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4 Correlation and simple linear regression

4.1 Introduction

In this chapter we study relationships between random variables mea-

sured together.

Many experiments focus on establishing links between variables, for ex-
ample:

– dosage of drug versus recovery time

– quantity of fertiliser versus growth of plant

– measurements of height and weight.

We discuss two approaches to the analysis of such data:

• Correlation, which measures the strength of a relationship but
does not establish dependence of one variable on another

• Regression, which models the relationship by establishing a de-
pendence.

Our data take the form of pairs of observations

(x1, y1), (x2, y2) . . . , (xn, yn)

which they are collected together – i.e. (X, Y ) is a bivariate random
variable. Observations on pairs are assumed to be independent. These
data could have arisen from a random sample of n individuals from a
population, or from an experiment in which one variable is held fixed at
certain levels and measurements of the response variable are taken at
each of these levels.

The first step to analyze such data is always to draw a scatter dia-
gram.

Example: ice cream sales. Consider the following data for ice cream
sales at Luigi Minchella’s ice cream parlour.
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Month Average Temp (oC) Sales (£000’s)

January 4 73
February 4 57
March 7 81
April 8 94
May 12 110
June 15 124
July 16 134

August 17 139
September 14 124
October 11 103
November 7 81
December 5 80

For this data set, we are interested in the following questions.

• Is there any relationship between average temperature and ice cream
sales?

• How would you describe this relationship?

We can answer such questions more easily by looking at a scatter plot

of the data (in Minitab use Graph – Scatterplot – Simple).
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Looking at the scatter plot, we see that

• as average temperature increases, sales also increase – i.e. there is
a positive relationship between ‘sales’ and ‘ave. temp’.

• It looks like we could draw a straight line through the data – i.e.
there is a linear relationship.

• There won’t be too much scatter around this line, and so this linear
relationship is strong.

• So average temperatures and ice cream sales have a strong, posi-
tive, linear relationship.

4.2 Correlation

The population correlation coefficient, ρ, is defined as

ρ =
cov(X, Y )

√

var(X)× var(Y )
.

It has the following properties.

• −1 ≤ ρ ≤ 1.

• ρ = ±1 corresponds to a perfect linear relationship.

– If ρ is near +1, there is a strong positive linear relationship;

– If ρ is near −1 there is a strong negative relationship.

• ρ = 0 indicates complete absence of such a relationship.

We can estimate ρ with the Pearson product moment correla-

tion coefficient, r, if we have obtained n pairs of observations (x1, y1), (x2, y2) . . . , (xn, yn).
The formula for r is

r =
SXY√

SXX × SY Y

,

where

SXY =
(

∑

xy
)

− nx̄ȳ,

SXX =
(

∑

x2

)

− nx̄2,

SY Y =
(

∑

y2
)

− nȳ2.
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Example: ice cream sales

To calculate r we can draw up a table (or use a calculator!)

x y x
2

y
2

xy

4 73 16 5329 292
4 57 16 3249 228
7 81 49 6561 567
...

...
...

...
...

5 80 25 6400 400
∑

120 1200 1450 127674 13362

We have a sample size of n = 12. Thus,

x̄ = 120/12 = 10 and ȳ = 1200/12 = 100.

Similarly,

SXY =
(

∑

xy
)

− nx̄ȳ

= 13362− 12000

= 1362,

SXX =
(

∑

x2

)

− nx̄2

= 1450− 1200

= 250 and

SY Y =
(

∑

y2
)

− nȳ2

= 127674− 120000

= 7674.

Thus,

r =
SXY√

SXX × SY Y

=
1362√

250× 7674

= 0.983 (to 3 decimal places).
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This implies a strong, positive (linear) relationship between average tem-
perature and ice cream sales, which agrees with what we see in the scat-
terplot.

Spurious correlations. Correlation is a useful tool, but it can easily
mislead.

• A high correlation does not necessarily imply a causal link.
Example. For 1945 – 1964, let

xi = number of TV licenses taken out in year i, and

yi = number of convictions of juvenile delinquents in year i.

The calculated value of r turns out to be significant and positive,
so we are tempted to argue that TV causes increased delinquency!

• A low correlation can hide a strong but non–linear relationship

between two variables – a scatterplot should always be drawn before
the correlation coefficient is calculated.

• X and Y may appear related, but might both be related to a third

variable instead
Example. X might be patients’ blood pressure, and Y might be
their heart–rate. X and Y might be related numerically, but only
because both are related to Z, the patients’ weight.

4.3 Simple linear regression

A correlation analysis may establish a linear relationship but does not
allow us to use it to, say, predict the value of one variable given the value
of another.

Regression analysis allows us to do this and more.

In this model, we regard one variable, Y , as dependent and the
other, X, as explanatory. The aim is to formulate a model for predict-
ing Y from X. We have

Y = α + βX + ǫ,

where α and β are unknown parameters (intercept and slope), and ǫ
represents the scatter about the line.
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We assume that ǫi ∼ N (0, σ2), independently. To estimate α and
β we use least squares. This means choosing their values such that

n
∑

i=1

ǫ2
i

=
n

∑

i

(yi − α− βxi)
2 , i = 1, 2, . . . , n

is minimised. Doing so gives estimates for α and β as

α̂ = ȳ − β̂x̄ and

β̂ =
SXY

SXX

,

where SXY and SXX are as before. There are called least squares esti-

mates of α and β.

Example: ice cream sales We now use simple linear regression to fit
a regression line through the ice cream sales data. The equation of the
regression line is

Y = α + βX + ǫ,

where we can estimate α and β using

β̂ =
SXY

SXX

and

α̂ = ȳ − β̂x̄.

Thus,

β̂ =
1362

250

= 5.448 and

α̂ = 100− 5.448× 10

= 100− 54.48

= 45.52.

Thus, the regression equation is

Y = 45.52 + 5.448X + ǫ.
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Predictions We can use our regression equation to predict ice cream
sales for a given temperature.

For example, if we want to predict sales if the monthly average tem-
perature is 10oC, we can either (i) take a reading from the graph, or (ii)
substitute 10 into our regression equation and solve for Y .

The second approach is probably better! Thus,

Y = 45.52 + 5.448× 10

= 45.52 + 54.48

= 100,

i.e. the predict of sales is £100, 000 if the monthly average temperature
is 10oC.

Remarks. You should only use your regression line to make predictions
within the range of the observed data. We cannot be certain that
an association between the two variables will continue in the future, and
even if it does, it might not be linear. Making predictions which are
outside the range of the given data is known as extrapolation.

Assumptions: The key assumptions underlying any simple linear re-
gression analysis are:

• The residuals, ǫi’s, are independent ;

• The residuals are Normally distributed ;

• The residuals have common variance (heteroscedasticity).
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These can all be checked in Minitab. The followings show a full
regression analysis on the ice cream sales data in Minitab, including the
checking of assumptions.

Regression analysis in Minitab

1. Checking for an association

We have already checked to see if there is an association between
average temperature and ice cream sales via a scatter plot. We have also
calculated the sample correlation coefficient r = 0.983. Let’s see how to
do this in Minitab.

If the two samples are in columns C1 and C2 of a Minitab worksheet,
then click on Stat – Basic Statistics – Correlation. Enter the two
columns in the Variables box and then hit OK.

Doing so gives the following output:

Correlations: Av. temp., Sales

Pearson correlation of Av. temp. and Sales = 0.983

P-Value = 0.000

Which is exactly the same as when we did this by hand! Notice that
Minitab also gives a p–value for the correlation coefficient. This is for a
hypothesis test where

H0 : ρ = 0, v.s. H1 : ρ 6= 0,

and we interpret the p–value in exactly the same way as before. Thus,
our correlation coefficient is significantly different from zero.
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2. Regression analysis

Now that we’ve established that there’s a (significant) linear associ-
ation between average temperature and ice cream sales, we can perform
a linear regression analysis.

In Minitab, click on Stat – Regression – Regression. Enter C2 in
Response and C1 in Predictors and hit OK. Doing so, gives:

Regression Analysis: Sales versus Av. temp.

The regression equation is

Sales = 45.5 + 5.45 Av. temp.

Predictor Coef SE Coef T P

Constant 45.520 3.503 13.00 0.000

Av. temp. 5.4480 0.3186 17.10 0.000

S=5.03809 R-Sq = 96.7% R-Sq(adj) = 96.4%

Again, Minitab gives p–values for each of the model coefficients. The sig-
nificance of the slope value, β, is often tested. The p–value is associated
with the null hypothesis

H0 : β = 0 v.s. H1 : β 6= 0.

Since our p–value is very small, weReject H0. Thus, the slope parameter
β is significantly different from zero. It means that ‘sales’ depends
on ‘ave. temp’ significantly.

If we had retained H0, then β = 0, and so the predictor variable X
would have been redundant.

3. Checking assumptions

The residual assumptions can be checked quite readily in Minitab.

Click Stat – Regression – Regression, and enter the Response and
Predictor variables as before. Click Graphs and select Four in one,
and hit OK twice.

Doing so will give you the same output as before, along with the following
panel of graphs.
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The two left–hand plots indicate the Normality assumption for the
residuals.

• In the Normal probability plot, most of the points lie close to
the diagonal line, indicating a Normal distribution for our residuals.

• The fit to the Normal distribution can also be checked by examining
the histogram of residuals.

The top right–hand plot shows random scatter, which indicates that the
residuals have constant variance.

4.4 Extensions

Other correlation coefficients, such as Spearman’s rank correlation

coefficient are also available.

The followings are some other regression models:

• multiple regression for the case with more than one explanatory
variables;

• Ordinal logistic regression for survey data or categorical data;

• Non–linear regression for a nonlinear system, e.g.

– Quadratic regression equation, or

– Cubic regression equation.


