Matlab/Simulink Exercise: Digital Filter Design

A) Design a digital FIR lowpass filter with the following specifications:

Passband cutoff frequency:	$f_p = 2 \text{ kHz}$
Stopband cutoff frequency:	$f_s = 3 \text{ kHz}$
Passband Ripple:	$R_p = 0.25 \text{ dB}$
Stopband attenuation:	$R_{s} = 0.25 \text{ dB}$
Sampling frequency:	$f_s = 20 \text{ kHz}$

Solution

1) Start sptool and select New Design.

SPTool: startup.spt		
File Edit Help Window		
Signals	Filters	Spectra
mtlb (vector) chirp (vector) train (vector)	LSIp (design) PZIp [imported] FIRbp (design)	mtibse [auto] chirpse [auto] trainse [auto]
View	View	View
	New Design	Create
	Edit Design	Update
	Apply	

3) Insert the filter specifications and complete the filter design by pressing Apply.

4) To access the filter coefficients of the designed filter go to the SPTool window and select Export from the File Menu. Next highlight the designed filter and use the Export to Workspace button to make the filter parameters accessible on the workspace.

The filter parameters are stored under the variable name filt1 in an object-oriented manner. You can access the filter coefficients as illustrated below.

FIR Impulse Response / Filter coefficients

В)Design	a digital	IIR lowpass	filter with	the following	specifications:
) 0		- · · F · · · ·			-r

8^{th}
elliptic IIR
$f_p = 300 \text{ Hz}$
$R_p = 0.5 \text{ dB}$
$R_s = 50 \text{ dB}$
$f_s = 4 \text{ kHz}$

2) Export the filter parameters in the workspace as in the previous example. For IIR filters both the numerator and the denominator are required to compute the frequency and impulse response of the IIR filter.

A MATLAB Command Window	
<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp	
🗅 😅 ½ 🛍 🛍 🛩 🗰 比 🛄 ?	
» A=filt1.tf.den;	A
» B=filt1.tf.num;	
>> Treq2(6,H)	
»	
	-
TT	
Editer State	
neauy	

Repeat the Design for the following digital Filters:

C) Design a digital FIR bandpass filter with the following specifications:

Passband:	8-12 kHz
Stopband Ripple:	$R_s = 0.001$
Passband Ripple:	$R_p = 0.001$
Transition width:	3kHz
Sampling frequency:	$f_s = 44.1 \text{ kHz}$

Obtain the filter coefficients and frequency response for the above FIR using the Blackman window method.

D) Design a digital IIR bandpass filter with Butterworth characteristics meeting the following specifications:

Passband:	8-10 kHz
Sampling frequency:	$f_s = 44.1 \text{ kHz}$
Filter Order:	4
Filter Characteristics:	Butterworth

Obtain the filter coefficients and frequency response for the above FIR using the Blackman window method.