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Abstract.  The hydrological cycle induces mass 
exchange between the oceans and continents, and 
redistribution of water within the continents.  In 
turn, relative sea level passively responds to the 
change in shape of both the geoid and the ocean 
bottom.  The time variation in these two surfaces 
must self-consistently relate to the total mass redis-
tribution.  Here we show formally how, if given a 
time series of station coordinates from a global net-
work of geodetic stations, we can invert for the 
separate contributions to the total mass redistribu-
tion due to water on the continents and water in the 
oceans.  If we characterize the deformation of the 
solid Earth in terms of a truncated vector spherical 
harmonic expansion, the solution to this problem 
can be formulated in terms of Clebsch-Gordan coef-
ficients, which are familiar for the calculation of 
branching ratios in elementary particle physics.  As 
part of a rigorous solution to this problem, we for-
mally address the definition of reference frame by 
applying the concept of an “ isomorphic frame trans-
formation,”  which conserves the formal theoretical 
relationship between surface deformation and load 
distribution by a simultaneous translation of origin 
and change of degree-one load Love numbers. We 
show explicitly how the solution to the inversion 
problem is derived and implemented, and we pre-
sent an example of this procedure in practice using 
real GPS data from the IGS network.   
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 1  Introduction 

 
We have developed a methodology to invert for the 
redistribution of fluids on the Earth’s surface given 
precise global geodetic measurements of Earth’s 
geometrical shape [Blewitt and Clarke, 2003].  
Three steps are involved: (1) inversion of geodetic 

station coordinates for a spherical harmonic repre-
sentation of Earth’s shape; (2) inversion of Earth’s 
shape for surface mass distribution; (3) inversion for 
a specific surface mass distribution consistent with 
static ocean equilibrium theory. 

Here we focus on the methodology of step (3), 
which is facilitated by the use of Clebsch-Gordan 
(CG) coefficients.  The CG method is applied where 
it is appropriate to spatially partition a spherical 
function into two spatial domains (land and ocean) 
which are characterized by different properties 
(such as the land’s ability to concentrate water).  

Secondly, we highlight our findings on reference 
frame theory, showing how to transform loading 
equations between frames [Blewitt, 2003]. 
 
2  Clebsch-Gordan Coefficients 
 
2.1  Spectral Model for Function on Sphere 
 
An arbitrary function on the sphere )(Ωf  at posi-

tion Ω  (latitude ϕ, longitude λ) can be expanded: 
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where the complex spherical harmonics are ex-
pressed using associated Legendre polynomials: 
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where 
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Therefore coefficients in equation (1) for a real-
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valued function are given by 
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2.2  Spectral Model for Multiple Functions 
 
Consider the case where it is appropriate to express 
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We shall be interested in the case where )(
~ Ωf  is a 

function that varies (with choice of model, epoch, or 
data set) and is represented as a truncated expansion  
to degree n , and )(Ωc  is a constant function (that 

does not change with scenario) known to any arbi-
trary degree and order.  In the language of signal 

processing,, we might consider )(
~ Ωf  as the signal 

and )(Ωc the filter.  Applying equation (4): 
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where we have chosen to first sum over the coeffi-
cients of the constant function )(Ωc , and where 
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;;  (7)  

 
Particle physics and the theory of atomic spectra 
enjoy broad application of equation (7), which can 
be computed in terms of tabulated CG coefficients 
(in angled brackets) [Particle Data Group, 2002]: 
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2.3  Selection Rules 
 
The general result of equation (8) is zero unless the 
following well-known “selection rules”  are obeyed: 
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These rules significantly limit the number of sum-
mation terms in equation (6).  “Selection rules”  are 
fundamental in quantum phenomena as they specify 
which possible outcomes of an interaction are al-
lowed or forbidden.  Such rules derive from the 
properties of spherical harmonics.  For example, the 
multiple of two pure degree-2 spherical harmonics 
is a linear combination of only degrees 0, 2, and 4. 

A useful consequence of selection rules for our 
purposes is that )(Ωc  need only be expressed to 

degree 2n to get an exact result in equation (6). This 
fact can be exploited, for example, if we associate 

)(Ωc  with the ocean function, which is defined to 

be one over the oceans and zero on land, and is 
therefore discontinuous on coastlines: 
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Ocean function coefficients are computed using 
coastline data [Balmino et al., 1973].  It may be 
counter-intuitive that the ocean function can be ac-
counted for exactly in equation (6) even though in 
principle such a discontinuous function is poorly 
represented (alone) by a truncated expansion.   
 
2.4  Product-to-Sum Operator 
 
Given that )(Ωc  is independent of scenario, it is 

convenient in equation (6) to first tabulate (once and 
for all) the following matrix of coefficients: 

 

 �
′′′′

′′′′′′′′′′′′ =
n

mn
nmmnmnmnmnnm QcC

2

,
;;;  (11)  

 
for all nn ≤′ and all n  of potential interest.  Once 
tabulated, equation (6) becomes the matrix equation 
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where matrix C is the “product-to-sum operator.”  
Thus the problem of multiplying two functions in 
the spatial domain has been converted to a matrix 
multiplication of spectral coefficients.   In the case 
that )(Ωc  is the ocean function, equation (12) com-

putes the filtering effect of the ocean mask on the 
spectral coefficients.  This allows relative sea level 
to be represented as a lower-degree spherical har-
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monic function than would otherwise be required to 
account for the coastlines. 
 
3  Spatial Representation Model 
 
3.1  Naïve Mapping 
 
Consider the general situation for a function )(Ωf  

we have determined by some experimental means 
the spectral coefficients up to degree and order n , 
and we then wish to map this function on the sphere.  
In this case the “naïve”  spatial representation of 

)(Ωf  is a truncated spherical harmonic expansion: 
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3.2  Spatial Domain Partitioning 
 
Suppose we know a priori that )(Ωf  is discon-

tinuous at coastlines, and perhaps we have a model 
that distinguishes its behavior separately over the 
ocean and on land.  It is better to incorporate the a 
priori information by partitioning the spatial repre-
sentation between the ocean )(Ωs  and land )(Ωl : 
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where )(Ωc  is the ocean function, and where the 

tildes denote functions that are smooth with no dis-
continuity at the coastlines.   

Now we can apply the product-to-sum 
conversion given by equation (12) to find the 
relationship between spectral coefficients of )(Ωf  

and the spectral coefficients of the smooth functions 

over ocean )(~ Ωs and land :)(
~ Ωl  
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Equation (15) is the spectral equivalent to 

equation (14).  For example, given low-degree 
approximations to land and ocean loading models, 
equation (15) can be used to compute the spectrum 
of the total load accounting for effect of the 

coastline discontinuity.  The spatial equivalent to 
this computation would be to take equation (14) and 
apply a Green’s function convolution [Wahr, 1982].   
There are advantages to the spectral approach, 
however, when investigating long-wavelength 
phenomena, or for constructing an invertible system 
of equations to estimate low-degree loading 
coefficients directly from observational data.  For 
example, equation (15) may be more convenient for 
studying the effect of degree-2 loading on Earth 
rotation, or degree-1 loading on geocenter motion. 
 
3.3  Physical Constraints 
 
Consider the case where the smooth functions over 
ocean and land are functionally related through the 
physics of the problem (e.g., through the shape of 
the geoid and the shape of the deformed Earth).  If a 
priori physical constraints can be applied such that 
the number of free variables are equal on both sides 
of equation (15), it then becomes possible to invert 
this for ocean and land functions truncated at degree 
n .  In Section 4 we give concrete examples of how 
to apply such physical constraints. 

 
3.4  Partitioned Spatial Representation 
 
The last step is to then map these smooth functions 
only over their respective domains, that is with 
discontinuities at the coastlines.   
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Equation (15) guarantees that the coefficients of 

)(Ωf  are consistent with the original truncated 

expansion, but in effect, the spatial solution (16) 
augments the truncated expansion to infinite degree 
and order so as to be consistent with the physical 
relationship between ocean and land functions.  
Equation (15) is useful in that it allows the presence 
of coastlines to dominate the spectrum of )(Ωf  at 

higher degrees (rather than short wavelength vari-
ability within the two spatial domains).  
   
4  Application to Hydrological Loading 
 
4.1  Physical Constraint:   
Sea Level Given the Total Load 
 
We have applied the above concepts to the problem 
of partitioning the loading of water associated with 
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the hydrological cycle between ocean and land.  
Here we apply a static oceanographic model to de-
rive a set of physical constraints that can be used to 
reduce the number of free parameters in the prob-
lem.  Over the ocean the water load can be param-
eterized as relative sea level, and over land it can be 
considered as an equivalent thickness of water.   

We assume: 
1. redistribution of water on land is arbitrary;  
2. the total mass of surface water is conserved, 

000 =f ; 

3. the sea surface is an equipotential, which gen-
erally does not equate to the (deformed) geoid; 

4. the ocean bottom deforms with the solid Earth; 
5. the solid Earth deforms in response to the spec-

tral coefficients of the total load according to 
load Love number theory [Farrell, 1972]. 

The weakest assumption is number three, in that 
the ocean has dynamic topography due to ocean 
currents that may vary.  For purposes of demonstrat-
ing the technique, however, ocean topography is 
assumed to be in static equilibrium.  This is in any 
case instructive to compute the effect of land load-
ing on relative sea level, which to first order might 
be considered uncoupled to ocean currents. 

Under these conditions it can be shown [Blewitt 
and Clarke, 2003] that there is a linear relationship 
between the spectral coefficients of relative sea 
level and the total load for degrees other than zero: 
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where 5514=Eρ kg m−3  is the mean density of the 

Earth, =Sρ 1025 kg m−3 is the density of seawater; 

the degree-n load Love numbers are nk  for the 

gravitational potential and nh  for surface height of 

the solid Earth (not to be confused with tidal Love 
numbers).  The first term nk+1  in the numerator of 

equation (17) relates to the sea surface taking on the 
shape of the deformed geoid, and the last term nh−  

accounts for the change in relative height of the sea 
surface above the deformed ocean basin. 

In contrast, the degree-0 term of relative sea 
level is not governed by the degree-0 term of the 
total load, which vanishes by conservation of mass 

000 =f , but rather relates to the balance between 

the volume of the ocean basin enclosed by the de-
formed geoid, and the water available to fill that 
basin:  
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where the first term in the square bracket is related 
to change in global mean sea level from mass ex-
change with the land, and the smaller second term 
[Dahlen, 1976] is the contribution of the geoid-
capped basin volume, which is generally non-zero 
even in the absence of mass exchange.   

Equations (17) and (18) may be combined and 
expressed in matrix form: 

 
 Bfs =~  (19)  
 
where B is a square ( )nn×  matrix.  Thus relative 

sea level can be computed up to the same degree 
and order as for the total load.  
   
4.2  Total Load Given the Land Load 
 
The total load is related to the smooth land load 
coefficients by application of the physical con-
straints given by equation (19) to the general parti-
tioned spectral model, equation (15): 
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Given a spectral model of the land load l
~

 to 
degree n  we can invert for the spectral model of the 
total load to any desired degree n 
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which is well-conditioned, due fundamentally to the 
small ratio of the density of water to that of the 
Earth.  This specific application of Clebsch-Gordan 
coefficients might be used, for example, to compute 
the extra contribution of the ocean to predictions of 
geocenter motion or polar motion from continental 
hydrology.  In effect, the ocean acts to amplify the 
signal caused by land loading through equation (21). 
 
4.3 Partitioned Load Given the Total Load  
 
Alternatively, we might already have an estimate of 
the spectral coefficients of the change in total sur-
face load based on the geodetically measured 
change in the Earth’s shape or gravity field.   In this 
case, the spectral model of the partitioned load is 
computed in two steps by equations (19) and (15): 
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The maximum degree of partitioned models s~  and 

l
~

 is that of the given total load f.   
 
4.4 Demonstration using Real Data 

 
Figure 1 shows an example of our solution using 
GPS data for partitioned ocean-land loads given an 
initial naïve model, equation (12) up to degree and 
order 2.  As a rule, we find that the ocean load fol-
lows a spatially similar pattern as the land load, ex-
cept that it is reduced an order of magnitude.   Not 
applying the partitioning method might therefore 
greatly overestimate the ocean load near coastlines. 
 
(a) 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Example of spatial partitioning of a global load func-
tion: (a) naïve spatial representation using a simple truncated 
spherical harmonic expansion; (b) partitioned function, ap-
plying physical constraints on static ocean topography. 

 
5  Isomorphic Frames 
 
The previous development assumes that we already 
have an estimate of the spectral coefficients of the 
total surface load.  Such estimates can derive from 
GPS measurements of variation in Earth’s shape, in 
an appropriate reference frame that is consistent 

with the degree-1 load Love numbers.  Here we 
highlight the theoretical development and findings 
of Blewitt [2003] and Blewitt and Clarke [2003].  

A vector surface displacement function on a 
sphere can be expressed [Grafarend, 1986]: 

 
 ( ) rrD ˆ)(ˆ)()()( ΩΩΓΩΨΩ H+×+= ∇∇∇∇∇∇∇∇  (23) 

 
where )(ΩH  is the height function, )(ΩΨ  is the 

“poloidal”  function, )(ΩΓ  is the “ toroidal”  func-

tion, and ∇∇∇∇  is the surface gradient operator.  For 
normal loading problems, the toroidal component is 
zero.  Expanding (23) in terms of spherical harmon-
ics, we find the degree-1 term for the displacement 
function can be written as a vector equation: 
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where we define the spatially constant vectors 

),,( 1011111
CSC ΨΨΨ=

�
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CSC HHH=H , 

using notation for classical (real) spherical harmon-
ics.  The same degree-one deformation, as observed 
in a reference frame that has an origin translated by 
vector 0

�
r−  with respect to the original frame, will 

have (primed) surface displacements: 
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This implies a perhaps surprising result: there exist 
two special reference frames in which either the 
horizontal displacements or the vertical displace-
ments are zero for degree-1 deformation [Blewitt et 
al., 2001].  These are the CL (center of lateral fig-
ure) and CH (center of height figure) frames, re-
spectively [Blewitt, 2003].  That the vertical degree-
1 displacements can be made zero by a simple trans-
lation proves that the model Earth retains a shape of 
constant radius under a degree-1 deformation, and 
hence retains a perfect spherical shape. However, if 

01 =′H , in general 0111 ≠−=′ H
��

; so the sur-

face is strained, as detected by GPS [Blewitt et al., 
2001] and by very long baseline interferometry  
[Lavallée and Blewitt, 2002].   

Degree-1 displacement vector functions (includ-
ing the degree-1 geoid height vector 1N ) relate to 

degree-1 load Love numbers [Blewitt et al., 2001]: 
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where CE� r  is the “geocenter”  displacement of the 

solid Earth center of mass CE relative to the stable 
center of mass of the entire Earth system CM:  
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Degree-1 load Love numbers themselves must 

be transformed if equation (27) is to be retained 
under a frame transformation, which requires that 

0� r  be aligned with the geocenter displacement: 

 
 CE0 rr ∆α∆ =  (29) 

 
so that from equations (26), (27) and (29): 
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Hence we can conclude that degree-1 load Love 
numbers transform as: 
 
 ( ) ( )( )α−+=′+′′ 11,,1,, 111111 klhklh  (31) 

 
We call such special frames “ isomorphic frames” , 
as theoretically these are the only reference frames 
in which the degree-1 loading equation takes on the 
form of equation (27).  Fortunately several frames in 
current use are isomorphic, including the CH, CL, 
CM, CE, and CF frames [Blewitt, 2003].  Frames 
that are not isomorphic include those where individ-
ual station height velocities are constrained.   

Most commonly realized in GPS is the CF 
frame, in which the average vector surface dis-
placement is constrained to zero.   However, model-
ers tend to present results in the CE frame.  Equa-
tion (31) allows the degree-1 load Love numbers to 
be transformed from the CE to the CF frame.  The 
isomorphic parameter can be calculated for specific 
frames where the origin is defined either geometri-
cally (with respect to observed surface displace-
ments) or physically.(with respect to center of mass) 
[Blewitt, 2003]. In this case the appropriate value 
for the isomorphic parameter =α −0.021, which is 
a small correction due to the CE and CF frame be-
ing almost identical.  However, much larger values 
are possible for other isomorphic transformations.   

6   Conclusions 
 
We have developed two methodological tools that 
are useful for imposing self-consistency when in-
verting geodetic data for changes in global surface 
loading.   The first tool considers the surface load as 
the multiple of two functions, a problem that can be 
transformed into the spectral domain by using 
Clebsch-Gordan coefficients.  The CG method is 
demonstrated by imposing physical constraints on 
static ocean topography onto an assumed spectral 
loading distribution, so as to produce a realistic spa-
tial representation of the load.  The CG method may 
find broader application in geodesy to any spherical 
function that can be expressed as the multiple of a 
signal function, and a second known function, such 
as a filter function or an a priori model function.  

The second tool transforms degree-1 load Love 
numbers into isomorphic frames in common use.  
Frames that are not isomorphic do not obey Love 
number relations, and so should be avoided. 
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