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2 Probability and Probability distributions

This chapter will give a brief review on some basic notions of proba-
bility and introduce some probability distributions for discrete and
continuous data.

Probability

– Basic notions of probability

– Classical probability

– Frequentist probability

– Laws of probability

– Independence

Probability distributions

– Discrete distributions

– The binomial distribution

– The Poisson distribution

– Continuous distributions

– The Normal distribution

– The uniform distribution

2.1 Probability

2.1.1 Basic notions

Probability is the language we use to model uncertainty. We all intu-
itively understand that few things in life are certain. There is usually
an element of uncertainty or randomness around outcomes of our
choices.

In engineering this uncertainty can mean the difference between life
and death! Hence an understanding of probability and how we might
incorporate this into our decision making processes is important.
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Definitions: We often use the letter P to represent a probability. For
example, P (Rain) would be the probability that it rains.

An Experiment is an activity where we do not know for certain
what will happen, but we can observe what happens. For example:

• We will ask someone whether or not they have used our product.

• We will observe the temperature at midday tomorrow.

• We will toss a coin and observe whether it shows “heads” or “tails”.

An Outcome is one of the possible things that can happen.

The Sample space is the set of all possible outcomes. For example,
it could be the set of all shoe sizes.

An Event is a set of outcomes. For example “the shoe size of the
next customer is less than 9” is an event. It is made up of all of the
outcomes where the shoe size is less than 9.

Probabilities are usually expressed in terms of fractions, decimals
or percentages. Therefore we could express the probability of it raining
today as

P (Rain) =
1

20
= 0.05 = 5%.

All probabilities are measured on a scale from zero to one.

– An impossible event has a probability of zero.

– A certain event has a probability of one.

– An evens event has a probability of 0.5.

– Can you imagine where about on this scale a likely event will lie?
Or an extremely unlikely event?

The collection of all possible outcomes – the sample space – has a
probability of 1. For example: suppose an event has only two outcomes
– success or failure, then

P (success or failure) = 1.

Another example: Suppose we have a fair six–sided die, then

P (1 or 2 or 3 or 4 or 5 or 6) = 1.
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Two events are said to be mutually exclusive if both can not occur
simultaneously. In the example above, the outcomes success and failure
are mutually exclusive.

Two events are said to be independent if the occurrence of one does
not affect the probability of the second occurring. For example, if you
toss a coin and look out of the window, the events “get heads” and “it
is raining” would be independent.

2.1.2 Classical Probability

This view is based on the concept of equally likely events.

If we toss a fair coin, we have two possible outcomes – Heads or
Tails. Both outcomes are equally likely. Thus

P (Head) =
1

2
and P (Tail) =

1

2
.

The underlying idea behind this view of probability is symmetry.

In this example, there is no reason to think that the outcome Head
and the outcome Tail have different probabilities. Since there are two
outcomes and one of them must occur, both outcomes must have prob-
ability 1/2.

Another commonly used example is rolling dice. There are six
possible outcomes – (1, 2, 3, 4, 5, 6) – if the die is fair, each of them
should have an equal chance of occurring. With this in mind, we have
the following Probability distribution table:

Outcome 1 2 3 4 5 6
Probability 1/6 1/6 1/6 1/6 1/6 1/6

Using the following formula:

P (Event) =
Total number of outcomes in which event occurs

Total number of possible outcomes

we find the probabilities of these events:

P (Even Number) = 1/2.
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P (Odd Number) = 1/2.

P (multiple of three) = 1/3.

Example. A washing basket contains two green socks, three yellow
socks, an orange sock and a purple sock.

We can obtain the following probabilities:

P (green sock) = 2/7,

and

P (orange if a yellow has already been removed) = 1/6.

2.1.3 Frequentist probability

When the outcomes of an experiment are not equally likely, we can con-
duct experiments to give us an idea of how likely the different outcomes
are.

Examples

– Probability of producing a defective item in a manufacturing pro-
cess : We could monitor the process over a long period of time and
the probability of a defective could be measured by the proportion
of defectives in our sample.

– Imagine we believed a coin was unfair : Toss the coin a large
number of times and see how many heads you obtain, and express
P (Head) as a proportion.
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By conducting experiments the probability of an event can easily be
estimated using the following formula:

P (Event) =
Number of times an event occurs

Total number of times experiment done
.

Example. The following data are the daily rainfall totals (in mm) for
Kolkata, India:

41 36 12 25 30 0 0 15 51

We have the following (frequentist) probabilities:

P (no more than 30 mm of rain) = 6/9;

and
P (more than 25 mm of rain) = 4/9.

The larger the experiment, the closer this probability is to the “true”
probability. The frequentist view of probability regards probability as the
long run relative frequency (or proportion). In the defects example, the
“true” probability of getting a defective item is the proportion obtained in
a very large experiment (strictly an infinitely long sequence of trials).

2.1.4 Laws of probability

The probability of two independent events E1 and E2 both occurring
is

P (E1 and E2) = P (E1)× P (E2).

For example, the probability of throwing a six followed by another
six on two rolls of a die is calculated as follows: The outcomes of the two
rolls of the die are independent. Let E1 denote a six on the first roll and
E2 a six on the second roll.

P (two sixes) = P (E1 and E2) = P (E1)× P (E2) =
1

6
× 1

6
=

1

36
.

This method of calculating probabilities extends to when there are
many independent events:

P (E1 and E2 and · · · and En) = P (E1)× P (E2)× · · · × P (En).
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Remarks: There is a more complicated rule for multiplying probabilities
when the events are not independent.

Example: A mugging in California

An elderly woman was assaulted and robbed in an alley in San Pedro,
California. A witness saw a blonde woman with a pony–tail running out
of the alley and get into a yellow car driven by a black male with a beard
and a moustache.

A couple answering that description were arrested nearby and brought
to trial. The prosecutor calculated:

P (blonde) =
1

3
, P (pony–tail) =

1

10
,

P (beard) =
1

10
, P (moustache) =

1

4
,

P (yellow car) =
1

10
, P (black male with white female) =

1

1000
,

so that

P (coincidence) =
1

3
× 1

10
× 1

10
× 1

4
× 1

10
× 1

1000
= 1 in 12 million.

Not surprisingly, the verdict was guilty. This evidence was challenged on
appeal, however, and the verdict reversed. Why? The events might be

not independent!

Addition Law

The addition law describes the probability of any of two or more
events occurring.

The addition law for two events E1 and E2 is

P (E1 or E2) = P (E1) + P (E2)− P (E1 and E2).

This describes the probability of either event E1 or event E2 happening.
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Example. 50% of families in a certain city subscribe to the morning
newspaper, 65% subscribe to the afternoon newspaper, and 30% of the
families subscribe to both newspapers.

What proportion of families subscribe to at least one newspaper?

P (E1 or E2) = P (E1) + P (E2)− P (E1 and E2)

= 0.5 + 0.65− 0.3 = 0.85.

A more basic version of the rule works where events are mutually
exclusive.

If events E1 and E2 are mutually exclusive then

P (E1 or E2) = P (E1) + P (E2).

This simplification occurs because when two events are mutually ex-
clusive they cannot happen together and so P (E1 and E2) = 0.

2.2 Probability distributions

Example: Rocket engine thrusts
The thrust of a rocket engine was measured at 10–minute intervals while
being run at the same operating conditions. The following 30 observa-
tions were recorded (in Newtons×105).

999.1 1003.2 1002.1 999.2 989.7 1006.7 1012.3
996.4 1000.2 995.3 1008.7 993.4 998.1 997.9
1003.1 1002.6 1001.8 996.5 992.8 1006.5 1004.5
1000.3 1014.5 998.6 989.4 1002.9 999.3 994.7
1007.6 1000.9

The following figure shows a histogram of these data, and their prob-
ability distribution.
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There are a number of ‘standard ’ probability distributions which
data often adopt.

If we can learn to recognise the situations in which these ‘stan-
dard’ distributions occur, we can simplify the nature of the analysis which
we perform on the data.

Two major subdivisions occur: discrete distributions, where we
usually have counts, and continuous distributions, where values are
from a continuous scale.

We will look at two discrete distributions (the binomial and Pois-
son distributions) and two continuous distributions (the Normal and
uniform distributions).

2.2.1 Discrete distributions

(i) Binomial Distribution

Bernoulli trial: There are only two possible outcomes, namely success
and failure.

P (success) = p.

For example: if we toss a coin, P (‘head’) = 0.5.

Suppose the following statements hold:

• There are a fixed number of Bernoulli trials (n) (i.e. in each trial
there are only two possible outcomes ‘success’ or ‘failure’);
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• There is a constant probability of ‘success’, p;

• The outcome of each trial is independent of any other trial.

Then the total number of successes in n trials, X, follows a binomial
distribution. We write X ∼ Bin(n, p), and

P (X = x) =

(

n

x

)

px(1− p)n−x, x = 0, 1, . . . , n,

where
(

n

x

)

=
n!

x!(n− x)!
and

A! = A× (A− 1)× (A− 2) . . .× 3× 2× 1.

If we assume a binomial distribution, then the following formulae give
the mean and variance :

mean = n× p;

variance = n× p× (1− p).

Example
Suppose that 95% of bathing beaches pass E.U. hygiene regulations. In
a random sample of 12 beaches, what is the probability that more than
than 9 beaches pass the regulations?

Let

X: number of beaches which pass.

Since we have a fixed number of trials (12), there are two possible out-
comes for each trial, and we have a constant probability of ‘success’ (95%
=0.95), we can say that

X ∼ Bin(12, 0.95).

We need to calculate

P (X > 9) = P (X ≥ 10)

= P (X = 10) + P (X = 11) + P (X = 12).
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Now

P (X = 10) =

(

12

10

)

× 0.9510 × 0.052

= 66× 0.59874× 0.0025

= 0.09879.

Similarly,

P (X = 11) =

(

12

11

)

× 0.9511 × 0.051 = 0.3414, and

P (X = 12) =

(

12

12

)

× 0.9512 × 0.050 = 0.5404.

Thus,

P (X > 9) = P (X = 10) + P (X = 11) + P (X = 12) = 0.9805.

Conclusion: the possibility that more than 9 beaches can pass the
regulations is about 98%.

Example. The probability that a fluorescent light has a life of over 500
hours is 0.9. Amongst a box of a dozen of such lights,

1. Find the probabilities that

(a) exactly ten last for more than 500 hours;

(b) at least ten last for more than 500 hours;

(c) at most 2 last for less than 500 hours.

2. On average, how many lights in a box can last for more than 500
hours?

(ii)Poisson Distribution

Suppose the following hold:

• There is no natural upper limit to the number of trials;

• Events occur independently, at a constant rate (λ);

• Two, or more, events cannot occur simultaneously.
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Then the number of events, X, occurring with rate λ, has a Poisson
distribution. We write X ∼ Poi(λ), and

P (X = x) =
e−λ × λx

x!
, x = 0, 1 . . .

If we assume a Poisson distribution, then the following formulae give
the mean and variance :

mean = λ;

variance = λ.

Example. ‘Jonah’ Jones has sailed on tankers during his long sea–going
career. Assuming the average incident rate for tankers is 0.231 per ship
per year, calculate the probability of more than 1 incident in any year of
Jones’ career.

Let

X: number of incidents (per year).

Since we have a constant rate for the number of incidents per year –
λ = 0.231 – and there is no upper limit to the number of incidents which
may occur in any given year, we can say that

X ∼ Poi(0.231).

We need

P (X > 1) = P (X = 2) + P (X = 3) + . . .

= 1− P (X ≤ 1)

= 1− {P (X = 0) + P (X = 1)}

= 1−
{

e−0.231 × (0.231)0

0!
+

e−0.231 × (0.231)1

1!

}

= 1− {0.7939 + 0.1834} = 2.3%.

More examples.

1. Vehicles pass a point on a busy road at an average rate of 420 per
hour.
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(a) What is the averge number passing in 2 minutes?

(b) Find the probability that non pass in 2 minutes.

(c) Find the probability that at least two vehicles pass in 2 min-
utes.

2. In the River Wear, a certain bacteria occurs at a rate of 5 per litre.

(a) Find the probability of observing less than 3 bacteria in any
one litre jar.

(b) Find the probability of observing more than 2 in any one litre
jar.

(c) Find the probability of observing exactly 8 bacteria in a two
-litre jar.

2.2.2 Continuous distributions

A histogram gives an indication of the relative frequencies of different
values. As n increases, it will tend to a smooth curve known as a prob-
ability density function.

The area under this curve between [a, b] gives P (a < X ≤ b), i.e. the
probability that X lies between a and b.

As with probability distributions in the discrete case, the area under
this curve must be equal to 1.

(i) The Normal distribution

The Normal distribution is without doubt the most widely–used statis-
tical distribution in many practical applications:

• Normality arises naturally in many physical, biological and social
measurement situations.

• Normality is important in Statistical inference.

• It has many guises:

– Gaussian distribution

– Laplacean distribution

– “bell–shaped curve”

• The normal distribution is a continuous distribution
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• It has probability density function, or PDF

f(x) =
1√
2πσ2

exp

{

− 1

2σ2
(x− µ)2

}

.

• We write X ∼ N (µ, σ2).

• The parameters µ and σ2 are themean and variance respectively.

The expression above is the general form of the PDF for the normal
distribution.

The standard Normal distribution:

• The standard Normal distribution arises when µ = 0 and σ = 1.

• This gives the PDF

f(z) =
1√
2π

exp

{

−1

2
z2
}

.

• Statistical tables give probabilities for the standard Normal distri-
bution.

• However, we can re–scale any normal distribution to the standard
Normal! If X ∼ N (µ, σ2), then

Z =
X − µ

σ
∼ N(0, 1).

The normal distribution has the following properties:

• Half of the population exceeds µ and half is less than µ;

• Approximately 2/3 of values lie within one standard deviation of
the mean;

• Approximately 95% of values lie within two standard deviations of
the mean;

• Almost all values lie within three standard deviations of the mean.
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0.20
0.25

0.30
0.35

Normal(0,1) PDF

Den
sity
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Example Consider the data on rocket thrusts. From our sample, the
mean thrust is 1000 Newtons×105, with a standard deviation of
6. Assuming a Normal distribution for rocket thrusts, find the probability
that:

(i) a randomly selected rocket has a thrust of less than 990 Newtons×105;

(ii) a randomly selected rocket has a thrust of more than 1005 Newtons×105;

(iii) the thrust of a rocket lies between 996 and 1002 Newtons×105.

Let

X: Rocket thrust (Newtons×105).

Since we are assuming that thrusts follow a Normal distribution, we have:

X ∼ N(1000, 36).

(i) We require P (X < 990). Now we don’t have tables for this Normal
distribution, but we do have tables for the standard Normal
distribution.

Z =
X − 1000

6
∼ N(0, 1).

So,

P (X < 990) = P

(

Z <
990− 1000

6

)

= P (Z < −1.66667)

= 0.0446.

(ii) We require P (X > 1005):

P (X > 1005) = 1− P (X < 1005)

= 1− P

(

Z <
1005− 1000

6

)

= 1− P (Z < 0.83)

= 0.203.
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(iii) We require P (996 < X < 1002). Can you see that this is the same
as P (X < 1002)− P (X < 996)? Try this one yourself...

More examples

1. The actual diameter (in millimetres) of a rivet with nominal di-
ameter 10 mm is a N(10, 0.01) random variable. To be usable, a
rivet must have a diameter in the range 9.8 to 10.2 mm. What
proportion of rivets are usable?

2. Yearly peak flows (in m3s−1) at a location in Tynedale are assumed
to have a Normal distribution with a mean of 4.1 and a standard
deviation of 0.9.

(a) Find the probability that, in any given year, a peak flow of
less than 3.2 will be observed.

(b) Find the probability that, in any given year, the peak flow will
lie between 3.8 and 4.2.

(ii) The uniform distribution

X is said to be a uniform random variable on a finite interval (a, b) if
it takes any value in (a,b) with equal probability. We write X ∼ U(a, b)
to mean that X can only take values in the interval (a, b) and has PDF

f(x) =
1

b− a
, for a < x < b.

From the above PDF, we have

P (X < c) =
c− a

b− a
for any a < c < b.

If we assume a uniform distribution, then the following formulae give
the mean and variance :

mean =
a+ b

2
;

variance =
(b− a)2

12
.

Examples.

1. The amount of time, in minutes, that a person must wait for a bus
is uniformly distributed between 0 and 15 minutes, inclusive.
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(a) What is the probability that a person waits fewer than 12.5
minutes?

(b) On the average, how long must a person wait?

(c) Ninety percent of the time, the time a person must wait falls
below what value?

2. A point D is chosen on the line AB, whose midpoint is C and
whose length is b. If X, the distance from D to A, is a random
variable having the uniform density U(0, b), what is the probability
that AD, BD and AC will form a triangle?


