5 Decision Theory

In this chapter we will introduce the concept of **Decision Theory** briefly.

5.1 Expectation

If X is a discrete random variable with the probability function

$$P(X = x_i) = p_i$$
, for $i = 1, 2, \dots$,

the expected value (or expectation, or mean) of X is

$$E(X) = \sum_{i} x_i p_i.$$

Correspondingly, if X is a continuous random variable with density function f(x), the **expected value** of X is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

- If a and b are constant, then E(aX + b) = aE(X) + b;
- E(X + Y) = E(X) + E(Y).

Example 1. If X has a Binomial distribution B(n, p), then

$$p_i = P(X = i) = \binom{n}{i} p^i (1-p)^{n-i},$$

then

$$E(X) = \sum_{i=1}^{n} ip_i = \sum_{i=1}^{n} \left[i \frac{n!}{(n-i)!i!} p^i (1-p)^{n-i} \right] = \dots = np.$$

Example 2. A company of leather goods must decide whether to expand the capacity. The advisors provided the following information: if the company expands now and the recession remains, there will be a loss of 40,000 during the next fiscal year; but if the economic conditions will be improved, there will be a profit of 164,000. If we know that the probability of 'remain recession' is 2/3, what is the expected value of the profit in the next fiscal year?

Solutions. Let X be the profit in the next fiscal year, then

$$\begin{array}{c|ccc} X & 164,000 & -40,000 \\ \hline p_i & 1/3 & 2/3 \end{array}$$

Thus,

$$E(X) = 164,000 \times \frac{1}{3} + (-40,000) \times \frac{2}{3} = 28,000.$$

Example 3. If X has a uniform distribution U(a, b), then it has the following density function

$$f(x) = \frac{1}{b-a}$$
, for $a < x < b$.

The expectation of X is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

=
$$\int_{a}^{b} \frac{x}{b-a} dx$$

=
$$\frac{1}{b-a} \left(\frac{b^{2}}{2} - \frac{a^{2}}{2}\right) = \frac{a+b}{2}$$

5.2 The decision model

Our concern is decision.

• What course of action should be taken when uncertainty exists regarding the **true state of nature**? i.e., true state θ may be one of the outcome in the sample space $\Theta = (\theta_1, \theta_2, \ldots, \theta_m)$. In Example 2, θ could be either

 $\theta_1 = \{$ the economic conditions will be improved $\}$

or

$$\theta_2 = \{ \text{remain recession} \}.$$

• Choose an action from an **action space**: $A = \{a_1, \ldots, a_n\}$. In Example 2, the action could be either

$$a_1 = \{ \text{expand now} \} \text{ or } a_2 = \{ \text{delay expansion} \}.$$

• Once the decision has been made, the decision maker (engineer) can only wait to see which state of nature θ is the true one.

The figure below displays a decision tree for discrete-state space; where $u(a, \theta)$ is called **utility function**, a numerical measure (say pounds) of the consequences of this action-state pair.

Decision tree

Example 2 (continued) Denote actions as

 $a_1 = \{ \text{expand now} \}$ and $a_2 = \{ \text{delay expansion} \},\$

and the state of nature as

 $\theta_1 = \{\text{the economic conditions will be improved}\} \text{ and } \\
\theta_2 = \{\text{remain recession}\}.$

We further know that if the company waits at least another year to expand and the recession remains, there will be a profit of 8,000; and there will be a profit of 80,000 if the economic conditions will be improved. What decision should be made (expand now or delay expansion)? How to draw a decision tree?

Decision tree for Example 2

Example 4. A construction engineer needs to select a steel pile length when the depth to rock is uncertain. The available actions are driving a 40- or 50-ft pile, and the possible states of nature are a 40- or 50-ft depth to bedrock. The consequences of any action-state pair can be given in a *payoff* table:

	a_1 (drive 40-ft pile)	a_2 (drive 50-ft pile)
θ_1	correct decision	cut off 10-ft piece of pile
depth 40 ft	no loss	100-unit loss
θ_2	splice and weld 10-ft pile	correct decision
depth 50 ft	400-unit loss	no loss

In this example, we can define either a loss function $l(a_i, \theta_j)$ or a utility function $u(a_i, \theta_j)$:

loss function	utility function
$l(a_1, \theta_1) = 0$	$u(a_1, \theta_1) = 0$
$l(a_1, \theta_2) = 400$	$u(a_1, \theta_2) = -400$
$l(a_2, \theta_1) = 100$	$u(a_2,\theta_1) = -100$
$l(a_2, \theta_2) = 0$	$u(a_2, \theta_2) = 0$

How to draw a decision tree?

Decision tree for Example 4

Example 5. Same as Example 4, the engineer can take action to drive either a 40- or 50-ft pile, but the possible states of nature θ has a uniform distribution U(40, 50). We may consider the following loss function:

$$l(a_1, \theta) = 40 * (\theta - 40), \ \theta \sim U(40, 50);$$

and

$$l(a_2, \theta) = 10 * (50 - \theta), \ \theta \sim U(40, 50).$$

How to draw a decision tree?

Decision tree for Example 5

5.3 Decision Theory

1. Minimax criterion

We take an action to minimize loss function (or maximize utility function) in the worst-case scenario.

Example 2 (continued) If we don't know the probability of $\theta_1 = \{$ the economic conditions will be improved $\}$ and $\theta_2 = \{$ remain recession $\}$, what decision should be made? We can define the utility function (or loss function) as the profit achieved in the worst-case scenario. Thus

$$u(a_1) = \min\{u(a_1, \theta_1), u(a_1, \theta_2)\} = -40,000,$$

or

Utility(Expand now) =
$$-40,000$$
.

Similarly,

Utility(Delay expansion) =
$$u(a_2)$$

= $\min\{u(a_2, \theta_1), u(a_2, \theta_2)\} = 8,000.$

Using the minimax criterion, we should choose the action with the maximum value of $u(a_i)$, i = 1, 2. We should therefore choose a_2 , i.e. delay expansion. The decision is made based on maximising the utility function for the worst case.

Decision tree for Example 2 (continued).

Example 4 (continued). It is quite obvious that we should take action a_2 based on Minimax criterion (minimize loss function). Why?

Decision tree for Example 4 (continued).

2. Expected-value decisions

How to make decision when a decision situation involves uncertainty? We can calculate the expected-value of utility function or loss function.

Let $u(a_i, \theta)$ be a utility function for action a_i . It depends on a random variable θ (state of nature).

• If θ is a discrete random variable with probability function $P(\theta = \theta_j) = p_j, j = 1, ..., m$, then the expected utility is calculated by

$$u(a_i) = E(u(a_i, \theta)) = \sum_{j=1}^m u(a_i, \theta_j) p_j;$$

• If θ is a continues random variable with density function $f(\theta)$, then the expected utility is calculated by

$$u(a_i) = E(u(a_i, \theta)) = \int u(a_i, \theta) f(\theta) d\theta.$$

Optimal decision is to choose the action with the maximum utility.

Example 2 (continued) From the discuss in Section 5.1, we know that

$$P(\theta = \theta_1) = P(\text{the economic conditions will be improved}) = 1/3$$

 $P(\theta = \theta_2) = P(\text{remain recession}) = 2/3$

The expected value of the profit if the company **expand now**:

$$u(a_1) = E(u(a_1, \theta)) = 164,000 \times \frac{1}{3} + (-40,000) \times \frac{2}{3} = 28,000.$$

The expected value of the profit if the company **waits at least another year to expand**

$$u(a_2) = E(u(a_2, \theta)) = 80,000 \times \frac{1}{3} + 8,000 \times \frac{2}{3} = 32,000.$$

Based on the expected values of the **utility** function (profit), we should take action a_2 , i.e., delay expansion. The decision is made based on maximising the expected-value of utility function.

Decision tree for Example 2 (continued).

Example 5 (continued). Since $\theta \sim U(40, 50)$, we know that (from Example 3)

$$E(\theta) = (40 + 50)/2 = 45.$$

Thus, the expected values of the loss functions are:

$$l(a_1) = E(l(a_1, \theta)) = 40 * (E(\theta) - 40) = 40 * (45 - 40) = 200.$$

and

$$l(a_2) = E(l(a_2, \theta)) = 10 * (50 - E(\theta)) = 10 * (50 - 45) = 50.$$

We then should take action a_2 , i.e., driving a 50-ft pile. The decision is made based on minimising the expected-value of loss function.

3. *Bayesian decision

The probability function $P(\theta = \theta_j)$ or density function $f(\theta)$ are not always easy to obtain. Using Bayesian approach, if we have observed a set of data, we can calculate the posterior distribution $f(\theta|\text{data})$. Bayesian decision is based on the expected-values of the utilities calculated by using the posterior distribution.