Ch5. Decision Theory

In this chapter we will introduce the concept of **Decision Theory** briefly. **5.1. Expectation (mean)**

• If X is a discrete random variable with the probability function

$$P(X = x_i) = p_i$$
, for $i = 1, 2, ...,$

the expected value (or expectation, or mean) of X is

$$E(X)=\sum_i x_i p_i.$$

5.1 Expectation

 If X is a continuous random variable with density function f(x), the expected value of X is

$$E(X)=\int_{-\infty}^{\infty}xf(x)dx.$$

Properties

- If a and b are constant, then E(aX + b) = aE(X) + b;
- E(X + Y) = E(X) + E(Y).

Example 1. If X has a Binomial distribution B(n, p), then

$$p_i = P(X = i) = \begin{pmatrix} n \\ i \end{pmatrix} p^i (1-p)^{n-i},$$

then

$$E(X) = \sum_{i=1}^{n} ip_i = \sum_{i=1}^{n} \left[i \frac{n!}{(n-i)!i!} p^i (1-p)^{n-i} \right] = \ldots = np.$$

5.1 Expectation—Example: Roulette, Bets and Odds

The outcome of Roulette is

- one of number in 0 to 36;
- one of colours: green (0), red (even number from 1 to 36) and black (odd number from 1 to 36).

All wining bets are paid the odds plus the original stake. Some typical odds are:

- i. 35 to 1 for a single number 0 to 36.
- ii. 1 to 1 for red or black.
- iii. 2 to 1 for dozens (1 to 12).

Roulette Roulette-table

What is the expected gain when you bet 1 on red?

5.1 Expectation

Example 2. A company of leather goods must decide whether to expand the capacity. The advisers provided the following information: if the company expands now and the **recession remains**, there will be a loss of **40,000** during the next fiscal year; but if the economic conditions will be improved, there will be a profit of 164,000. If we know that the probability of 'remain recession' is 2/3, what is the expected value of the profit in the next fiscal year?

Solutions. Let X be the profit in the next fiscal year, then

Thus, $E(X) = 164,000 \times \frac{1}{3} + (-40,000) \times \frac{2}{3} = 28,000.$

5.1 Expectation

Example 3. If X has a uniform distribution U(a, b), then it has the following density function

$$f(x) = \frac{1}{b-a}, \quad \text{for} \ a < x < b.$$

The expectation of X is

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

= $\int_{a}^{b} \frac{x}{b-a}dx$
= $\frac{1}{b-a}\left(\frac{b^{2}}{2}-\frac{a^{2}}{2}\right) = \frac{a+b}{2}.$

5.2 The decision model

Our concern is decision.

Choose an action from an action space: A = {a₁,..., a_n}. In Example 2, the action could be

 $a_1 = \{ \text{expand now} \} \text{ or } a_1 = \{ \text{delay expansion} \}.$

- The consequence of the decision depends on the uncertainty regarding with the **true state of nature**.
 - The true state θ may be one of the outcome in the sample space $\Theta = (\theta_1, \theta_2, \dots, \theta_m).$
 - In Example 2, θ could be either θ_1 or θ_2 :

 $\theta_1 = \{\text{the economic conditions will be improved}\} \text{ and } \\
\theta_2 = \{\text{remain recession}\}.$

• Once the decision has been made, the decision maker (engineer) can only wait to see which state of nature θ is the true one.

Example 2 (continued) Denote actions as $a_1 = \{ expand now \}$ and $a_2 = \{ delay expansion \}$, and the state of nature as

$$\theta_1 = \{$$
the economic conditions will be improved $\}$ and $\theta_2 = \{$ remain recession $\}$.

• If we take action a_1 , we have

$$u(a_1, \theta_1) = 164,000, \quad u(a_1, \theta_2) = -40,000.$$

 We further know that if the company waits at least another year to expand and the recession remains, there will be a profit of 8,000; and there will be a profit of 80,000 if the economic conditions will be improved. Thus, If we take action a₂,

$$u(a_2, \theta_1) = 80,000, \quad u(a_2, \theta_2) = 8,000.$$

Decision tree

Dr. Jian Shi ()

- A decision tree can be constructed for discrete-state space;
- Utility function u(a, θ): a numerical measure (say pounds) of the consequences of this action-state pair.
- Alternatively, we can define a loss function $I(a, \theta)$

Example 4. A construction engineer needs to select a steel pile length when the depth to rock is uncertain. The available actions are driving a 40- or 50-ft pile, and the possible states of nature are a 40- or 50-ft depth to bedrock. The consequences of any action-state pair can be given in a payoff table:

	a_1 (drive 40-ft pile)	a_2 (drive 50-ft pile)
θ_1	correct decision	cut off 10-ft piece of pile
depth 40 ft	no loss $l(a_1, \theta_1) = 0$	100-unit loss $l(a_2, \theta_1) = 100$
θ_2	splice and weld 10-ft pile	correct decision
depth 50 ft	400-unit loss $l(a_1, \theta_2) = 400$	no loss $l(a_2, \theta_2) = 0$

Decision tree

5.2 The decision model: Example 4

In this example, we can define either a loss function $l(a_i, \theta_j)$ or a utility function $u(a_i, \theta_j)$:

loss function	utility function	
$l(a_1, \theta_1) = 0$	$u(a_1,\theta_1)=0$	
$l(a_1,\theta_2)=400$	$u(a_1,\theta_2)=-400$	
$l(a_2, \theta_1) = 100$	$u(a_2,\theta_1)=-100$	
$l(a_2,\theta_2)=0$	$u(a_2,\theta_2)=0$	

Example 5. Same as Example 4, the engineer can take action to drive either a 40- or 50-ft pile, but the possible states of nature θ has a uniform distribution U(40, 50). We may consider the following loss function:

$$I(a_1, \theta) = 40 * (\theta - 40), \ \ \theta \sim U(40, 50);$$

and

$$I(a_2, \theta) = 10 * (50 - \theta), \ \theta \sim U(40, 50).$$

How to draw a decision tree? **Decision tree**

Decision Theory

• For each action, we calculate the loss function (or utility function) in the worst-case scenario;

Decision Theory

• We take the **action** to minimize the loss function (or maximize utility function).

5.3. Decision Theory: Minimax criterion

Example 2 (continued) If we don't know the probability of $\theta_1 = \{$ **the economic conditions will be improved** $\}$ and $\theta_2 = \{$ **remain recession** $\}$, what decision should be made?

• We can define the utility function as the profit achieved in the worst-case scenario. Thus

Decision Theory Decision Theory

$$\mathsf{Utility}(\mathsf{Expand now}) = u(a_1) = \min\{u(a_1, \theta_1), u(a_1, \theta_2)\} = -40,000,$$

and

Utility(Delay expansion) = $u(a_2) = \min\{u(a_2, \theta_1), u(a_2, \theta_2)\} = 8,000.$

 We should delay expansion by maximising the utility function for the worst case.
 Decision tree

Dr. Jian Shi ()

Example 4 (continued). It is quite obvious that we should take action a_2 based on Minimax criterion. Why?

Decision tree

Decision Theory

5.3. Decision Theory: Expected-value decisions

How to make decision when a decision situation involves uncertainty?

- Let u(a_i, θ) be a utility function for action a_i depends on a random variable θ (state of nature).
- Calculate the expected-value of utility function (or loss function).

Decision Theory 5.3. Decision Theory: Expected-value decisions

- $u(a_i, \theta)$ a utility function for action a_i .
- If θ is a discrete random variable with probability function $P(\theta = \theta_i) = p_i, j = 1, ..., m$, then the expected utility is

$$u(a_i) = E(u(a_i, \theta)) = \sum_{j=1}^m u(a_i, \theta_j)p_j;$$

Decision Theory

• If θ is a continues random variable with density function $f(\theta)$, then the expected utility is

$$u(a_i) = E(u(a_i, \theta)) = \int u(a_i, \theta) f(\theta) d\theta.$$

Optimal decision — choose the action with the maximum utility.

Decision Theory 5.3. Decision Theory: Expected-value decisions

Example 2 (continued) From the discuss in Section 5.1, we have

 $P(\theta_1) = P(\text{the economic conditions will be improved}) = 1/3$ $P(\theta_2) = P(\text{remain recession}) = 2/3$

Decision Theory

• The expected value of the profit for action: expand now:

$$u(a_1) = E(u(a_1, \theta)) = 164,000 \times \frac{1}{3} + (-40,000) \times \frac{2}{3} = 28,000.$$

The expected value for action: delay expansion

$$u(a_2) = E(u(a_2, \theta)) = 80,000 \times \frac{1}{3} + 8,000 \times \frac{2}{3} = 32,000.$$

Optimal decision — delay expansion. Decision tree

Dr. Jian Shi ()

CEG2002: Statistics for Civil Engineers

Semester 2, 2011/2012

176 / 179

5.3. Decision Theory: Expected-value decisions

Example 5 (continued). Since $\theta \sim U(40, 50)$, we know that (from Example 3)

$$E(\theta) = (40 + 50)/2 = 45.$$

• The expected values of the loss functions are:

$$\begin{split} l(a_1) &= E(l(a_1, \theta)) = 40 * (E(\theta) - 40) = 40 * (45 - 40) = 200. \\ l(a_2) &= E(l(a_2, \theta)) = 10 * (50 - E(\theta)) = 10 * (50 - 45) = 50. \end{split}$$

- Optimal decision take action a₂ i.e., driving a 50-ft pile.
- The decision is made based on minimising the expected-value of loss function.

Dr. Jian Shi ()

A baker must decide to bake 100 or 150 loaves of bread on a given day. The cost of baking one loaf is 50 pence and the loaf sells for 1 pound. Assume that the demand on that day is 100 loaves with probability 2/3 or 150 loaves with probability 1/3.

- Draw a decision tree.
- Which plan would the baker use based on the minimax criterion?
- Which plan would the baker use based on expected-value decisions?

- It might be not easy to obtain the probability function P(θ = θ_j) or density function f(θ).
- Using Bayesian approach.
- If we have observed a set of data, we can calculate the posterior distribution

 $f(\theta | data).$

• Calculate the expected-values of the utilities using the posterior distribution.