
“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 7: Adaptive Filtering 

University of Newcastle upon Tyne  Page 7.1 

Chapter 7 
 

Adaptive Filtering 

7.1 Introduction 
The principle property of an adaptive filter is its time-varying, self-adjusting characteristics. An adaptive filter usually 
takes on the form of an FIR filter structure, with an adaptive algorithm that continually updates the filter coefficients, 
such that an error signal is minimised according to some criterion.  The error signal is derived in some way from the 
signal flow diagram of the application, so that it is a measure of how close the filter is to the optimum. Most adaptive 
algorithms can be regarded as approximations to the Wiener filter, which is therefore central to the understanding of 
adaptive filters. 

7.2 Examples of Adaptive Filtering 
To illustrate how adaptive filtering can be used, three examples are given below, together with the finite difference 
equations associated with the so called LMS algorithm. Having described how this method can be used, we will then go 
on to explain how this filter was derived, why it works and what the ideas are behind the method. 

7.2.1 Telephone Echo Canceller 

A telephone echo canceller, as depicted in  Figure 7.1(a) below, is a typical application of an adaptive filter. The 
“hybrid” is an electronic device that should ensure that all signals from the far telephone are sent to the local telephone 
without any of the far telephone signals getting through to be sent back to the far telephone as if it were an echo. In 
practice, the hybrid cannot be perfect because it relies on perfect impedance matching, and the impedance of the phone 
and line will vary with time. Such echoes are often noticeable on international phone lines when you hear an echo of 
yourself substantially delayed.  
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Figure 7.1(a): Telephone echo cancellation. 

 

The echo canceller depicted in the diagram works by removing the echoes from the mismatch in the hybrid, by making 
the adaptive filter exactly match the reflection path, and track the changes to this echo path. The adaptive filter is an FIR 
filter of length N with coefficients w(i). Concentrating on the left hand adaptive filter, the following finite difference 
equations would eventually achieve an optimal reduction of the echo: 

 (a) Calculate the kth signal sample: ∑
−

=
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 (b) Update the filter weights for the next sample: ( ) ( ) 1  to0for      , ˆ21 −=+= −+ Nixsiwiw ikkkk µ  
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where kŝ  is an “estimate” of the signal from the local telephone, and µ  is a small positive constant. The filter weights 
)(iwk  can start with any arbitrary values (i.e. for k=0) – for example all set to zero. The derivation of these apparently 

very simple equations is given in later sections in this Chapter.  

7.2.2 Aircraft Cockpit Noise Canceller 

The second example concerns the cancellation of noise interference when using a microphone. Figure 7.2(b) depicts an 
aircraft cockpit – the problem is that the loud background noise makes it difficult for ground staff to understand what 
the pilot is saying. The solution is also shown in the figure, and again uses an adaptive filter. A second microphone (B) 
located some distance from the pilot picks up a second version of the engine noise that is correlated with that picked by 
(A). The adaptive filter adjusts this to be as close a replica as possible to that contained in the speech. 

  

Figure 7.1(b) 

The equations required are the same as for the previous example: 

 (a) Calculate the kth signal sample: ∑
−

=
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 (b) Update the filter weights for the next sample: ( ) ( ) 1  to0for      , ˆ21 −=+= −+ Nixsiwiw ikkkk µ  

7.2.3 Adaptive Equalisation 

The third example is concerned with digital receivers, and is illustrated in Figure 7.1(c). A typical mobile phone channel 
distorts the binary signal by introducing dispersion and multipath, so that the binary signals may no longer be detected 
reliably. The purpose of the adaptive filter is to provide the inverse response of the channel so that the output of the 
filter is an estimate kŝ  of the transmitted signal. Since the channel characteristic changes with time, it must be adaptive 
in order to track these changes. An “error” signal is derived by finding the difference between the filter output and a 
“squared up” version of it. The finite difference equations required are given below: 
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 (a) Calculate the kth signal sample: ∑
−

=
−⋅=

1

0
)(ˆ

N

i
ikkk xiws  

 (b) Update the filter weights for the next sample: ( ) ( ) 1  to0for      , 21 −=+= −+ Nixeiwiw ikkkk µ  

7.3 Wiener Filter Theory 
The starting point for deriving the equations for the adaptive filter, is to define very clearly what we mean by an 
optimum filter. The Wiener filter is probably the most common definition in use, and it relates to the configuration 
depicted in Figure 7.2. The kth sample of signal y, yk, consists of two components: the principal signal sk, and a noise 
component nk which is correlated with xk. The Wiener filter provides an optimal estimate of nk, known as kn̂ . 

Now let us suppose that the Wiener filter is an FIR filter with N coefficients, the estimated error signal ek is found by 
subtracting the Wiener filter noise estimate kn̂  from the input signal yk, this is mathematically defined by Equation 7.1 
below. 

∑
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=
−⋅−=−=

1

0
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i
ikkkkk xiwynye         (7.1) 

where w(i) is the ith coefficient of the Wiener filter. Since we are dealing with discrete values, the input signal and 
Wiener filter coefficients can be represented in matrix notation. Such that: 
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Figure 7.2: The Wiener filter configuration. 

By substituting for the matrix notation into Equation 7.1, it is possible to represent the estimated error signal by 
Equation 7.3 below. 

WXXW T
kkk

T
kk yye −=−=       (7.3) 

The instantaneous squared error of the signal can be found by squaring Equation 7.3 such that it can be represented as 
the following equation: 

( ) WXXWXW T
kk

T
kk

T
kk yye +−= 222  (7.4) 

The mean square error (MSE), ξ, is defined by the “expectation” of the squared error, from Equation 7.4. Hence the 
MSE can be represented by Equation 7.5. 

[ ] [ ] [ ] [ ]WXXWXW T
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T
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The mean square error function can be more conveniently expressed by replacing the term [ ]T
kkE XX  in Equation 7.5 

with the Autocorrelation Matrix XXR . In this example, we have illustrated the format of the matrix for when N = 4 
coefficients: 
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where [ ]mrxx  is the mth autocorrelation coefficient (denoted as [ ]mxxφ  in Chpater 6). In addition, the { }kkyE X  term 
in Equation 7.5 can also be replaced with the Cross-correlation Matrix XR y , as illustrated by Equation 7.7 below. 
Again, we have illustrated the format of the matrix for when N = 4 coefficients. 

[ ]

[ ]
[ ]
[ ]
[ ]



















=


















==

−

−

−

3
2
1
0

3

2

1

yx

yx

yx

yx

kk

kk

kk

kk

kky

r
r
r
r

xy
xy
xy
xy

EyE XR X   (7.7) 

It is now possible to express the MSE of Equation 7.5 in a simpler manner by substituting in Equation 7.6 and Equation 
7.7, so that: 

{ } { } WRWRW XXX
T

y
T

kk yEeE +−== 222ξ    (7.8) 

It is clear from this expression that the mean square error ξ is a quadratic function of the weight vector W (filter 
coefficients). That is, when Equation 7.8 is expanded, the elements of W will appear in the first and second order only. 
This is valid when the input components and desired response inputs are wide-sense stationary stochastic (random) 
variables.  

7.4 Performance Surface 
A portion of a typical two-dimensional mean square error function is illustrated in Figure 7.3 below. The vertical axis 
represents the mean square error and the two horizontal axes represent the values of two filter coefficients. The 
quadratic error function, or performance surface, can be used to determine the optimum weight vector Wopt (or Wiener 
filter coefficients). With a quadratic performance function there is only one global optimum; no local minima exist. The 
shape of the function would be hyper-parabolic if there were more than two weights.  

In this example, the filter coefficient w(0) varies between [1,…,3] while w(1) varies between the range [-1,…,1]. The 
optimum weight vector is given by Wopt = [2, -0.1], corresponding to the values for which the mean square error takes 
the minimum value, ξmin. 

Many adaptive processes that cause the weight vector to search for the minimum of the performance surface do so by 
the gradient method. The gradient of the mean square error of the performance surface, designated ∇, can be obtained 
by differentiating Equation 7.8 with respect to each component of the weight vector. 
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Figure 7.3: A two-dimensional quadratic performance surface. 
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Remember that the MSE was derived from the expectation of the squared error function, from Equation 7.5. So as an 
alternative method, the gradient can also be found by differentiating the expected squared error function with respect to 
the weight vector. 
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When the weight vector (filter coefficient) is at the optimum Wopt, the mean square error will be at its minimum. Hence,  
the gradient ∇  will be zero, i.e. ∇ = 0. Therefore, setting Equation 7.10 to zero we get: 

opty WRR XXX 220 +−=  

XXXRRW y
-

opt
1=    (7.11) 

This equation is known as the Wiener-Hopf equation in matrix form, and the filter given by Wopt in Equation (7.11) is 
the Wiener filter. However, in practice it is not usual to evaluate  In addition, Wopt has to be calculated repeatedly for 
non-stationary signals and this can be computationally intensive. An iterative solution to the Wiener-hopf equation is 
the steepest decent algorithm. 

7.5 The Steepest Descent Algorithm 
In practice it is not usual to calculate the optimum filter Wopt using Equation (7.11) directly. The problem is that the 
evaluation of 1-

XXR  involves the inversion of a matrix of dimension N by N which is computationally very complex. 
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Furthermore, if the signal statistics are non-stationary, which is quite often the case, then the calculation has to be 
undertaken periodically in order to track the changing conditions.  

An alternative method of calculation is therefore the steepest descent algorithm. In this method the weights are adjusted 
iteratively in the direction of the gradient. 

ppp ∇−=+ µWW 1      (7.12) 

where Wp is the weight vector after the pth iteration, and ∇p is the gradient vector after the pth iteration evaluated by 
substituting Wp into Equation (7.10). The parameter µ is a constant that regulates the step size and therefore controls 
stability, and the rate of convergence.  

7.6 The LMS Algorithm 
The least mean square (LMS) algorithm is extremely popular because of its simplicity and ease of computation. The 
LMS algorithm is based on the steepest descent method, but simplifies it further by undertaking just one iteration per 
sample, and by calculating only an estimate of the gradient vector – but a new one k∇̂  at each sample k. 

The estimate of the gradient vector at the kth sample, k∇̂ , can be derived from the definition of the error, from Equation 
7.3: 
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This estimate of the gradient can be substituted into Equation 7.12 to obtain: 

kkkk e XWW µ21 +=+       (7.14) 

which can also be expressed as: 

( ) ( ) 1  to0for      , 21 −=+= −+ Nixeiwiw ikkkk µ  (7.14a) 

This expression is more commonly known as the LMS algorithm. As before, the parameter µ is a constant that regulates 
the stability and the rate of convergence. With respect to Equation 7.14, the LMS algorithm is extremely easy to 
implement in hardware because it does not involve squaring, averaging or differentiation. 

7.6.1 Implementation of the LMS Algorithm 

The computational steps for the LMS algorithm are as follows: 

 1. Initialise the filter coefficients wk(i) to zero. 

 2. At each sampling period: 

 (a) Compute the filter output: ∑
−

=
−⋅=
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0
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i
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 (b) Calculate the error estimate: kkk nye ˆ−=  



“EEE305”, “EEE801 Part A”: Digital Signal Processing Chapter 7: Adaptive Filtering 

University of Newcastle upon Tyne  Page 7.7 

 (c) Update the new filter weights: ( ) ( ) 1  to0for      , 21 −=+= −+ Nixeiwiw ikkkk µ  

       In matrix form this can be expressed as: kkkk e XWW µ21 +=+  

7.6.2 Convergence Properties 

The performance of the LMS algorithm is illustrated in Figure 7.4 below. Contours of ξ are shown in the figure and the 
optimum filter coefficients for this particular example are w(0) = 3.784 and w(1) = -4.178. Illustrated in Figure 7.4 are 
two weight value tracks for the LMS algorithm, which have the characteristics, as depicted in Table 7.1 below: 

 

 Start weight values: w(0), w(1) Value of µ Nos of iterations k 

Upper track 0, 0 0.10 250 

Lower track 4, -10 0.05 500 

Table 7.1: LMS algorithm characteristics. 

 
Figure 7.4: Performance surface contours and weight value tracks for the LMS [Widrow 85]. 

The track that has the largest value of µ appears to be more erratic because the weight of the adjustment is greater at 
each iteration step, but it arrives at the same distance from ξmin for half the number of iterations taken for the track with 
the smaller value of µ. 

The choice of µ is very important as it controls the rate of convergence. If the value is too small, it may take too long to 
converge towards ξmin. On the other hand, the value of µ must not be too large as it will not be able to reach ξmin 
because it will cause the weights to jump around their optimum value; a common problem called misadjustment. In 
general, the LMS algorithm will converge to the Wiener filter providing it satisfies the following boundary conditions; 
where λmax is the maximum eigenvalue of the input data covariance matrix. 

max

10
λ

µ <<  (7.15) 
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7.7 Adaptive Filter Configurations  
The adaptive filter can be used in a wide variety of applications. Most of these can be classified into one of three types. 

7.7.1 Linear Prediction  

The prediction configuration in Figure 7.5(a) is perhaps the simplest. The desired signal is the input signal, s, and a 
delayed version is sent to the adaptive filter, which must try to predict the current input signal in order to drive the error 
e, towards zero. The prediction configuration is often used in signal encoding and noise reduction techniques. 
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produce an inverse model of an unknown system. This type of configuration is what is used in the  adaptive 
equalisation example of section 7.2.3. 

7.8 Numerical Examples of Wiener Filter 
Example 1: A signal estimation problem is illustrated in the diagram below, where the observed input sequence is xk 
and the desired (ideal) signal is yk, such that: 

xk = sin(2πk/4) + ηk 

yk = 2cos(2πk/4) 

 

Estimation 
Filter 

xk Σ- 
+ 

kn̂

yk 

ek 

 

ηk is a noise sequence of power = 0.1, and the estimation filter is of order 2 (i.e. it has two coefficients). 

Calculate: 1). The 2 x 2 autocorrelation matrix XXR  

  2). The 1 x 2 cross-correlation matrix XR y  

  3). The optimum Wiener filter coefficients for this case. 
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Hence by inserting these values into the autocorrelation matrix, we have: 









=

6.00
06.0

XXR  

2). 

[ ] 







==

−1kk

kk
kky xy

xy
EyE XR X  k = 0, 1 

[ ] 0
4

2sin
4

2cos2 =






 ⋅= kkExyE kk
ππ

 

[ ] 1
4

)1(2sin
4

2cos21 −=






 −⋅=−
kkExyE kk

ππ
 

N.B. The expectation of a random noise sequence is zero, so it can be removed from the calculation. Hence, by inserting 
these values into the cross-correlation matrix, we have: 
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Hence, the optimum coefficients relating to the Wiener filter in this example are w(0) = 0 and w(1) = -1.67. 

Example 2: A signal is characterised by the following properties, where xrx  is an autocorrelation vector and XXR  and 

nnR  are autocorrelation matrices. 

xy rr xx =  

nnXXYY RRR +=  

If the first three values of xrx  and nrn  are (0.7, 0.5, 0.3) and (0.4, 0.2, 0.0) respectively, evaluate yrx  and YYR . 
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