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3 One-sample and two-sample problems

This chapter will discuss the following two problems.

• One–sample problems: we have a single random sample from
a Normally distributed population with mean µ and variance
σ2. We wish to make inferences about these parameters. There are
two basic approaches to such statistical inference:

(i) Estimation (including confidence intervals), and

(ii) Hypothesis testing.

• Two–sample problems: we wish to compare two populations. Both
will be assumed Normal. We may wish to test for a commonmean.

3.1 Estimation and confidence intervals

Definition: A point estimate of a parameter is a sample statistic (i.e.
a value calculated from a sample) which is chosen to be as close to the
(unknown) value of the parameter as possible. For example,

• x̄ estimates µ, and

• s estimates σ.

However, both x̄ and s vary from sample to sample! We need to know
how reliable our estimates are! To solve this problem, we can either

• give the standard error of the estimator, or

• construct an interval estimate or confidence interval.

3.2 The Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) Let X1, X2, . . . , Xn be indepen-
dent and identically distributed (IID) random variables with common
mean µ and common variance σ2 (both assumed to exist). Then

X̄ =
X1 + . . .+Xn

n

approx.∼ N
(

µ, σ2/n
)

,
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when the sample size n is sufficiently large for whatever the distribution
of X.

The main value of the result is as an approximation for finite n. The
rate of convergence depends mainly on the symmetry or asymmetry of
the distribution of X.

3.3 Confidence interval for the population mean µ

Definition: A confidence interval is a range of plausible values for a
parameter. There is an associated confidence level which indicates how
likely it is that the interval will include the true value of the parameter
in repeated sampling.

For example, if we can find µ1 and µ2 such that

P (µ1 < µ < µ2) = 95%,

then (µ1, µ2) is the confidence interval of µ with 95% confidence level.

Case 1: σ known

Suppose Xi ∼ N (µ, σ2) for i = 1, . . . , n, where the population stan-
dard deviation σ is known. Then we have (from the Central Limit The-
orem, X̄ is approximately normal when n is sufficiently large even if X
is not normally distributed)

X̄ ∼ N
(

µ, σ2/n
)

and hence

Z =
X̄ − µ

σ/
√
n

∼ N(0, 1).

Using statistical tables, we can find that

Pr (−1.96 < Z < 1.96) = 0.95

Hence, we can be 95% sure that

−1.96 < X̄−µ
σ/

√

n
< 1.96

leading to

−1.96× σ/
√
n < X̄ − µ < 1.96× σ/

√
n
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i.e.

X̄ − 1.96× σ/
√
n < µ < X̄ + 1.96× σ/

√
n.

This gives a 95% confidence interval for the population mean µ.
The value 1.96 can be replaced by other values leading to other levels of
confidence. Again, from statistical tables, we get:

Confidence coefficient 90% 95% 99% 99.9%
zα 1.645 1.960 2.576 3.291

Remarks.

• As the level of confidence increases, the critical value zα in-
creases;

• This will in turn lead to a wider confidence interval;

• If the aim is to “capture” the population mean µ with our confi-
dence interval, why do we not construct a 100% confidence interval
and so be certain of capturing µ?

Case 2: σ unknown

In practice, σ is rarely known. In this case, we replace σ by its
estimator, s, and so Z must be replaced by

T =
X̄ − µ

s/
√
n
.

Remarks.

• Z and T are identical but for σ being replaced with s;

• Z follows a standard normal distribution;

• T does not follow a standard normal distribution, but Student’s
t distribution

Some notes on Student’s t distribution:

• It’s similar in shape to the normal distribution;

• It has a larger spread (or “heavier tails”);
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• The exact shape depends on the parameter ν (degrees of freedom),
which itself depends on the sample size n (ν = n− 1);

• As n → ∞, T → Z, i.e. the standard normal distribution;

• The heavier tails account for uncertainty in σ.

From this result, we get a corresponding formula for a confidence interval
for µ when the population standard deviation is unknown:

X̄ ± tn−1,α × s/
√
n,

where the value tn−1,α depends on the level of confidence α and the sample
size, and can be obtained from tables.

Examples (will be discussed in lecture)

1. In an air pollution study, the following amounts of suspended ben-
zene soluble organic matter (µg/m3) were obtained for 7 random
m

3 of air:

2.2 1.8 3.1 2.0 2.4 2.0 1.2

(a) Construct a 95% confidence interval for the population mean.

(b) Construct a 99% confidence interval for the population mean.

2. A company packs sacks of flour. The variance of the filling process
is known to be 100g. A sample of 50 bags is taken and weighed
and the resulting sample mean is 750g. Compute a 90% and a 95%
confidence interval for the mean weight of a bag of flour.
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3.4 Hypothesis tests

Confidence intervals can be used to make inferences about population
parameters. Sometimes, you may be asked to assess whether or not a
parameter takes a specific value. For example, whether the population
mean µ = 5.

One way of re–expressing this question is to ask whether the param-
eter value is plausible in light of the data. A simple check to see whether
the value is contained in a 95% confidence interval will provide an answer.
An alternative method, called a hypothesis test, is also available.

Illustrative example. The average score by 11 year old in a standard
reading test is 5.7. Suppose that a group of 10 such children are given
special coaching. They obtain an average mark of 6.2 with standard
deviation 1.1. Does this show that the coaching has a real effect?

Remark: Without coaching, we would expect µ = 5.7. We need to know
whether the population mean after coaching is still 5.7. In other words,
is the average mark of 6.2 a real effect, or could it be due to chance?

Idea of a hypothesis test: We first assume

H0 : µ = 5.7 and H1 : µ > 5.7,

whereH0 is called the null hypothesis andH1 is called the alternative
hypothesis. The idea of a hypothesis test is to make a decision on
whether we should accept H0 or reject H0. Intuitively, a large value of X̄
would be in favour of H1. So, we can adopt the following decision rule:

if X̄ > a, we reject H0;

where X̄ > a is called a rejection region. Now, the problem is how to
find the value of a? We usually find such a value to control the so called
type I error :

P (X̄ > a|if H0 is true) = α,

where α is called significant level, taking a small value such 0.1 or 0.05.

Using the fact that

X̄ − 5.7

1.1/
√
10

∼ t9 if H0 is true,

and P (t9 > 1.383) = 0.1, we have

0.1 = P (
X̄ − 5.7

1.1/
√
10

> 1.383|H0) = P (X̄ > 6.18|H0),
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thus the rejection region with 10% level is X̄ > 6.18.

We have observed the average of 6.2, which is in the rejection region.
We can therefore conclude that we should reject H0 and accept H1 with
10% level; i.e., the coaching seems have a real effect.

Alternatively, we can calculate the P-value – the probability of ob-
serving a test statistic as extreme as that obtained if the null hypothesis
is true.

P − value = Pr
(

X̄ ≥ 6.2
)

= Pr

(

T9 ≥
6.2− 5.7

1.1/
√
10

)

= Pr (T9 ≥ 1.437) = 0.0923.

Note that

{P-value < α} ⇐⇒ {X̄ is in the rejection region} ⇐⇒ {Reject H0}.

For the above illustrative example, P − value = 0.0923 < 0.1, so we
should reject H0.

In practice, we usually use the following decision rule:

p–value Interpretation
p > 0.1 no evidence against the null hypothesis

p lies between 0.05 and 0.1 slight evidence against H0

p lies between 0.01 and 0.05 moderate evidence against H0

p is smaller than 0.01 strong evidence against H0

The following table gives a general framework in hypothesis testing.

General Coaching example
1. State a null hypothesis, H0 H0 : µ = 5.7

2. Decide on a test Use a T-test, i.e. X̄−5.7
s/

√

n
∼ t9 distribution

3. Calculate a test statistic t9 = 1.437
4. Find the p–value 0.0923
5. Form your Conclusions Slight evidence against H0

Conclusion for Coaching example: we have only slight evidence against
H0 : µ = 5.7, or we can conclude that the coaching has a slight effect.



3. One-sample and two-sample problems—CEG2002, part I 50

Errors

Our final decision is subject to two types of error.

A Type I error occurs when we reject the null hypothesis when
really it is true.

A type II error occurs when we fail to reject the null hypothesis
when in fact it is false.

Decision → Do not reject Reject
Hypothesis is True Correct! Type I error
(fact) False Type II error Correct!

One-sample test

We now go back to assuming we have a sample from a Normal distri-
bution.

One-sample Z–test. This is a test of H0 : µ = µ0, with σ assumed
known. The test statistic is

Z =
X̄ − µ0

σ/
√
n
,

and we find our p-value from N(0, 1) tables.

The calculation of p-value depends on the alternative hypothesis. Let
x̄ be the value of X̄ for a set of sample, and let b = x̄−µ0

σ/
√

n
, then for a

two-tailed test (two-sided test) H1 : µ 6= µ0,

p− value = P (|Z| > |b|) = 2P (Z > |b|), Z ∼ N(0, 1).

For one-tailed (one-sided) test,

p− value = P (Z > b), if H1 : µ > µ0;

and
p− value = P (Z < b), if H1 : µ > µ0.

The test can be performed in Minitab using Stat – Basic Statistics

– 1-Sample Z.

One–sample t–test. This is the same as for the Z–test except that σ is
unknown and must be estimated by s. Thus, our test statistic becomes

tn−1 =
X̄ − µ0

s/
√
n

;



3. One-sample and two-sample problems—CEG2002, part I 51

we can find our p–value from tables of probabilities for the t distribution
on ν = n− 1 degrees of freedom.

The test can be performed in Minitab using Stat – Basic Statistics

– 1-Sample t.

One–tailed versus two–tailed tests. The standard approach is to
use a two–tailed alternative hypothesis (i.e. H1 : µ 6= µ0) and hence a
two–tailed test, unless there are compelling arguments for a one–tailed
alternative (i.e. either H1 : µ > µ0 or H1 : µ < µ0):

• It is inherent in the context that departures from H0 can only
conceivably be in one direction.

• The test is constructed to be one–sided, e.g. a goodness–of–fit test,
where only high values of the statistic indicate poor fit.

Examples (will be discussed in lecture)

1. In an air pollution study, the following amounts of suspended ben-
zene soluble organic matter (µg/m3) were obtained for 7 random
m

3 of air:

2.2 1.8 3.1 2.0 2.4 2.0 1.2

(a) Construct a 95% confidence interval for the population mean.

(b) Construct a 99% confidence interval for the population mean.

(c) Test the null hypothesis that the population mean is 2.8 µg/m3.

2. A machine for filling cans of Coke has a process variance of 400ml.
A sample of 100 cans is taken and it is found that the average
contents are 240ml. Is this consistent with the cans containing the
stated weight of 250ml?
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3.5 Two–sample problems

Here, we wish to compare two populations. Both will be assumed Normal.
We may wish to test for a common mean.

A typical context is where we wish to compare a treatment with a
control under similar conditions.

3.5.1 Comparison of sample means

Here, we wish to test independent samples from two populations (i.e.
there is no natural pairing between the two).

We assume both populations are Normally distributed (and we can
check this assumption by looking at plots of the sample data).

As with one–sample hypothesis tests for the population mean, there are
two cases to consider:

• Both population standard deviations are known (rare), and

• Both population standard deviations are unknown.

Two–sample Z–test. Let X̄i be the sample mean from a sample with
sample size ni and population N(µi, σ

2

i ) for i = 1, 2. Those two samples
are assumed to be independent. We test H0 : µ1 = µ2 when both pop-
ulation standard deviations (σ1 and σ2) – or indeed the variances – are
known.

The test statistic is

Z =
X̄1 − X̄2 − (µ1 − µ2)

√

σ2

1

n1

+
σ2

2

n2

,

which follows a standard Normal distribution.

The Minitab commands are Stat – Basic Statistics – 2-Sample Z.

Two–sample t–test. This is equivalent to the previous test, but is used
when both population standard deviations are unknown.

The test statistic is

T =
X̄1 − X̄2 − (µ1 − µ2)

s
√

1

n1

+ 1

n2

,
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which follows a t distribution on ν = n1+n2− 2 degrees of freedom, and

s =

√

(n1 − 1)s2
1
+ (n2 − 1)s2

2

n1 + n2 − 2

is a “pooled standard” deviation.

The Minitab commands are Stat– Basic Statistics–2-Sample T.

The usual assumption of Normality applies, but in this test we also
assume the population standard deviations are equal.

The validity of a two–sample t test depends in three assumptions:

(i) Normality,

(ii) independence, and

(iii) common variance (homogeneity)

It is, however, a robust test and will work well if these are only approx-
imately valid.

As a guide for (iii), neither standard deviation should exceed twice
the other. What about a two–sample test when σ1 and σ2 are unknown
but cannot be assumed equal? When this cannot be assumed, there are
other tests available for this two–sample test, but these are beyond the
scope of this course.
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Examples (will be discussed in lecture)

1. Fifteen containers of water were taken from each of two different
stations A and B on a river. Determinations of the lead content of
each sample were made and the results (ppm) are given below:

A 9.6 10.7 10.6 10.0 11.1 10.7 10.3 10.7

12.0 11.3 11.6 10.5 10.8 11.0 11.1

B 9.7 11.8 11.9 10.5 11.7 10.5 11.5 11.4

12.4 12.1 9.8 11.7 11.2 11.2 11.1

Suppose the samples from stations A and B are independent. Per-
form an appropriate hypothesis test to see if there is a significant
difference between the lead content of samples taken at the two
stations. State any assumptions implicit in your test.

2. Before a training session for call centre employees, a sample of 50
calls to the centre had an average duration of 5 minutes, whereas
after the training session a sample of 45 calls had an average du-
ration of 4.5 minutes. The population variance is known to have
been 1.5 minutes before the course and 2 minutes afterwards. Has
the training course affected the average call duration?


