we alulate those pairs from the given probabilities obtaining fromthe largest studies and smallest studies in meta-analysis. These probabilities represent thedi�erent amounts of seletion bias for the models assuming the seletion bias. The funnelplot examines whether or not there is seletion bias in meta-analysis but annot tell thathow many of unseleted studies are. Therefore, the sensitivity analysis is needed.As disussed in Chapter 3, the assumption of variane homogeneity applies to all the treat-ment e�ets, and the orrelation oeÆients between treatment e�ets are 1/2. If bothdiret and indiret omparisons are in meta analysis and the number of indiret omparisonstudies is suÆiently large then the orrelation oeÆient between those treatment e�ets isestimable (Chootrakool and Shi, 2008). However it would make the model more ompliatedin the sensitivity analysis.If more than three treatments are ompared in the meta-analysis, the sensitivity analysis anbe applied in the same way but eah group of treatment omparisons should have enoughinformation (studies) if we would like to add the seletion model in those studies (for bias-suspeted model).
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Chapter 7
Sensitivity analysis to logistiregression model
7.1 IntrodutionWe have desribed how to inspet seletion bias by a funnel plot and how to address theseletion bias by using of a sensitivity analysis for normal approximation model in Chapter6. However, if the sample size for eah study is very small, an exat binomial model shouldbe used. The multi-arm trials model based on the binomial approah for the binary datawas presented in Chapter 4. In this hapter, we extend the sensitivity analysis to the exatlogisti regression model when there is seletion bias, i.e. studies with statistially signi�antresults might have been seleted more predominantly. Regarding to disussion in Chapter5, the onditional likelihood estimates for the logisti regression model usually gives a bet-ter result, therefore a onditional method will be applied for the logisti regression model inthis hapter. We will use a simulated data to perform the sensitivity analysis in this hapter.The simulated data is given in the �rst setion. The rest of this hapter is arranged as follows.The multi-arm trials model for the exat onditional distribution is given in Setion 7.3. We129



Chapter 7. Sensitivity analysis to logisti regression modelpresent an inspetion of seletion bias for the data in Setion 7.4. Setion 7.5 performsthe onditional probability with seletion using some formulae from Chapter 6. The log-likelihood funtion of the model with seletion is produed in Setion 7.6. Setion 7.7 and7.8 illustrate goodness of �t and sensitivity analysis respetively. Finally, the onlusion andsome omments are given in Setion 7.9.7.2 Simulated dataIn this hapter, we will employ the following simulated data to illustrate how sensitivityanalysis is used to address the problem of seletion bias in meta-analysis with the logistiregression model using onditional method. Essentially, the following steps of generating thedata and making the seletion bias are similar to the steps in Setion 6.6 from the previoushapter. Those steps are1. The population dataTo generate the population data of treatment A versus B versus C, we generate three-arm data for 14 studies. We assume the di�erent-trial e�ets, and the treatmente�ets Æi;AC � N(0:40; 0:102) and Æi;BC � N(0:60; 0:102). Similar to Setion 6.6, theovariane between both treatment e�ets is assumed to be zero.2. Make the seletion biasThe parameters %1 and %2, and the seletion probabilities (Pmax(seletion); Pmin(seletion))are 0.5,0.5 and (0.90,0.30) respetively. We use these parameters in the seletion modelZi1 to determine the values of (a1; b1). Following the step 2 of Setion 6.6, we will obtainthe seleted studies.A group of seleted studies obtaining from the above steps is supposed to be biased andthe number of studies in the meta-analysis is now 9. From here, nine seleted studies areused in our meta-analysis and the treatment C is the ontrol group. We shall present the130



Chapter 7. Sensitivity analysis to logisti regression modelexat onditional distribution of logisti regression model for this meta-analysis in the nextsetion.7.3 Multi-arm trials with the onditional probabilityAording to the seleted studies of three-arm omparisons in the previous setion, the riC ,riA and riB are binomially distributed as Bin(�iA; niA), Bin(�iB; niB) and Bin(�iC ; niC)respetively for i = 1; : : : ; 9. If niA, niB and niC are large and riA, riB or riC are not equalto niA, niB or niC or zero. From the disussion in Setion 3.3 of Chapter 3, we an de�nenormal approximation model (see disussion in Chapter 3). For example, the empirial log-odds ratios between (riA; niA) and (riC ; niC), and (riB; niB) and (riC ; niC) are respetivelyYi;AC = log� riA + 0:5niA � riA + 0:5 niC � riC + 0:5riC + 0:5 � ; (7.1)Yi;BC = log� riB + 0:5niB � riB + 0:5 niC � riC + 0:5riC + 0:5 � : (7.2)The logisti regression models for our meta-analysis an be de�ned aslog� �iC1� �iC� = �i; (7.3)log� �ij1� �ij� = �i + Æi;Cj; j 2 J(i); (7.4)where J(i) = fA;Bg. We allow the heterogeneity in the model. Both treatment e�etsÆi;AC and Æi;BC are thus assumed to be random. We assume that there is no assoiationbetween two treatment e�ets then the ovariane between them is zero. Let ri be the vetor(riA; riB) and the funtion Ci represent riA+riB+riC = i. By using the onditional methodas illustrated in Chapter 4, the onditional probability ri given Ci for our meta-analysis is
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Chapter 7. Sensitivity analysis to logisti regression modelgiven byf(rijÆi;AC ; Æi;BC) = f(rijriA + riB + riC = i; Æi;AC ; Æi;BC);
= 0B� niAriA 1CA0B� niBriB 1CA0B� niCriC 1CA e(Æi;ACriA+Æi;BCriB )Pui0B� niCi � ui1 � ui2 1CA0B� niAriA 1CA0B� niBriB 1CA e(Æi;ACui1+Æi;BCui2) ; (7.5)

where ui is the vetor (ui1; ui2) and is in the boundary ofmax(0; i � niC) � ui1 � min(i; niA) and max(0; i � niB) � ui2 � min(i; niB): (7.6)We use the homogeneity of variane for the model. Thus the heterogeneity parameters forthe treatment e�ets Æi;AC and Æi;BC are the same: � 2AC= � 2BC = � 2. As desribed in Chapter4, we integrate the onditional probability funtion f(rijÆi;AC; Æi;BC) with respet to Æi;ACand Æi;BC respetively. The probability f(ri) now involves two integrals and is given byf(ri) = Z Z f(rijÆi;AC; Æi;BC)�(Æi;AC ;�AC; �)�(Æi;BC ;�BC ; �)dÆi;ACdÆi;BC ;where �(Æi;AC ;�AC; �) and �(Æi;BC ;�BC ; �) are the probability density funtions of normaldistribution for Æi;AC and Æi;BC respetively. By applying Gaussian-Hermite approximation,the above probability is approximated asf(ri) � ��1 l1Xn1=1w(1)n1 l2Xn2=1w(2)n2 f(rijÆi;AC ; Æi;BC); (7.7)where f(rijÆi;AC; Æi;BC) is given in (7.5) and the sampling nodes are at Æi;AC = �AC +p2�dn1and Æi;BC = �BC +p2�dn2 for n1 = 1; : : : ; l1 and n2 = 1; : : : ; l2.
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Chapter 7. Sensitivity analysis to logisti regression model7.4 Deteting the seletion biasAs illustrated in Setion 6.1 of Chapter 6, the funnel plot was used to detet seletion biasfor the W1 data. The plot of the empirial log-odds ratios against their standard errors fromeah pairwise-omparison is onsidered for those groups (G1, G3 and G4). Sine this hapteraims to use the sensitivity analysis for the onditional probability model, the values for thesample size axis (standard errors) and means of the model annot be alulated in the usualway as used in Chapter 6.To detet seletion bias in this hapter, we will plot the empirial log-odds ratios on thevertial axis and the estimated onditional standard errors on the horizontal axis, and usethe onditional mean instead of the onventional mean. As before, we onsider the funnelplot in eah pairwise-omparison of meta-analysis, e.g by onsidering our three-arm simulateddata, the funnel plots are for treatment A versus C and B versus C . Here we need to estimatethe onditional variane and the onditional mean for the funnel plot. In probability theory,the onditional variane is the variane of a onditional probability distribution. Whilethe onditional mean (also known as onditional expeted value or onditional expetation)is the expeted value of a real random variable with respet to a onditional probabilitydistribution.7.4.1 Conditional varianeTo alulate the onditional variane, let �2i;AC and �2i;BC be the onditional varianes of Yi;ACgiven i, and Yi;BC given i respetively orresponding to the ith study, may be written as�2i;AC = V ar(Yi;ACji) and �2i;BC = V ar(Yi;BC ji);Note that Yi;AC and Yi;BC are empirial log-odds ratios for treatments A versus C and Bversus C and de�ned in (7.1) and (7.2) respetively. The above onditional varianes an be133



Chapter 7. Sensitivity analysis to logisti regression modelestimated respetively by�2i;AC = E(Y 2i;ACji)� (E(Yi;ACji))2 and �2i;BC = E(Y 2i;BC ji)� (E(Yi;BC ji))2; (7.8)where E represents the expetation operator.7.4.2 Conditional meanFrom (7.8), the E(Yi;ACji) and E(Yi;BC ji) are the onditional means of Yi;AC given i andYi;AC given i, respetively. They an be alulated asE(Yi;ACji) =XriA (Yi;AC:f(riAjÆi;AC)) and E(Yi;BC ji) =XriB (Yi;BC:f(riBjÆi;BC)): (7.9)The riA and riB are treated as disrete random variables and play the important role forE(Yi;ACji) and E(Yi;BC ji) respetivley. The onditional probability funtions f(riAjÆi;AC)and f(riBjÆi;BC) an be obtained from (7.5) and estimated in the same way as (7.7). Forexample, by using (7.5) , f(riAjÆi;AC) is given by
f(riAjÆi;AC) = 0B� niAriA 1CA0B� niCriC 1CA eÆi;ACriAPui10B� niCi � ui1 1CA0B� niAriA 1CA eÆi;ACui1 ; (7.10)

where ui1 is given in (7.6). The above equation is approximated byf(riA) � ��1=2 lXn=1 wnf(riAjÆi;AC); (7.11)where the sampling nodes are at Æi;AC = �AC + p2�dn for n = 1; : : : ; l. Notie that thevalues of onditional means E(Yi;ACji) and E(Yi;BC ji) depend on the ith study and are134



Chapter 7. Sensitivity analysis to logisti regression modelonditioned on the funtion i; this will give the rough funtion of their funnel plots. From(7.8), the onditional means of Y 2i;AC given i and Y 2i;BC given i an be evaluated fromE(Y 2i;ACji) =XriA (Y 2i;AC :f(riAjÆi;AC)) and E(Y 2i;BCji) =XriB (Y 2i;BC :f(riBjÆi;BC)): (7.12)7.4.3 Funnel plotFrom our meta-analysis (9 studies), the funnel plots Yi;AC against �i;AC and Yi;BC against�i;BC are shown in Figures 7.1 and 7.2 respetively. The onditional means E(Yi;ACji) andE(Yi;BC ji) are represented by the dashed line in both �gures. As mentioned earlier, notiethat the onditional mean in both �gures are not smooth funtions when plotted against theonditional variane. Plot 7.1 indiates that smaller studies (larger �i;AC) give more positiveresults than larger studies (smaller �i;BC) and this plot has a trend. Funnel plot 7.2 showsa similar sign of seletion bias to Figure 7.1. The problem of seletion bias has arisen inthe meta-analysis. Therefore, we would assume here that there might be other small studiesomparing the treatments A, B and C, whih have been arried out but whih have not beenseleted in the meta-analysis.7.4.4 Standard errorThe standard errors of Yi;AC and Yi;BC in (7.8) for logisti regression model depend onvalue of treatment e�ets. Now we shall alulate the standard error for the model withouttreatment e�et for the use later. Let n1i and n2i represent the summations niA + niC andniB+niC respetively. From the empirial log-odds ratios Yi;AC and Yi;BC , and the onditionalprobabilities f(riAjÆi;AC) and f(riBjÆi;BC), we obtain the following standard errors (see the
135
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Figure 7.1: The funnel plot:Yi;AC against vi;AC-the dashed lines represent the onditionalmean of Yi;AC given i.
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Chapter 7. Sensitivity analysis to logisti regression modeldetails in Shi and Copas, 2002)s�i;AC = pV ar(Yi;ACjÆi;AC = 0; i) = � n31ii(n1i � i)niAniC�1=2 ; (7.13)s�i;BC = pV ar(Yi;BC jÆi;BC = 0; i) = � n32ii(n2i � i)niBniC�1=2 : (7.14)7.5 Seletion biasAs seen from the preeding setion, there is seletion bias in our meta-analysis. We applythe idea of the use of seletion model from Chapter 6 in this setion. We shall demonstratehow we assume a population model and how a study from the model will be seleted. Theyare desribed as follows1. Population modelWe shall assume the logisti regression model with onditional probability (7.5) to bea population model for treatment A versus B versus C.2. Seletion eventA seletion of studies from the population model an be hosen to represent our meta-analysis. To illustrate this seletion, let S1 be the event that a study from the pop-ulation model will be seleted. This is under the expetation that larger studies aremore likely to be seleted than those smaller studies. Supposing that the event S1has ourred then the population model with assuming S1 happened an be written asp(rijS1; i) (or alled the ombined model).The ombined model p(rijS1; i) an be derived asp(rijS1; i) = p(S1; riji)p(S1ji) ;= p(riji)p(S1jri; i)p(S1ji) ; (7.15)137



Chapter 7. Sensitivity analysis to logisti regression modelwhere p(riji) is the population model and given in (7.5) while p(S1jri; i) and p(S1ji) are theprobability of seletion (S1 happened) for a typial study (ri) and the probability of seletion(S1 happened). We need to de�ne a seletion model and alulate these probabilities. Notethat the random treatment e�ets Æi;AC and Æi;BC are inluded in those probabilities. Thefollowing details are for p(S1jri; i) and p(S1ji) respetively.(i). The probability of seletion event happened for a typial studyLet q be the funtion of probability of a typial study as the ith study being seleted,de�ned by q(rijÆi;AC ; Æi;BC) = p(S1jri; i; Æi;AC ; Æi;BC): (7.16)We need to de�ne the above seletion probability. Now let us revise the seletion modelwe used in Chapter 6 for normal approximation model. The normal approximatonmodel and the seletion model Zi1 are given by8><>: Yi;AC = Æi;AC + s�i;AC��i;AC ;Yi;BC = Æi;BC + s�i;BC��i;BC ; (7.17)Zi1 = a1 + b1'�i + ��i ; (7.18)where s�i;AC and s�i;BC are the standard errors of Yi;AC and Yi;BC respetively. Thefuntion '�i is the average of standard errors in the ith study, an be written as(s�i;AC + s�i;BC)=2. The random residuals (��i;AC ; ��i ) and (��i;BC ; ��i ) are bivariate nor-mal distributions with both means equal to zero and both varianes equal to one.Their orrelations areorr(��i;AC; ��i ) = %�1 and orr(��i;BC ; ��i ) = %�2:If %�1 and %�2 are zero then it shows that the riA; riB and riC from the meta-analysis(or the outome (Yi;AC; Yi;BC)) have no e�et on whether the study is seleted or not.138



Chapter 7. Sensitivity analysis to logisti regression modelThis will be the model without assuming seletion bias. On the other hand, if %�1 > 0and %�2 > 0 then the seleted studies are biased by the large values of Yi;AC and Yi;BC .Following the disussion given in Chapter 6, we have the following formula:q(rijÆi;AC; Æi;BC) = ����2i1��2i1� ; (7.19)where � is the standard normal umulative distribution, and ��2i1 = E(Zi1j(Yi;AC; Yi;BC))and ��22i1 = V ar(Zi1j(Yi;AC; Yi;BC)) given in (6.7) and (6.8) respetively. For the logistiregression models (7.3) and (7.4) with onditional approah (7.5), we will still adoptthe seletion probability but s�i;AC and s�i;BC here are replaed by (7.13) and (7.14).For simplifying the omputation, as assumed earlier, there is no assoiation betweenthe treatment e�ets Æi;AC and Æi;BC .The seletion model de�ned as above is reasonable. Atually, the only requirementfor seletion probability is that it an model the phenomena shown in Figures 7.1 and7.2, i.e. the large studies and the studies with positive results would tend to havelarger seletion probabilities than others. Seletion probability (7.19) would satisfythe requirement. As disussed in Chapter 6, the parameters a1 and b1 are inestimableand whether the meta-analysis model with a seletion model �t to the data will beheked by goodness-of-�t test and other statistial quantities in a sensitivity analysis.(ii). The marginal seletion probabilityTo estimate the probability of seletion p(S1ji), let Qi1 be the marginal seletionprobability given Æi;AC and Æi;BC and derived asQi1(Æi;AC ; Æi;BC) = p(S1ji; Æi;AC; Æi;BC);= Xui p(S1jri = ui; i; Æi;AC; Æi;BC)p(ri = uiji; Æi;AC; Æi;BC);(7.20)139



Chapter 7. Sensitivity analysis to logisti regression modelwhere p(S1jri = ui; i; Æi;AC; Æi;BC) is the probability of seletion for a study inludingthree arms and given in (7.19), and p(ri = uiji; Æi;AC ; Æi;BC) is the onditional proba-bility model of ri given i and given in (7.7). Note that the vetor ui is given in (7.6).Thus, we have Qi1(Æi;AC ; Æi;BC) =Xui q(uijÆi;AC; Æi;BC)f(uijÆi;AC ; Æi;BC): (7.21)Equation (7.21) inludes two random treatment e�ets. We shall integrate the marginalseletion probability Qi1(Æi;AC ; Æi;BC) with respet to treatment e�ets Æi;AC and Æi;BCrespetively. The overall marginal seletion probability isQi1 = Z Z Qi1(Æi;AC ; Æi;BC)�(Æi;AC ;�AC ; �2)�(Æi;BC ;�BC ; �2)dÆi;ACdÆi;BC ;= Z Z Xui f(uijÆi;AC ; Æi;BC)q(uijÆi;AC ; Æi;BC)�(Æi;AC)�(Æi;BC)dÆi;ACdÆi;BC ;(7.22)where �(Æi;AC) and �(Æi;BC) are the probability density funtions of the normal distri-butionsN(�AC ; � 2) andN(�BC ; � 2) respetively. Notie that the funtion f(uijÆi;AC ; Æi;BC)involves the random treatment e�ets so we need Guassian-Hermnite approximationto estimate in the usual way. After integrating, the Qi1 is an unonditional probabilityand does not depend on the Æi;AC and Æi;BC . Note that the estimate from marginalseletion probabily Qi1 is lose to �(a1 + b1='i) (obtained from equations (7.17) and(7.18)) (see the disussion from Shi and Copas, 2002).7.6 LikelihoodThe log-likelihood funtion of the onditional probability model with assuming seletionevent happened an be written asl(�) = 9Xi=1 log p(rijS1; i) = 9Xi=1 log�p(ri;S1ji)p(S1ji) � : (7.23)140



Chapter 7. Sensitivity analysis to logisti regression modelThe right-hand side of above equation is obtained from the probability property. The ol-letion of unknown parameters is� = f�AC; �BC ; �; %�1; %�2g : (7.24)We need to handle with two random treatment e�ets Æi;AC and Æi;BC in the log-likelihoodfuntion l(�). The probability p(ri;S1ji) thus omprises two integrations whih are withrespet to both treatment e�ets. While p(S1ji) is marginal seletion probability given in(7.21) and involved integrations as givne in (7.22). Then, the right- hand side of l(�) an bederived as 9Xi=1 (log p(ri;S1ji)� log p(S1ji))= 9Xi=1 �logZ Z p(ri;S1ji; Æi;AC; Æi;BC)�(Æi;AC)�(Æi;BC)dÆi;ACdÆi;BC � log(Qi1)� :By using equation (7.15) in the term p(ri;S1ji; Æi;AC; Æi;BC), the log-likelihood funtion l(�)is 9Xi=1 �logZ Z f(rijÆi;AC ; Æi;BC)q(rijÆi;AC; Æi;BC)�(Æi;AC)�(Æi;BC)dÆi;ACdÆi;BC � log(Qi1)�(7.25)where f(rijÆi;AC ; Æi;BC) and q(rijÆi;AC ; Æi;BC) are given in the equations (7.5) and (7.19) re-spetively. The Qi1 in the last term is given in (7.22).7.7 Goodness of �tSuppose that the pair (a1; b1) is used in the seletion proess. To test whether the set (a1; b1)is a possible pair in the onditional probability model p(rijS1; 1) or not, we adopt the testbased on the goodness-of-�t test in Chapter 6. The null hypothesis for the test is H0 : � = 0where � is the vetor (�1; �2). We shall add the term �1s�i;AC to �AC and �2s�i;BC to �BC for141



Chapter 7. Sensitivity analysis to logisti regression modelthe treatment e�ets Æi;AC and Æi;BC . This an be set toÆ�i;AC � N(�AC + �1s�i;AC; � 2) and Æ�i;BC � N(�BC + �2s�i;BC ; � 2); (7.26)where s�i;AC and s�i;BC are estimated from (7.13) and (7.14) respetively. After that, thetreatment e�ets in (7.26) are applied to the log-likelihood funtion l�(�;�), given by9Xi=1 �log Z Z f(rijÆ�i;AC ; Æ�i;BC)q(rijÆ�i;AC ; Æ�i;BC)�(Æi;AC)�(Æi;BC )dÆi;ACdÆi;BC � log(Q�i1)� ; (7.27)where Q�i1 = Z Z Xui f(uijÆ�i;AC ; Æ�i;BC)q(uijÆ�i;AC ; Æ�i;BC)�(Æ�i;AC)�(Æ�i;BC)dÆi;ACdÆi;BC : (7.28)The likelihood ratio statistis for H0 : � = 0 is2�l�(b�; b�)� l�(b��=0;� = 0)� � �22 under H0; (7.29)where (b�; b�) is MLEs by maximizing the log-likelihood funtion (7.27) while (b��=0;� = 0)is the MLEs from (7.27) with restrition � = 0. The interpretation of test is similar asexplained in Chapter 6. If the null hypothesis is aepted, it means that the pair (a1; b1) isa plausible hoie of the model p(rijS1; 1) and makes the funnel plots �t well.7.8 Sensitivity analysisWe use the similar idea in Setion 6.5 to ondut a sensitivity analysis here. We allowthe onditional probability model p(rijS1; i) to have di�erent amounts of seletion biasdepending on the pair (a1; b1) in the seletion model p(S1jri; i) or p(S1ji). The steps ofsensitivity analysis are given as follows.� Step 1: Determine the range of (a1; b1)142



Chapter 7. Sensitivity analysis to logisti regression modelWe use three typial pairs: (0.99,0.80), (0.80,0.50) and (0.60,0.30), in the area of0:01 � Pmin(seletion) � Pmax(seletion) � 0:99;where Pmin(seletion) and Pmax(seletion) are given in (6.19). By using three typialpairs to identify the pair (a1; b1), the pairs relating to the seletion probability pairare given in Table 7.1. The model without assuming S1 happened (standard model) isobtained by using the �rst pair of Table 7.1 in the model p(rijS1; i).Table 7.1: The pairs of (a1; b1) for the seletion model Zi1Seletion probability pairs a1 b1(1.0,1.0) 6.0 0.0(0.99,0.80) 0.3793294 0.4492381(0.80,0.50) -0.8844004 0.8594276(0.60,0.30) -1.3416807 0.7942026� Step 2: Estimation and goodness-of-�t testWe will use eah ombination (a1; b1) in Table 7.1 to alulate eah of the followingquantities.1. d�AC;2. p-value for testing H0 : �AC = 0;3. standard error of d�AC ;4. lower limit of the 95% on�dene interval for �AC;5. upper limit of the 95% on�dene interval for �AC ;6. d�BC ;7. p-value for testing H0 : �BC = 0;8. standard error of d�AC ;9. lower limit of the 95% on�dene interval for �BC ;143



Chapter 7. Sensitivity analysis to logisti regression model10. upper limit of the 95% on�dene interval for �BC ;11. Pmax(seletion) for the seletion model Zi1;12. Pmin(seletion) for the seletion model Zi1;13. estimated number of seleted and unseleted studies given byPi fp(Zi1 > 0j'i)g;14. p-value for the �t for the funnel plot orresponding to the null hypothesis H0 :� = 0.Table 7.2: The bias-simulated data with seletion: summary of outputs[; 1℄ [; 2℄ [; 3℄ [; 4℄ [; 5℄ [; 6℄ [; 7℄0.5054664 0.0124615 0.014580 0.4768896 0.5340432 0.6369195 0.00147820.5050151 0.0124782 0.038970 0.4286339 0.5813963 0.6364665 0.00214540.3380378 0.0430073 0.135470 0.0725166 0.6035590 0.4668118 0.00628340.1314767 0.3789370 0.481100 -0.8114793 1.0744327 0.2589700 0.0879419[; 8℄ [; 9℄ [; 10℄ [; 11℄ [; 12℄ [; 13℄ [; 14℄0.254810 0.1374919 1.1363471 1.00 1.00 9 0.09995260.021450 0.5948775 0.6789615 0.99 0.80 10 0.14461500.654800 -0.8165962 1.7502198 0.80 0.50 13 0.43370690.258900 -0.2484740 0.7664140 0.60 0.30 20 0.6969515The MLEs for �AC and �BC are presented in olumns 1 and 6 respetively. By alulat-ing the asymptoti variane-ovariane matrix, desribed in Chapter 4, their standarderrors are shown in olumns 3 and 8 respetively. Columns 4 and 5, and olumns 9and 10 are the lower and upper limits of the 95% on�dene intervals for d�AC and d�BCrespetively. Note that the signi�ane level in this setion is 0.10.(i). The �rst row represents the results for the standard onditional probability modelwithout assuming seletion event. The estimates for �AC and �BC are 0.5054664and 0.6369195 respetively. The presene of seletion bias an be deteted fromthe p-value of H0 : � = 0 (olumn 14). The p-value 0.0999526 shows that themodel is slightly biased.(ii). Considering the seletion bias, the d�AC and d�BC derease gradually while theestimated number of population studies (olumn 13) inreases.144
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Figure 7.3: d�AC against the p-value of H0 : � = 0
(iii). P-values of H0 : d�AC = 0 (olumn 2) and H0 : d�BC = 0 (olumn 7) are signi�antin all rows.(iv). Using the goodness-of-�t test, the p-value of H0 : � = 0 indiates that the modelwith assuming the seletion event has improved from reading downward.� Step 3: Sensitivity analysisThe plots of d�AC against the p-value of H0 : � = 0 and d�BC against the p-value ofH0 : � = 0 are shown in Figures 7.3 and 7.4 respetively. The estimates for �AC and�BC from our meta-analysis (9 studies) are presented in the blue and red solid dots inFigures 7.3 and 7.4 respetively. By using our sensitivity analysis, the plots show thatd�AC and d�BC an be anything less than 0.45 and 0.50 respetively. Also their plausibleestimates with p-value 0.5 should be around 0.30 and 0.40 respetively.To onlude, we an see the plausible estimates are aeptable omparing to the true values(0.4 and 0.6) of �AC and �BC in the population data of Setion 7.2.145
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Figure 7.4: d�BC against the p-value of H0 : � = 0
7.9 DisussionWe �rst used the sensitivity analysis to the W2 data but there was no evidene of seletionbias. Consequently, we generated the three-arm data to be the population and made thisdata bias from seletion. In this hapter, we assume that there is no assoiation betweenboth treatment e�ets Æi;AC and Æi;BC .In general, we extend the sensitivity analysis from the previous hapter to the onditionalprobability model. We use the exat distribution of the data with the onditional method torepresent the population model and apply the formulae of the normal approximation modelwith seletion, expressed in Chapter 6, for the seletion of the event S1. Thus, the probabilityof being seleted for a typial study q(rijÆi;AC ; Æi;BC) is obtained from p(Zi1 > 0jYi;AC; Yi;BC).As we have disussed in Setion 7.5, this seletion probability model is still relevant formodelling seletion bias suh as appeared in Figures 7.1 and 7.2, and it an be used in a146



Chapter 7. Sensitivity analysis to logisti regression modelsensitivity analysis.The test for the pair (a1; b1) of the seletion model is similar to the goodness-of-�t in Chapter6. Sine there are two random e�ets involved in the likelihood funtion, the estimation forthe log-likelihood funtion is ompliated and takes long time. As before, Gaussian quadra-ture has been used for integral estimation. Alternatively, we an use the other methods,mentioned in Chapter 4 to estimate the integral. Shi and Copas (2002) used a Markov hainMote Carlo EM algorithm to estimate MLEs for the meta-analysis of 2 � 2 tables usingexat onditional distributions.In this hapter, we disuss a model with three treatments. More treatment omparisons anbe applied to the sensitivity analysis here but the omplexity of onditional model wouldmake the alulation diÆult, partiularly its denominator. In addition, we will have morefree parameters in the likelihood if multiple-seletion models are exploited.
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Chapter 8
Conlusions and further development
8.1 ConlusionsMeta-analysis is a statistial tool that summarizes evidene from multiple studies of a par-tiular topi and attempts to provide an estimate of true e�et. The aims of meta-analysisof multi-arm trials are to ombine evidene from all possible similar studies and draw in-ferenes about the e�etiveness of multiple ompared-treatments. Throughout the thesis,we have used two meta-analyses of multi-arm trials data (W1 and W2) to di�erent modelstrategies. If the number of individual studies (nij) is large enough (larger than 20) and rijis not too small and not too lose to nij, for example from the W1 data then the normalapproximation model is appropriate. For the empirial log-odds model, the trial e�ets inmeta-analysis would not satisfy any model (�xed e�et or random e�et) beause they arepooled from di�erent design models. Thus, the trial e�ets were assumed to be di�erent.This makes the logisti regression model inludeM (the number of studies in meta-analysis)unknown parameters in the likelihood funtion and may ause the problem of many nuisaneparameters and inonsistent estimate. To avoid these problems, the empirial log-odds ra-tios model an be proposed. We ompare the small and large numbers of nij for empiriallog-odds ratio model in simulation study of Chapter 5. The results show that the model aresuitable for large individual studies. However, if M is not too large; the empirial log-odds149



Chapter 8. Conlusions and further developmentand empirial log-odds ratio models may give the similar results.The logisti regression model an be employed to any multi-arm trials data. Two approahes,unonditional and onditional are used to make inferenes. The logisti regression modelsare applied to the W2 data due to the small number of nij. The logisti regression modelusing the unonditional method inludes nuisane parameters. The model should be usedwith a small number of studies. The unonditional maximum likelihood estimate may bebiased if nij is small andM is large (Lubin, 1981; Cox and Snell, 1989). The main advantageof the onditional likelihood approah is that the likelihood depends only on the parametersof interest. This gives a onsistent estimates and the omputation is stable. The resultsfrom simulation study of Chapter 5 support our onlusions for the normal approximationmodel and the logisti regression model using unonditional and onditional methods.The empirial log-odds ratio models have been used for the W1 data in Chapter 3. Howeverwe found that studies with positive results were more likely to be seleted, it ould thereforelead to seletion bias (positive bias). A sensitivity analysis by using a seletion model hasbeen employed to examine the seletion bias and orreted the results under the ontrolledassumptions for the model. The seletion model is regarded as a tool of sensitivity analysis.The missing studies in funnel plot an be treated as non-ignorable missing data in meta-analysis. Similarly, the sensitivity analysis is extended to the logisti regression model.8.2 Further devolopmentWe proposed unonditional and onditional likelihood for meta-analysis with the logisti re-gression model in Chapters 4 and 5. Although onditional approah shows good performanein theory and in our simulation studies, it is of interest to ompare the method with someother methods, for example, restrited maximum likelihood estimation (REML), penalizedquasi-likelihood (PQL) estimation. 150



Chapter 8. Conlusions and further development
Gauss-Hermite quadrature approximation has been used to approximate the integral formof probabilities inluding random e�ets in the likelihood funtion for the logisti regressionmodel. By using di�erent number of nodes for approximation, the results from the modelwere not muh di�erent. As mentioned in Chapter 4, the approximation is reasonably ef-fetive for low-order integrations depending on the number of treatments involved in thosestudies. If this number is large then it makes the dimensionality of the integral large andthe approximation annot give an aurate approximation. If there are more than threetreatments (two pairwise-omparisons) in multi-arm trials, we may need to use some othermethods, for example, Laplae approximation method or Monte Carlo EM algorithm, seeRipatti and Palmgren (2000); Shi and Copas (2002).In Chapter 5, we fous on omparing three methods used in this thesis with a speial ase thatthere is no assoiation between the treatment e�ets (� = 0) and the diret omparisons areonly involved. The parameter � is of interest. It is estimable if enough information is providedfor indiret omparison. It is worth a further study on this parameter, by a omprehensivesimulation study and analysis of more real data. From Chapter 7, the estimation of log-likelihood funtion for the model with seletion models is ompliated and takes long time.Alternatively, we an use a Markov hain Monte Carlo EM algorithm to estimate MLEs.We used the method to the simulated data. Further, more real data an be applied to themethod.
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