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a b s t r a c t

Stereotypies are repetitive, unvarying and goalless behaviour patterns that are often considered indicative
of poor welfare in captive animals. Quantifying stereotypies can be difficult, particularly during the early
stages of their development when behaviour is still flexible. We compared two methods for objectively
quantifying the development of route-tracing stereotypies in caged starlings. We used Markov chains and
eywords:
arkov chain analysis

omersaulting
tarling
tereotypic behaviour

T-pattern analysis (implemented by the software package, Theme) to identify patterns in the sequence of
locations a bird occupied within its cage. Pattern metrics produced by both methods correlated with the
frequency of established measures of stereotypic behaviour and abnormal behaviour patterns counted
from video recordings, suggesting that both methods could be useful for identifying stereotypic individ-
uals and quantifying stereotypic behaviour. We discuss the relative benefits and disadvantages of the two
turnus vulgaris
heme

approaches.

. Introduction

Stereotypic behaviour patterns, defined as behaviour patterns
hat are repetitive, unvarying and with no apparent function, have
een described in a wide range of captive mammalian and avian
pecies including farm, zoo, companion and laboratory animals.
tereotypies are most common in animals housed in barren and
r spatially restricting cages, and are generally considered indica-
ive of poor welfare (Mason, 1991a,b; Mason and Rushen, 2006).
nderstanding the proximate and ultimate causes of stereotyp-

es is an important area of pure and applied ethological research
Mason and Rushen, 2006). However, progress is limited by the
rude and time-consuming methods currently employed for quan-
ifying stereotypic behaviour. Our aim in this paper is to apply and
ompare two novel methods for identifying patterns in an animal’s
se of space. We argue that these methods could be sensitive, eas-

ly automated methods for objectively quantifying route-tracing

ocomotor stereotypies.

The development of stereotypic behaviour patterns in caged ani-
als is characterized by four stages: first, ritualisation, in which

ehaviour becomes less variable; second, emancipation, in which
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el.: +44 0191 222 6246.

E-mail address: ben.brilot@ncl.ac.uk (B.O. Brilot).

376-6357/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.beproc.2009.07.003
© 2009 Elsevier B.V. All rights reserved.

a behavioural sequence is elicited by progressively more envi-
ronmental stimuli; third, establishment, in which the sequence
becomes more difficult to reverse; and finally, escalation, in which
the sequence begins to take up progressively more of the animal’s
time (Meehan et al., 2004). It would be useful to be able to iden-
tify vulnerable animals during the first ritualisation stage, before
behavioural sequences become difficult to reverse. However, quan-
tification of flexible behaviour patterns can be difficult, particularly
in the case of route-tracing stereotypies, where ritualisation is char-
acterized by a gradual reduction in the variability of the route the
animal traces around its cage (Garner et al., 2003).

Current techniques for quantifying stereotypies involve count-
ing individual incidences of complete iterations of a stereotypy,
such as a circuit around a cage, or an abnormal behavioural event
such as a somersault. Defining these sequences of behaviour objec-
tively can be difficult, and often relies upon a subjective judgement
as to whether a behaviour sequence is abnormal in quality or quan-
tity (Mason, 1991a; Würbel, 2002). Most importantly, such methods
cannot be used during ritualisation when sequences of behaviour
are still flexible (Meehan et al., 2004).

Golani et al. (1999) attempted to quantify stereotypic behaviour
in laboratory rats on the basis of the types and ranges of physi-
cal movement expressed. They defined a stereotypy as a reduction

in the number and range of “collective variables” (i.e. move-
ments expressed) together with an increase in the predictability
of movement sequences. However, their methodology may fail
to encompass stereotypies that involve movements not normally
expressed under semi-free or free-ranging conditions. For example,

http://www.sciencedirect.com/science/journal/03766357
http://www.elsevier.com/locate/behavproc
mailto:ben.brilot@ncl.ac.uk
dx.doi.org/10.1016/j.beproc.2009.07.003
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Table 1
Definitions of locations and behavioural events scored.

Behaviour Description

Abnormal repetitive behaviour (events)
Head tilt The bird tilts its head back such that its bill breaks the vertical

plane. Each time the head was brought down and then the bill
again passed through the vertical plane was counted as a
separate tilt.

Unbalance Any wing movement required to correct the bird’s posture
back to upright once it had tilted its head/body backwards.

Somersault A somersault was defined as the subject leaving the floor/perch
and its feet passing over its head (unless it held on to the
ceiling during the motion).

Location (states)
Left wall Bird clinging on to a side of the mesh

rectangular cage with its claws.Right wall
Rear wall
Front wall
Ceiling

Left perch Bird is perched on one of two natural branch
perches positioned towards the top of the cage.Right perch

Food bowl Bird perched on or in a small round food dish positioned on the
floor of the cage approximately in the centre.

Foraging tray Bird perched on or in a rectangular tray filled with bark
B.O. Brilot et al. / Behaviou

he somersaulting stereotypy (see below) of caged European star-
ings (Sturnus vulgaris) involves a locomotor pattern that actually
dds to the diversity of movement seen in birds kept in free-flight
viaries. However, we agree with their supposition that an increase
n the predictability of movement patterns could be a useful method
or quantifying stereotypic behaviour (as per Meehan et al., 2004),
nd further develop this approach in the current paper.

To quantify potential stereotypies in flexible movement pat-
erns, we investigated techniques for identifying patterns in the
equence of locations an animal occupies within its cage. Our
ationale was that by using pattern detection algorithms to iden-
ify patterns in the sequences of discrete locations an animal
isits within its cage, we might be able to objectively quantify
oute-tracing stereotypies. Moreover, we might be able to use this
pproach to detect stages in the development of a route-tracing
tereotypy before a completely rigid circuit is established, and thus
redict animals at risk of developing rigid stereotypies. In order
o validate our methods, we asked whether the space use pattern

etrics we derived correlated with established measures of abnor-
al and repetitive behaviour, on the assumption that individuals

eveloping route-tracing stereotypies would also be likely to dis-
lay other abnormal and repetitive behaviour patterns.

We tested the above ideas using data collected from caged wild-
aught European starlings, arguably the most widely used passerine
ird species in laboratory research (Asher and Bateson, 2008). In
he laboratory, starlings are routinely kept in individual cages, a
isk factor for the development of stereotypic behaviour (includ-
ng route-tracing) in starlings and other bird species (Garner et al.,
003; Meehan et al., 2003; Asher et al., 2009). We recorded the
ehaviour of the birds over six weeks, thereby aiming to capture
he development of abnormal behaviour patterns during the early
tages of captivity and record the levels of rigid stereotypies during
he later stages.

Some caged starlings develop a “somersaulting” stereotypy
n which they repeatedly complete a backwards aerial flip
Greenwood et al., 2004), a behaviour pattern that we hypothe-
ise might develop from a thwarted escape attempt. Somersaulting
s readily identifiable and quantifiable as an abnormal stereotypic
ehaviour pattern; it occurs repeatedly in the same location within
he cage, using a set pattern of movements and has no obvious func-
ion, indeed it often results in the subject risking damage since
n occasion they land on their back. Therefore, we set out to use
omersaulting as our standard for categorising and ranking stereo-
ypic tendencies in our birds. However, since not all caged starlings
evelop somersaulting, we also counted the frequency of other
iscrete abnormal behaviour patterns including: perching on cage
alls and ceiling, head tilting and unbalancing (see Table 1 for defi-
itions). Spending time on the cage walls and ceiling has previously
een suggested to be indicative of escape attempts and is associ-
ted with other measures of poor welfare (Maddocks et al., 2002).
ead tilting and unbalancing are behavioural events that may be

elated to hyper-vigilance behaviour triggered by the acute stress
aused by the initial transfer from free-flight aviaries to individ-
al cages. This supposed link with vigilance means that it is harder
o categorise these behavioural events as functionless, and hence
tereotypic. They commonly occur wherever the bird is perched
ithin the cage and are more variable in terms of identifiable move-
ent patterns than the somersaulting stereotypy. However, these

ehaviours are abnormal in the sense that they have only been
bserved in starlings kept in cages (as opposed to free-living star-

ings or those held in free-flight aviaries). We hypothesise that they

ight represent precursors to the full somersaulting stereotypy.

herefore, we describe head tilting and unbalancing as abnormal
ehavioural events as distinct from stereotypies.

In the first part of our statistical analysis we investigated cor-
elations between somersaulting, perching on walls and ceiling,
chippings.
Water bath Bird perched on or in a shallow circular dish filled with water.
Floor Bird anywhere on the floor of the cage not containing the food

bowl, foraging tray or water bath.

head tilting and unbalancing to test our hypothesis that these
behaviours are functionally related, perhaps via escape motivation.
If this hypothesis was confirmed, then all of these simple behaviours
could be used to identify individual birds with stereotypic tenden-
cies.

Although rigid route-tracing stereotypies have not been pre-
viously described in caged starlings, the early stages of the
development of such stereotypies have been reported in starlings
housed in cages for as little as one week (Asher et al., 2009). To
objectively quantify route-tracing, we recorded the time at which
a bird arrived at each new location within the cage, and subjected
the sequences of data obtained to two pattern detection algorithms:
a method based on Markov chain analysis; and T-pattern analysis
implemented in the software package Theme (Magnusson, 2000).
Both methods have the potential to identify the early flexible stages
in the ritualisation of a route-tracing stereotypy that are character-
ized by increased predictability in the sequence of locations visited
by a bird. We describe these methods and our predictions in more
detail below.

1.1. Markov chain analysis

A Markov chain is a stochastic process, comprising a finite set
of events, where the next event depends only on the previous
event (or previous few events). In an animal performing stereo-
typic behaviour, the current behavioural event is a good predictor of
the next behaviour or location, because the sequence is predictable
by definition. We performed a Markov chain analysis of sequential
dependency using an adapted version of the chi-squared test for
first against second-order dependency in sequences of events orig-
inally described by Haccou and Meelis (1992). This method uses
the transitional probabilities of one event following another event
(first order) or pair of events (second order). The more repetitive a
sequence, the higher the probability that a given event will follow

a certain kind of event or pair of events (see Section 2 and Asher et
al. (2009) for full details of this methodology).

We have already demonstrated that this latter technique detects
significant differences in the behavioural sequences of starlings
housed in cages of different sizes and shapes (Asher et al., 2009)
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nd cages with and without environmental enrichment (Asher et
l., unpublish. data). We found that sequential dependency scores
erived from Markov chain analysis were highest, indicative of
he most repetitive behavioural sequences, in birds that performed
omersaulting (Asher et al., 2009). Therefore, we predicted that the
ubjects that performed somersaulting in this study would similarly
ave increased tendencies to route-tracing and correspondingly
igher sequential dependency scores.

.2. T-pattern analysis

The software application Theme uses algorithms that detect
emporal relationships (termed T-patterns) between pairs of
ehavioural events (Magnusson, 2000, 2005). When two events co-
ccur within a critical time interval more often than expected by
hance they are designated as a T-pattern. More specifically, the
lgorithm searches for the shortest (d1) and longest (d2) duration
etween two events (X and Y) and uses these to define a critical
ime-frame (t + d1 to t + d2). It then tests whether Y appears after

significantly more than expected within this critical time-frame
s compared to the situation where Y has a constant probabil-
ty of occurring throughout the observation period. The process is
epeated with newly identified T-patterns treated as single events
ntil no more pairs of events are found (Magnusson, 2000, 2004,
005). Since T-patterns are identified based on the temporal rela-
ionship between events, as opposed to the order of events, a
attern of events can be identified even if it is interrupted by an
vent that does not form part of the pattern. Thus Theme has a
ajor advantage in being able to detect patterns in sequences of

ehaviour that would be invisible to Markov chain analysis.
T-pattern analysis has not previously been applied explicitly

o the problem of quantifying the development of stereotypic
ehaviour in either humans or other animals. However, there is
ome evidence to suggest that T-pattern analysis could be use-
ul for differentiating individuals with abnormal behaviour or
ehavioural stereotypies such as for example preschool children
ith autistic spectrum disorder (Warreyn et al., 2007) and psy-

hiatric patients with schizophrenia and mania (Lyon and Kemp,
004). T-pattern analysis has also been used to successfully dif-

erentiate mice treated with different doses of the dopamine
ransporter inhibitor GBR-12909, a drug known to induce locomo-
or stereotypies (Bonasera et al., 2008).

We predicted that development of route-tracing in starlings
ould be associated with an initial increase in the number of T-
atterns, as starlings start to follow flexible variations of the same
oute. However, as route-tracing becomes more stereotyped, the
umber of different T-patterns would decrease as a smaller number
f patterns are performed a greater number of times.

. Methods

.1. Subjects and husbandry

The subjects were eight starlings (four males and four females)
aught from the wild under license from Natural England. Four of
he birds designated as “juveniles” were caught in the summer of
heir first year, whereas the other four “adults” were at least one
ear of age at the time of catching. Both sex and age were coun-
erbalanced for position in the laboratory and time of behavioural
ecording.
Prior to the experiment the birds were group-housed in an
ndoor aviary (2.4 m × 2.15 m × 2.3 m) with wood chippings cov-
ring the floor, dead trees for perching and cover, and shallow
rays of water for bathing. At the start of the experiment, the birds
ere moved into individual cages (750 mm × 450 mm × 440 mm)
cesses 82 (2009) 256–264

where visual and auditory contact with four or five conspecifics
was possible dependent upon location in the laboratory. The cages
were furnished with natural bark branches of varying thickness and
angles; a water bath; and a tray of bark chippings, enrichments
suggested to improve the welfare of captive starlings (Bateson and
Matheson, 2007; Matheson et al., 2008).

The light:dark cycle was maintained at 14:10 h. At all times, other
than those described below, the subjects had ad libitum access to
Purina kitten food, supplemented with fruit and mealworms (Tene-
brio larvae). Drinking water was available at all times.

The birds were subject to daily learning task trials associated
with another study. These trials involved cleaning of the cages at
08:00 followed by 2 h of food deprivation and guano collection,
followed by approximately 1 h of experimental trials. The trials
required the subjects to learn a colour/shape discrimination by flip-
ping coloured cardboard lids off a petri dish to obtain a variable
mealworm reward. On completion of the trials, the subjects were
once more allowed to feed ad libitum. All experimental procedures
were completed by approximately 12:00, allowing the birds 3 h to
settle for the behavioural recording required by the current study
(see below).

Our study adhered to the Association for the Study of Animal
Behaviour’s Guidelines for the Use of Animals in Research and also
passed internal ethical review. Birds were released back into free-
flight aviaries after the experiment, and following completion of our
studies they were released back to the wild at the site of original
capture.

2.2. Behavioural recording

The birds’ behaviour in the absence of the experimenter was
recorded using two Sony DCR-SR32 video recorders. Recording
always took place between 15:00 and 16:00. Each bird was recorded
for 30 min on its first day in the cage and for 30 min at weekly
intervals for a total of six weeks.

We manually analysed the video tapes using the freeware
behaviour analysis program J-Watcher version 1.0 (Blumstein et al.,
2000). We scored the location of the bird in the cage as a state
variable (whereby recording the arrival of a bird in a new location
had the effect of cancelling the previous location) and abnor-
mal/repetitive behaviour patterns as discrete events. The details of
the different locations and events we scored are given in Table 1. The
location data were used to compute the proportion of time spent
by the bird in different locations of the cage.

2.3. Pattern detection and statistical analysis

For the purposes of the pattern detection analysis we sepa-
rated the location data from the discrete behavioural events. The
sequences of locations visited by each bird were analysed using both
our Markov chains method and Theme version 5.0 (Noldus Infor-
mation Technology, Wageningen, Netherlands) in order to quantify
the development of potential route-tracing behaviour.

2.3.1. Details of Markov chain analysis
For the purposes of the Markov chains analysis we analysed

just the sequence of locations occupied by a bird using a cus-
tom written programme that automated the following calculations.
For three locations XYZ the transition probability of Z following Y,
(PYZ = NYZ|NY) uses the chi-squared test statistic:
CY =
∑

X

∑

Z

(NXYZ − NXY PYZ )2

NXY PYZ
(1)

where N is the number of occurrences of a particular transition, e.g.
NXY is the number of transitions of X to Y. C is calculated for all acts
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Fig. 1. Relationship between standard behavioural measures, pattern metrics and
general activity level for each individual bird. Each variable was standardised by
setting the maximum recorded value to one and scaling the remaining values
B.O. Brilot et al. / Behaviou

A), summed and then compared to chi-squared tables at the 95%
evel and the relevant degrees of freedom.

The degrees of freedom calculation was based on the transitions
hat occurred in the data (i.e. the number of cells in the chi table
arger than zero). The degrees of freedom were calculated by:

f =
∑

A

(m − kA − 1) (m − lA − 1) (2)

here kA is the number of transitions towards A and lA is the num-
er of transitions from which A cannot occur. This results in two
cores: a chi-squared value and a one/zero score which indicates
hether the chi-squared value is significant at the level of p = .05

evel (i.e. particular events follow each other at higher than chance
evels). Significant chi-squared values were used and are labelled
ereon in as the sequential dependency score; these scores indicate
he degree of sequential dependency since higher scores represent

ore predictable behaviour sequences.

.3.2. Details of T-pattern analysis
Whereas the Markov chains analysis described above is

arameter-free, in Theme the sensitivity of the pattern detection
lgorithm can be altered using various parameters entered by the
xperimenter (Magnusson, 2004; Bonasera et al., 2008). Based on
ome preliminary investigations, we set the parameters as follows:
ignificance level ˛ = .001 (this represents the acceptance thresh-
ld for the null hypothesis that a pattern could have occurred if the
vents within it were randomly distributed throughout the obser-
ation period), minimum occurrences Nmin = median (this defines
he minimum number of times a pattern has to occur in order to be
detected”, median refers to the frequency of all event types). All
ther settings were left at the defaults specified in Theme (for ratio-
ale see Section 4). The final output metrics derived from Theme

nclude: the number of T-patterns; the total number of T-pattern
ccurrences; and the average number of times that each individ-
al T-pattern occurs. The number of T-patterns is, as described,
he number of different types of T-patterns (of varying lengths)
ound by the pattern detection algorithm. The total number of
-pattern occurrences is the sum total of all occurrences of all
-pattern types. Finally, the average number of times each indi-
idual T-pattern occurs is the total number of occurrences of all
-pattern types divided by the number of different types of T-
atterns.

.3.3. Overall activity
We defined an activity metric as the overall number of location

ransitions during the observation period. The longer a string of
ecorded behaviour, the more likely it is that correlations will occur
etween randomly occurring behaviours due to chance. Though
oth Markov chain analysis and T-pattern analysis have partial con-
rols for this effect, we included a measure of general activity level to
xamine its relationship to route-tracing and stereotypic behaviour.

.3.4. Statistical analysis
All other statistical analyses were conducted using SPSS 16.0 for

ac (SPSS Inc.) or SAS 9.1. Parametric and non-parametric meth-
ds were used as appropriate with all assumptions checked. When
ultiple post hoc tests were conducted the Bonferroni correction
as applied.

We began by exploring the relationship between abnormal
epetitive behaviours and proportion of time spent in abnormal

age locations (on the walls and ceiling). We then explored the cor-
elation between the pattern metrics, activity level and the above
ehavioural measures. To ascertain which pattern metric was the
est predictor of stereotypic behaviour, we conducted a forward
tepwise regression analysis establishing which of the pattern met-
accordingly. This allows for a ranked comparison analogous to the statistical val-
ues presented in Table 2. Note that each line represents a subject but they do not
imply any extrapolation between data points. Those three birds that exhibited som-
ersaulting are marked by open symbols.

rics predicted significant amounts of variability for each abnormal
behaviour measure. For all of the above analyses the values for each
bird across the six weeks of the experiment were averaged to avoid
pseudoreplication.

To establish whether the pattern metrics could be used to predict
the emergence of stereotypic behaviour in particular subjects, we
categorised them into somersaulting and non-somersaulting indi-
viduals. We used a General Linear Model with week number as a
within-subjects factor and somersaulting behaviour as a between-
subjects factor to conduct univariate and multivariate analyses.
Since many of the variables were correlated, changes in behaviour
patterns over time were analysed using a doubly multivariate anal-
ysis. All behavioural measures were screened individually for time
effects using a univariate analysis where time (weeks 1–6) was a
within-subjects factor. Only those variables that were statistically
significant were included in the multivariate analysis.

3. Results

3.1. Do different abnormal behaviours correlate with each other?

Since only three of our eight birds performed somersaults, it was
first necessary to establish whether there was any connection to
discrete behaviours we recognised as stereotypic or abnormal that
were performed by more of our subjects. The number of somer-
saults (the most widely accepted and easily recognised stereotypy
in starlings) correlated significantly with the number of unbalanc-
ing events (six out of eight birds performed unbalances), which in
turn correlated significantly with the number of head tilt events
(seven out of eight birds performed head tilts) (see Fig. 1 and
Table 2). The number of somersaults also correlated significantly
with the proportion of time spent on the ceiling. However, the num-
ber of head tilts correlated significantly with the proportion of time
spent on the cage walls.

3.2. Do pattern metrics correlate with abnormal behaviour?
We wanted to establish whether the pattern metrics computed
using Markov chain and T-pattern analysis as well as general activ-
ity level correlated with number of somersaults. Since only three
birds performed somersaults (resulting in a high number of tied
ranks), we also examined the correlation of the pattern metrics with
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Table 2
Correlations between the frequency of abnormal repetitive behaviours and time spent perching in “abnormal” locations.

Abnormal repetitive
behaviours

Abnormal location/behaviour

Proportion of time spent on the ceiling Proportion of time spent on the walls Number of head tilts Number of unbalances

Number of somersaults .804 .267 .356 .635
.014* .389 .251 .043*

Number of head tilts .322 .714 .691
.288 .013* .018*

Number of unbalances .533 .546
.082 .061

Note: Quoted statistics: upper number represents Kendall’s � and lower number is the p value.
* Indicates results significant at the p < .05 level.

Table 3
Correlations between pattern/activity metrics and the frequency of abnormal repetitive behaviours/time spent in “abnormal” locations.

Measurement method Pattern metric Number of
somersaults

Number of
unbalances

Number of
head tilts

Time spent on
the ceiling

Time spent on
the walls

Markov chain analysis Sequential dependency score .535 .691 .714 .645 .773
.085 .018* .013* .034* .024*

Theme analysis Number of T-patterns .635 .667 .546 .739 .555
.043* .024* .061 .016* .153

Total number of T-pattern occurrences .535 .691 .714 .645 .588
.085 .018* .013* .034* .125

Average number of times each individual
T-pattern occurs

.356 .546 .714 .483 .928

.251 .061 .013* .111 .001*

Overall activity Number of transitions .445 .618 .643 .564 .814
.152
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ote: Quoted statistics: upper number represents Kendall’s � and lower number is t
* Indicates results that are significant at the p < .05 level.

he other abnormal repetitive behaviours and abnormal perching
ocations (which were performed by more subjects and showed

oderate to high levels of inter-correlation).
The pattern metrics computed using T-pattern and Markov chain

nalysis all correlated significantly with at least two measures of
bnormal behaviour/location (see Fig. 1 and Table 3). The number
f T-patterns was the only pattern metric to correlate significantly
ith somersaulting.

Our simpler measure of overall activity also correlated sig-
ificantly with three measures of abnormal behaviour (and was
oderately to strongly correlated with the remaining two), as well

s all four pattern metrics (sequential dependency score, Kendall’s
= .966, p < .001; number of T-patterns Kendall’s � = .846, p = .008;
otal number of T-pattern occurrences, Kendall’s � = .907, p = .002;
verage number of times each T-pattern occurs, Kendall’s � = .887,
= .003). These results therefore raise the question of whether the
ore complex pattern metrics reveal anything more than overall

ctivity levels?

able 4
egression models for each individual abnormal behaviour measure.

ependent variable and significant predictors S
c

umber of somersaults = total number of T-pattern
ccurrences + average number of times each individual T-pattern occurs

umber of head tilts = average number of times each individual T-pattern occurs

umber of unbalances = number of T-patterns + sequential dependency
core

ime spent on the ceiling = number of T-patterns + average number of
imes each individual T-pattern occurs

ime spent on the walls = average number of times each individual T-pattern occurs

ll four of the pattern metrics and activity level were available as independent variables
equential forward stepwise fashion.
.034* .026* .063 .014*

alue.

3.3. What accounts for most variance in abnormal behaviour?

Since activity correlates with the occurrence of abnormal
behaviour, we conducted a separate regression analysis for each of
the abnormal behaviour measures to establish whether our pattern
metrics or overall activity explains the most variance in the fre-
quency of abnormal behaviour. Regression analyses conducted for
each measure of abnormal behaviour show that the metrics from
T-pattern analysis account for the majority (and sometimes nearly
all) of the variance in abnormal behaviour (Table 4). Overall activity
explained no significant variance in abnormal behaviour above and
beyond the variance explained by the pattern metrics.
3.4. How does behaviour change over time?

Next, we examined whether there was any change in the various
behavioural measures (including “normal” behaviours, abnormal
behaviours, pattern metrics and activity levels) over the course of

tandardised beta
oefficient

F-value (degrees of
freedom)

Significance R-square of overall
model

1.327 35.320 (5,2) .001 .934
−.747

.869 18.461 (6,1) .005 .755

1.499 58.052 (5,2) <.001 .959
−.606

1.141 39.184 (5,2) .001 .940
−.432

.928 37.367 (6,1) .001 .862

but only those that passed the criterion of p < .05 were included in each model in a
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he six-week observation period. Additionally, we asked whether
here was a significant difference between subjects that devel-
ped a somersaulting stereotypy and those that did not (see
ig. 2a). Since many of the abnormal behaviour measures are
orrelated, it was necessary to perform a multivariate analysis.
owever, due to our small sample size and large number of vari-
bles we carried out an initial screening procedure, conducting
nivariate tests for each behavioural variable. As a result, five
ere included in the multivariate analysis: number of head tilts,
roportion of time spent on the cage walls, proportion of time
pent on the food bowl, the number of T-patterns, and sequen-
ial dependency scores. The multivariate analysis showed an overall
ignificant effect of week number (MANOVA: Wilk’s Lambda = .02,
2,5 = 22.64, p = .04), a difference between somersaulting and non-
omersaulting birds (F1,6 = 6.73, p = .04) and an interaction between
omersaulting and week (Wilk’s Lamda = .02, F2,5 = 19.30, p = .05).
o understand which group means differ significantly from oth-
rs, Bonferroni-corrected univariate tests are presented in Fig. 2b–f.
he proportion of time spent on the food bowl and sequential
ependency scores increased over the six-week period whilst pro-
ortion of time spent on the cage walls decreased. Somersaulting
irds spent longer on the cage walls and had a higher num-
er of T-patterns. Somersaulting birds also had higher sequential
ependency scores in some but not all weeks, reflected by the

nteraction effect of week and somersaulting. Somersaulting and
eek effects on head tilting and number of T-patterns were not

ignificant in univariate testing when the Bonferroni correction was
pplied.

. Discussion

.1. Main findings

The behavioural scores for recognised stereotypies (number of
omersaults) and putative related abnormal behaviours (number
f head tilts; number of unbalances; proportion of time spent on
he walls and ceiling) are all moderately to highly correlated with
ach other in our caged starlings (Table 2). Though we recognise
hat these findings derive from a small sample, we regard them as
uggestive evidence that these behaviour patterns are functionally
elated, perhaps via escape motivation. We therefore used these
ehaviours as a standard of abnormal behaviour against which to
alidate our novel pattern detection methods. The application of the
attern metrics (derived from Markov chains and T-pattern analy-
is) for objectively quantifying route-tracing stereotypic behaviour
s supported by strong correlations between these metrics and the

easures of stereotypic and abnormal behaviour established above
Table 3).

The high level of correlation between the pattern metrics, the
stablished measures of abnormal behaviour and the general activ-
ty levels of the birds suggests a single underlying cause. It is
mportant to establish whether all of our behavioural measures
re simply different proxies for activity. Stereotypic behaviour has
een previously linked to activity (Hansen and Jeppesen, 2001;
ickery and Mason, 2004), and has been hypothesised to be an
ctive response to an eliciting stimulus (Mason, 1991b). Higher
ctivity levels translate directly into longer sequences of locations
rom which to calculate the pattern metrics. Statistically, a longer
equence would result in more patterns than a shorter sequence,
ven if sequences were random. However, our regression analyses

how that the pattern metrics explain high levels of variance in the
cores of abnormal behaviour, above and beyond that explained by
verall activity. This is particularly the case for the T-pattern met-
ics, which are better predictors of abnormal behaviour than the
equential dependency scores derived from Markov chain analy-
cesses 82 (2009) 256–264 261

sis. None of the final regression models used to predict abnormal
behaviour included activity level as a significant predictor variable
(Table 4). Pattern metrics therefore explain more variance in the
standard measures than activity levels, and we can be confident
that T-pattern analysis (and to a lesser extent Markov chain anal-
ysis) are not merely detecting differences in the overall amount of
behaviour performed.

Pattern metrics, abnormal behaviour scores and other
behaviours showed changes over the six-week time course of
the experiment that differed between somersaulting and non-
somersaulting birds. However, since somersaulting appeared as
early as the second session of behavioural recording we were
unable to test whether the pattern metrics could be used to predict
which individuals would develop stereotypies in the future. We
believe that the pattern metrics we used have the potential to
predict the development of stereotypic behaviour, but in order
to study this in captive starlings it would be necessary to record
behaviour more often during the first two weeks of caging before
somersaulting emerges.

Birds showed no consistent increase in somersaulting across the
six-week observation period (Fig. 2a) and did not continue to per-
form somersaulting behaviour after they were returned to larger
free-flight aviaries. This suggests that although the somersault-
ing stereotypy had developed, it was not fixed and irreversible.
With the exception of somersaulting, other abnormal behaviour
(such as route-tracing) did not reach a stage where it appeared
rigid and stereotypic. To some extent the birds we used might
have been buffered against irreversible stereotypy because they
were wild-caught and animals raised in barren conditions are
more likely to develop irreversible stereotypies (Cooper and Nicol,
1996).

Changes in behaviour over time hint at the aetiology of the som-
ersaulting stereotypy. Time on the cage walls decreased and time
on the food bowl increased over time in captivity. This is consis-
tent with the findings of Maddocks et al. (2002) who explained
an observed decrease in clinging to cage walls as demonstrative
of a reduction in escape motivation as birds became more set-
tled in captivity. As our somersaulting birds were more active than
non-somersaulting birds, spending more time on the cage walls
particularly during the first four weeks of recordings, we suggest
that our data support the hypothesis that somersaulting is linked
with escape motivation.

We acknowledge that a more extensive data set is required to
establish rigorously how stereotypy and route-tracing behaviour
correlate with pattern metrics. Ideally, the data would cover the
entire temporal range of the development of stereotypy from
its absence to rigid stereotypic behaviour expression. However,
whilst this study involved a small sample, it complements pre-
vious studies in captive starlings with larger sample sizes that
revealed a relationship between somersaulting stereotypies and
an increased repetitiveness in movement patterns quantified
using Markov chains (Asher et al., 2009; Asher et al., unpublish.
data).

4.2. Theme

T-pattern analysis was successful in explaining variation in the
levels of abnormal repetitive behaviour expressed. In particular,
the average number of times each individual T-pattern occurs was
positively (though not always strongly) correlated with the abnor-
mal behaviours and proved to have strong explanatory power in

most of the regression analyses. This appears to confirm our ini-
tial prediction that stereotypic animals should have a reduced
behavioural repertoire with progressively more time devoted to
performing stereotypic behaviour (Meehan et al., 2004). However,
the number of T-patterns was positively related (and the most
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Fig. 2. (a) The number of somersaults performed by individuals across the six weeks. (b–f) Main effects of week and differences between somersaulting and non-somersaulting
birds on variables included in multivariate analysis. Each figure lists the Bonferroni-corrected GLM results and shows mean values ± one standard error.
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behaviour, conducting the primary analysis and writing the first
B.O. Brilot et al. / Behaviou

ignificant explanatory factor) to two of our abnormal behaviour
easures: number of unbalances and time spent on the ceil-

ng. This contradicts our prediction that stereotyping individuals
hould demonstrate fewer different T-patterns as compared to non-
tereotyping subjects. We suggest that the particular set of subjects
tudied might explain this contradiction. Specifically, we had a
mall sample of individuals that demonstrated early-stage flexible
tereotypic patterns or no stereotypies at all.

We hypothesise that stereotyping individuals were more active
ut in such a way that they performed behaviour in more discrete
ehavioural bouts. If the behaviour sequence is still flexible (i.e.
does not always follow A) but occurs in discrete behavioural

outs separated by no activity, then a greater number of differ-
nt T-patterns would be found as compared to an individual who
as sequentially flexible but exhibited a constant stream of activ-

ty (since this more closely resembles behaviour that occurs with
onstant probability). If activity is concentrated within larger bouts,
here is a higher likelihood that a particular bout would include a
reater number of different event types. This would result in Theme
nding higher-level T-patterns (i.e. patterns including large num-
ers of different events) with a corresponding exponential increase

n the number of sub-patterns that form the longer, higher-level
-pattern (e.g. the AB, AC, and BC sub-patterns that could form
he T-pattern ABC). If stereotyping individuals expressed more dis-
rete behavioural bouts, this would explain the finding that their
ehaviour contains more T-patterns, more types of T-patterns and
hat T-patterns occurred more frequently.

Although Theme does have potential as a tool for characterizing
tereotypic development, there are drawbacks related to subjec-
ive input required from the user. To enable adjustment of the
earch algorithms as appropriate for the dataset, Theme has a
uite of parameters that are set by the experimenter. The two of
reatest importance are probably ˛ (the level of significance for
ccepting a behaviour as occurring within the confidence interval
y chance) and Nmin (the minimum number of times a T-pattern
ust be detected in order to be counted). Unfortunately, there is

o objective approach for setting these parameters (see Bonasera
t al., 2008), supplementary information). The Theme manual
Magnusson, 2004) suggests testing multiple settings and deciding
pon values best suited for the current task. Theme had not been
pplied to the behaviour of caged birds prior to this experiment,
nd we did not feel we should use predictions about the relation-
hip between stereotypic behaviour and the patterns detected to
etermine our parameter values (indeed our predictions proved

ncorrect in any case). Since many of our subjects expressed large
umbers of behavioural events, we chose a strict value of ˛ < .001.
his reduced the number of seemingly irrelevant/redundant sub-
atterns (e.g. ones involving two events but in reversed order such
s A–B and B–A) and reduced the large levels of variance between
ndividuals (since activity levels were similarly highly variable). The
heme manual (Magnusson, 2004) suggests that Nmin is generally
et to 3 (i.e. a pattern has to occur a minimum of 3 times in order
o be kept) or “median” (the median of the overall frequency of
vents). We employed the latter since this provided an additional
ay of reducing the large variation in activity (and hence number of
ehavioural events) that occurred between our subjects. It seemed
ost appropriate to set the other parameters at the default levels

s there was no reason to restrict the pattern detection algorithm
ny further.

One further difficulty with Theme lies in the validation of T-
attern detection for larger data sets (since more patterns will occur

y chance in longer strings of recorded behaviour). Magnusson
2000) has discussed methods of validation, but Theme is limited to
graphical comparison of T-pattern levels of the data set and a ran-
omised version of the same data. It is suggested that the search
lgorithm parameters are adjusted such that no T-patterns are
cesses 82 (2009) 256–264 263

found in the randomised data. However, this reduces the number of
T-patterns also found in the real data, with no discrimination made
between T-patterns that are part of normal, functional behaviour
and those that are behaviourally functionless (and hence, by def-
inition, stereotypies). A formal statistical comparison of Theme
outputs from the actual data against the randomised data set would
be highly desirable in order to provide objective confirmation that
detected T-patterns have biological significance.

4.3. Markov chain analysis

The sequential dependency scores produced from Markov chain
analysis did not explain as much variation in the standard measures
of abnormal behaviour as T-pattern analysis. They did, however,
correlate with our standard measures of abnormal behaviour. The
differences between Theme metrics and sequential dependency
might have related to the extra temporal dimension that is incorpo-
rated into detection of T-patterns. Whereas sequential dependency
describes the degree to which contiguous events occur more than
expected by chance, Theme uses the relative position in time, and
can therefore detect a pattern of events even if it is interrupted by
an unrelated event. As with Theme, higher sequential dependency
scores are expected as the number of events (and hence general
activity) increases. Developing a Monte-Carlo or bootstrapping val-
idation using random permutations could provide a formal control
for this phenomenon.

Despite the drawbacks outlined above, the sequential depen-
dency method provides results that are simpler to interpret than
Theme. A score is judged as showing evidence of significant sequen-
tial dependency based on the chi-square statistic. In addition there
is only one pattern metric produced (sequential dependency score)
and the computation of this metric is free from any parameter
assumptions.

5. Conclusions

Our results show that T-pattern analysis in Theme, and to a
lesser extent Markov chain-based methods, can be used to quan-
tify individual differences in animals’ use of space. Pattern metrics
derived from Theme were the best predictors we found of a range
of abnormal behaviour patterns in starlings including the somer-
saulting stereotypy. These results suggest that space use pattern
metrics could be useful for identifying individuals with a tendency
towards stereotypic behaviour. When combined with technolo-
gies for automatically recording the spatial location of an animal
within a cage (e.g. using Noldus’ Ethovision), the pattern metrics
we describe could be used to fully automate the quantification of
complex route-tracing stereotypies.
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