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Summary 31 

 32 

Inversion of geodetic site displacement data to infer surface mass loads has previously 33 

been demonstrated using a spherical harmonic representation of the load.  This method 34 

suffers from the continent-rich, ocean-poor distribution of the geodetic data, coupled with 35 

the predominance of the continental load (water storage and atmospheric pressure) 36 

compared with the ocean bottom pressure (including the inverse barometer response).  37 

Finer-scale inversion becomes unstable due to the rapidly increasing number of 38 

parameters which are poorly constrained by the data geometry.  Several approaches have 39 

previously been tried to mitigate this, including the adoption of constraints over the 40 

oceanic domain derived from ocean circulation models, the use of smoothness constraints 41 

for the oceanic load, and the incorporation of GRACE gravity field data.  However, these 42 

methods do not provide appropriate treatment of mass conservation and of the ocean’s 43 

equilibrium-tide response to the total gravitational field.  Instead, we propose a modified 44 

set of basis functions as an alternative to standard spherical harmonics.  Our basis 45 

functions allow variability of the load over continental regions, but impose global mass 46 

conservation and equilibrium tidal behaviour of the oceans.   47 

 48 

We test our basis functions first for the efficiency of fitting to realistic modelled surface 49 

loads, and then for accuracy of the estimates of the inferred load compared with the 50 

known model load, using synthetic geodetic displacements with real GPS network 51 

geometry.  Compared to standard spherical harmonics, our basis functions yield a better 52 

fit to the model loads over the period 1997-2005, for an equivalent number of parameters, 53 

and provide a more accurate and stable fit using the synthetic geodetic displacements.  In 54 

particular, recovery of the low-degree coefficients is greatly improved.  Using a 9-55 

parameter fit we are able to model 58% of the variance in the synthetic degree-1 zonal 56 

coefficient time series, 38-41% of the degree-1 non-zonal coefficients, and 80% of the 57 

degree-2 zonal coefficient.  An equivalent spherical harmonic estimate truncated at 58 

degree 2 is able to model the degree-1 zonal coefficient similarly (56% of variance), but 59 

only models 59% of the degree-2 zonal coefficient variance and is unable to model the 60 

degree-1 non-zonal coefficients. 61 

 62 

Keywords:  Geodesy, Spherical harmonics, Numerical techniques, Global Positioning 63 

System (GPS), Surface mass loading, Water cycle, Geocenter,. 64 
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1.  Introduction 65 

 66 

Forward modelling of geodetic site displacements due to surface mass loading is 67 

frequently performed using gridded surface mass datasets and a Green's function 68 

approach (e.g. Farrell, 1972), but because these Green’s functions are reference frame 69 

dependent, it may be difficult to account properly for the effects of geocenter motion 70 

(Blewitt, 2003).  Spherical harmonic representation allows the transparent use of the 71 

correct reference frame dependent Love numbers and so does not suffer from this 72 

drawback in forward modelling, but fine-scale (higher-degree) inversion of surface mass 73 

loads from geodetic displacements becomes unstable due to the continent-rich, ocean-74 

poor distribution of the geodetic data (Wu et al., 2002).  A further problem, which affects 75 

both the Green’s function and spherical harmonic methods, but is more readily 76 

correctable using the spherical harmonic approach, is the appropriate treatment of mass 77 

conservation and of the ocean’s equilibrium-tide response to the total gravitational field 78 

(Dahlen, 1976; Wahr, 1982; Mitrovica et al., 1994; Blewitt & Clarke, 2003; Clarke et al., 79 

2005).  The primary aim of this paper is to show how a modified set of basis functions 80 

derived from mass-conserving, tidally-equilibrated, land area-masked spherical 81 

harmonics can be used to overcome some of these limitations.   82 

 83 

Our target is the robust estimation of surface mass loading at weekly and longer 84 

timescales.  Figure 1 shows the spatial variation of the root mean square (rms) weekly 85 

change in total surface mass load predicted by some recent models over the period 1997–86 

2005.  The total load comprises three components.  Firstly, it includes land hydrology, 87 

here taken from the LaD model (Milly & Shmakin, 2002), which assimilates selected 88 

river discharge data into a global model of water and energy balance.  Secondly, it 89 

incorporates ECCO ocean bottom pressure data (http://www.ecco-group.org) which 90 

results from the assimilation of wind stress, heat flux, and freshwater flux observations 91 

into a global ocean circulation model.  Thirdly, it includes atmospheric pressure data 92 

from the NCEP reanalysis (Kalnay et al., 1996); this is set to zero over the oceans, and 93 

we apply the mass conservation procedure of Clarke et al. (2005) which effectively 94 

provides the required inverse barometer correction.  It is readily apparent that the 95 

variability in the continental load is far greater than that over the oceans.   96 
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If standard spherical harmonics are used as basis functions to describe this surface mass 97 

load (or the corresponding surface displacements), a high truncation degree is required to 98 

represent the coastline in sufficient detail and maintain a smooth, small oceanic load.  99 

Conversely, when inverting geodetic surface displacement data to estimate the load, little 100 

information is available over the oceans, so the solution becomes biased and unstable 101 

even at low degrees unless a priori oceanic constraints are applied (Wu et al., 2003, 102 

2006; Kusche & Schrama, 2005).  Moreover, the actual variability in oceanic load is 103 

predominantly that due to ocean – land mass transfer and the ocean’s equilibrium tidal 104 

response to the land load, not that due to other changes in the ocean (Clarke et al., 2005).   105 

 106 

We therefore desire an alternative means of representing the surface mass load, that is 107 

consistent with the physics of the ocean’s response to the total load, and is adapted to but 108 

not unduly constrained by the expected characteristics of the load.  In other words, the 109 

basis functions must allow considerable spatial variability over land but preserve a 110 

smooth oceanic domain, whilst conserving mass globally.  In this paper, we present and 111 

test a modified spherical harmonic basis that achieves this goal.  In some respects, the 112 

method is analogous to the use of spherical cap harmonics or Slepian functions (e.g. 113 

Thébault et al., 2004; Simons & Dahlen, 2006) in that it is a data-driven approach with 114 

minimal physical model assumptions, but the approach is here adapted to the specific 115 

physical problem of the spatial distribution of oceans and continents. 116 

 117 

 118 

2.  Forming the basis functions 119 

 120 

We adopt the spherical harmonic convention used by Blewitt & Clarke (2003) but with 121 

4π-normalisation applied.  Briefly, we use classical, real-valued spherical harmonics with 122 

the phase convention of Lambeck (1988).  Expressing all loads in terms of the equivalent 123 

height of a column of seawater, density Sρ , the total time-variable load T  may be 124 

expressed as a function of geographic position Ω  (latitude φ , longitude λ ) as 125 
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Summation begins at 1=n  because conservation of mass requires that 00T  should vanish, 127 

although as discussed by Blewitt & Clarke (2003) a degree-zero term could be included 128 
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to absorb any measurement scale error.  The resulting change in potential at the reference 129 

surface (the initial geoid), due to the effect of the load itself and the accompanying 130 

deformation of the Earth, is (Farrell, 1972) 131 
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where Eρ  is the mean density of the solid Earth, g  is the acceleration due to gravity at its 133 

surface, and nk′  is the static gravitational load Love number for degree n .  The surface of 134 

the solid Earth will change in height by 135 
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and will be displaced eastwards and northwards by 137 
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where nh′  and nl ′  are the height and lateral load Love numbers respectively.  The degree-1 140 

Love numbers 1h′  and 1l ′  are specific to the chosen reference frame (Blewitt, 2003).  In 141 

this paper, we use Love numbers derived (D. Han, personal communication) using the 142 

spherically-symmetric, non-rotating, elastic, isotropic PREM Earth model (Dziewonski 143 

and Anderson, 1981) and expressed in the reference frame of the centre of mass (CM) of 144 

the whole Earth system (Blewitt, 2003). 145 

 146 

Rather than using standard spherical harmonic functions ( )ΩΦ
nmY , we form initial basis 147 

functions ( )Ω′ΦnmB  by masking each ( )ΩΦ
nmY  using an ocean function ( )ΩC , defined to be 148 

zero in land areas and unity over the oceans: 149 
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The coefficients Φ′Φ
′′′ ,

, mnnma  can be derived from the spherical harmonic expansion of ( )ΩC , 151 

to arbitrary degree and order, using Clebsch-Gordan coefficients for multiplication in the 152 

spectral domain (Blewitt et al., 2005), although in our case (5) is truncated at degree N ′ .  153 

In this paper, we set N ′  to 30, which allows our basis functions to represent the coastline 154 
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of all major land masses acceptably.  Note that the summation in (5) begins at 0=′n , not 155 

1=′n , because each ( )Ω′ΦnmB  may involve a gain or loss of mass from the land area 156 

which, after masking, will no longer be balanced by mass changes in the oceanic domain. 157 

We then correct these raw ( )Ω′ΦnmB , which are non-zero on land only, by adding an 158 

oceanic term ( )ΩS .  This term represents the “sea-level equation” (Dahlen, 1976) which 159 

enforces global mass conservation and allows the ocean to respond gravitationally to the 160 

land load: 161 
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where the spatially-varying terms ( )ΩH  and ( )ΩV  are the Earth response to a total load 163 

( )ΩΦ
nmB  as defined in (2) and (3), and the spatially-constant term V∆  accounts for global 164 

conservation of mass.  The coefficients of ( )Ω′ΦnmB  and ( )ΩΦ
nmB  implicitly have the same 165 

units as ( )ΩT , i.e. height of an equivalent column of sea water.  Equations (2, 3, 6) are 166 

solved by the method of Clarke et al. (2005).  Here, we take initial spherical harmonics 167 

( )ΩΦ
nmY  from degree zero to degree and order 10, truncating the ocean function at degree 168 

40, and our final ( )ΩΦ
nmB  at degree 30.  Because of selection rules governing the nonzero 169 

products of two associated Legendre polynomials (see Appendix B of Blewitt and Clarke, 170 

2003), the latter truncation is the maximum degree that is always exactly computed for 171 

our truncation of ( )ΩΦ
nmY  and ( )ΩC .   172 

 173 

We now have corrected basis functions ( )ΩΦ
nmB  defined by their truncated spherical 174 

harmonic expansions: 175 
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noting that this summation begins from 1=′n  because these functions are mass-177 

conserving.  It might be argued that compared with standard spherical harmonics, these 178 

basis functions are less able to represent general surface mass loads, because following 179 

(5) and (6) the only signal that can be represented in oceanic regions is the mass-180 

conserving equilibrium tidal response.  However, we reiterate that dynamic ocean loads 181 

are small compared with loads over the continents (Figure 1).  We will show in Section 3 182 

that the new basis functions are capable of better overall representation of typical surface 183 
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loads, for a given number of coefficients, and in Sections 4 and 5 that they permit a more 184 

stable and globally accurate inversion from realistic geodetic data. 185 

 186 

Although it is not strictly necessary, we normalise the coefficients Φ′Φ
′′

,
, mnnma  such that 187 

 ( ) ( ) 1cos =ΩΩ∫∫ ΦΦ λϕϕ ddBB nmnm     (8). 188 

However, the ( )ΩΦ
nmB  are not orthonormal; in general 189 

 ( ) ( ) 0cos ≠ΩΩ∫∫ Φ′
′′

Φ λϕϕ ddBB mnnm     (9) 190 

unlike the analogous spherical harmonic functions.  Figure 2 shows the departure from 191 

orthogonality.  This is generally small, but some prominent differences are seen, arising 192 

from the strong global asymmetry of continent-ocean distribution.  Because our basis 193 

functions are not orthogonal, we must estimate them to data by least squares rather than 194 

global convolution.  In practice, this is not the disadvantage compared with standard 195 

spherical harmonics that it might first appear, because convolution can in any case only 196 

be applied to global datasets and not to the discrete site displacements that are obtained 197 

from a real geodetic network. 198 

 199 

In the following sections, we will assess the utility of our basis functions by comparing 200 

the goodness of fit of a set of )2( +NN  coefficients Φ
nmT  for standard spherical harmonic 201 

functions, truncated at degree N , to a synthetic dataset based on a known load ( )ΩT  202 
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with the goodness of fit of a set of 2)1( +N  coefficients Φ
nmT̂  for our new basis functions 204 

corresponding to spherical harmonics up to degree N , to the same synthetic dataset 205 
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After estimation, we may compare the goodness of fit in the spatial domain, or perform a 207 

coefficient-by-coefficient comparison by transforming the Φ
nmT̂  into coefficients Φ

nmT~  of 208 

standard spherical harmonics using (7) and (11): 209 



Clarke et al. Basis functions for surface mass loading (REVISED) 

Page 9 of 33 

 

( ) ( )
{ }

( )
{ }{ }

{ }
( )

{ }

( )
{ }

∑∑ ∑

∑∑∑ ∑∑∑

∑∑∑ ∑∑∑

∑∑∑

′

=′

′

=′ Φ′

Φ′
′′

Φ′
′′

′

=′

′

=′ Φ′

Φ′
′′

= = Φ

ΦΦ′Φ
′′

= = Φ

′

=′

′

=′ Φ′

Φ′
′′

Φ′Φ
′′

Φ

= = Φ′

ΦΦ

Ω=

Ω
⎭
⎬
⎫

⎩
⎨
⎧

=

⎭
⎬
⎫

⎩
⎨
⎧

Ω=

Ω=Ω

N

n

n

m

SC

mnmn

N

n

n

m

SC

mn

N

n

n

m

SC

nmmnnm

N

n

n

m

SC N

n

n

m

SC

mnmnnmnm

N

n

n

m

SC

nmnm

YT

YTa

YaT

BTT

1 0

,

1 0

,

0 0

,
,
,

0 0

,

1 0

,
,
,

0 0

,

~

ˆ

ˆ

ˆˆ

  (12) 210 

where 211 

 
{ }

∑∑ ∑
= = Φ

ΦΦ′Φ
′′

Φ′
′′ =

N

n

n

m

SC

nmmnnmmn TaT
0 0

,
,
,

ˆ~      (13). 212 

Note again that in (12) the upper degree limit N ′  refers to the level of detail to which the 213 

basis functions are themselves represented in (7).  This is not related to the number of 214 

estimated coefficients in (11), which depends on N ;  in general, NN >>′ . 215 

 216 

 217 

3.  Efficiency of fit to synthetic load data 218 

 219 

The efficiency of a set of basis functions may be expressed as the number of coefficients 220 

that is required to explain a certain proportion of the variance in a dataset.  We test the 221 

efficiency of our basis functions by fitting them to the synthetic load dataset described 222 

above, evaluated at weekly intervals spanning GPS weeks 0898 – 1322 (mid-week dates 223 

23 Mar 1997 – 08 May 2005).  The atmospheric and oceanic components of the load are 224 

obtained by weekly averaging of the 6-hourly NCEP and ECCO data respectively.  The 225 

continental water storage component is linearly interpolated from the monthly outputs of 226 

the LaD model.  Each component of the load is represented using spherical harmonics up 227 

to degree 100.  The total load is first corrected to enforce conservation of mass and the 228 

tidal oceanic response, and then evaluated at points on a global 2°×2° grid.   229 

 230 

As Figure 3 shows, our basis functions consistently require fewer coefficients to model a 231 

given fraction of the variance in the synthetic dataset, compared with the equivalent 232 

spherical harmonic basis set.  The saving in number of parameters to achieve the same 233 

goodness of fit is typically a factor of 2–3, i.e. the new basis functions are as good a 234 

spherical harmonic fit truncated one or two degrees higher.  We conclude that our basis 235 
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functions are well suited to the description of realistic surface mass loads, even though 236 

they impose no a priori information of the behaviour of the dominating continental 237 

hydrological and atmospheric components of the load, nor of dynamic ocean circulation 238 

effects. 239 

 240 

 241 

4.  Global accuracy of fit to synthetic loading displacements 242 

 243 

The inverse problem faced by geodesists differs from the above in two respects.  Firstly, 244 

the global surface displacement field is attenuated at higher degrees, compared with the 245 

load, and this worsens the estimation of the higher-degree load coefficients.  More 246 

importantly, real geodetic displacement data do not sample the planet evenly, and the 247 

sampling is biased towards continental regions (for GPS data, particularly western 248 

Europe and North America).  Goodness of fit at the sample locations does not necessarily 249 

imply global fidelity of the estimated load to the true signal.  Because we are here using a 250 

synthetic dataset, we can test the accuracy of our fit by comparing the known load with 251 

that generated from our estimated coefficients, over the entire Earth’s surface.  This will 252 

allow us to compare the sampling bias that occurs when using our basis functions with 253 

the bias that occurs when using standard spherical harmonics.   254 

 255 

We test accuracy of fit by using the synthetic surface mass load time series described 256 

above to generate weekly 3-D displacements at sites in the International GNSS Service 257 

(IGS) network, from which we estimate the surface mass load.  The geometry and spatial 258 

sampling density of the IGS network have changed significantly since its inception in the 259 

early 1990s, but the weekly solutions obtained by individual Analysis Centres (ACs) do 260 

not necessarily reflect these changes directly.  For example, ACs may choose to maintain 261 

a more or less even global distribution of sites at the expense of the total number of sites 262 

processed, or they may prefer to focus on a particular region.  To illustrate these network-263 

specific effects, we perform our weekly estimations using site distributions from two AC 264 

networks typifying these differing strategies (Figure 4).  The NASA Jet Propulsion 265 

Laboratory (JPL) AC solutions contain a slowly increasing number of sites, from ~40 in 266 

1997 to ~75 in 2005, but the inter-hemispheric site distribution remains roughly constant, 267 

with ~50%, ~60% and ~60% of sites in the hemispheres centred on the positive X, Y and 268 
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Z axes respectively (a perfectly even network would have 50% of its sites in each 269 

hemisphere).  In contrast, the Scripps Institution of Oceanography (SIO) reanalysis AC 270 

solutions enlarge dramatically over the same period from ~90 stations in early 1997 to 271 

~130 from late 1998 onwards, with roughly constant inter-hemispheric bias at a higher 272 

level that that of the JPL AC (~40%, ~60% and ~75% of sites in the positive X, Y and Z 273 

hemispheres).  274 

 275 

At each weekly epoch, the site coordinates in the AC solution (or their residuals to the 276 

long-term trend) will contain correlated random errors with stochastic properties that 277 

should be reflected in the variance-covariance matrix (VCM).  The magnitude of the 278 

coordinate variances and the structure of the VCMs will change with time, depending on 279 

a number of factors including not only GPS network distribution and data volume but 280 

also advances in the models applied in GPS analysis software.  We incorporate these 281 

factors into our investigation by adding random noise to each synthetic weekly dataset, 282 

with a VCM derived from the appropriate weekly AC solution.  The JPL and SIO ACs 283 

should both adhere to the same IERS standards (McCarthy, 1996; McCarthy & Petit, 284 

2004) in their analysis, but JPL and SIO use different processing strategies and software 285 

(GIPSY/OASIS II and GAMIT/GLOBK respectively).  We account for issues of absolute 286 

VCM scaling that arise from this, by re-scaling each weekly VCM so that the variance of 287 

unit weight after estimating linear site velocities is unity.  Because this solution does not 288 

include loading parameters, the re-scaling will result in a slightly conservative but 289 

nonetheless realistic estimate of the VCM.  However, the estimated load will only depend 290 

on inter-site correlations and the relative weighting of sites within a weekly AC solution; 291 

the absolute scaling of the VCM is of secondary importance.   292 

 293 

Systematic errors caused by spatial and temporal correlations in real GPS data that are 294 

not properly modelled in the AC processing will not be reflected in the VCM, and these 295 

may affect the estimation of loading parameters from real data.  Based on the comparison 296 

of geocenter motion estimates from GPS data, SLR data, and surface mass load models 297 

Lavallée et al. (2006) suggest that the effects of such systematic errors on low-degree 298 

coefficients of the surface mass load are small.  In any case, systematic errors will have 299 

little effect on our assessment of the relative performance of different basis function sets.   300 

 301 
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We estimate a set of )2( +NN  coefficients for standard spherical harmonic functions, 302 

truncated at degree N , to each weekly synthetic dataset according to (10).  Similarly, we 303 

estimate 2)1( +N  coefficients for our new basis functions derived from spherical 304 

harmonics up to degree N , to the same synthetic datasets.  Henceforth we refer to both 305 

N  and N  as the maximum degree of fit, because these quantities relate to the number of 306 

estimated parameters, although the new basis functions are expanded to the much higher 307 

degree N ′  ( 30N ′ =  in this paper).   308 

 309 

The goodness of fit between the synthetic and estimated surface mass loads can be 310 

considered in a variety of ways.  Figure 5 shows the rms true (synthetic) degree 311 

amplitudes compared with the rms estimated degree amplitude and rms misfit degree 312 

amplitude for both sets of basis functions, computed over the entire time series.  The 313 

degree amplitudes nA  are defined for the set of coefficients Φ
nmT  by: 314 

 ( )
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0

C Sn

n nm
m

A T Φ

= Φ
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and similarly for nA%  in terms of Φ
nmT~ .  The misfit degree amplitudes 2

nΞ  with respect to 316 

the coefficients nmT Φ  of the known load are given by: 317 
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Ξ = −∑ ∑      (15). 318 

We see that the spherical harmonic basis leads to higher misfit levels and tends to 319 

overestimate the degree amplitude, whereas using the new basis results in degree 320 

amplitudes close to the synthetic “truth”, and lower misfit levels suggesting a favourable 321 

signal/noise ratio.  For standard spherical harmonics, the effect is stronger for the more 322 

asymmetric SIO network geometry than for the more balanced JPL network geometry 323 

(Figure 5).  In contrast, the new basis functions are much less sensitive to network 324 

geometry, showing little difference between the JPL and SIO networks in terms of 325 

estimated and misfit degree amplitudes.  Over the whole time series, use of basis 326 

functions derived from degrees up to 4 yields the best comparison with the true degree 327 

amplitudes up to degree 10.  For the earlier JPL networks (weeks 900-999), a maximum 328 

degree of 3 or 4 is optimal, whereas for the later epochs (weeks 1200-1299) the 329 

maximum degree could reasonably be increased to 5 or even 6 (Figure 6).  Similar time 330 
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dependency is found for the SIO network, although the level of misfit is generally higher.  331 

Hereafter we discuss results based on the JPL network geometry only. 332 

 333 

We also consider the spatial distribution of the root mean square difference between 334 

synthetic and estimated loads at each point on the Earth’s surface (Figure 7).  At 335 

maximum fitted degree 4, the new basis functions are able to represent much of the signal 336 

over Eurasia and northern America, although this is at the expense of poorer accuracy 337 

over equatorial Africa and America, where there are fewer GPS sites.  In contrast, the 338 

standard spherical harmonic basis functions lead to higher rms differences over the entire 339 

ocean and are unable to fit the data as well.  For maximum degree 6, this is even more 340 

pronounced:  although the new basis functions show localised instability in Africa, 341 

America and Antarctica, standard spherical harmonics show instability that is even more 342 

geographically widespread. 343 

 344 

 345 

5.  Accuracy of estimated low-degree load coefficients 346 

 347 

GPS observations can add the most to our knowledge of the surface mass loading at low 348 

degrees (Kusche & Schrama, 2005), because GRACE recovery of the gravity field is least 349 

sensitive at these long wavelengths.  The utility of GPS estimates of loading may 350 

therefore lie in the accuracy of low-degree coefficients rather than the spatial detail of the 351 

estimated load.  Figure 8 and Table 1 compare the “true” (synthetic) and estimated 352 

coefficients for degree 1.  For the degree-1 coefficients, the new basis functions give a 353 

consistently better fit to the “true” loading, for an equivalent number of estimated 354 

parameters.  For 11
CT , standard spherical harmonics seem particularly unable to fit the 355 

data; this presumably results from a combination of network geometry and aliasing, with 356 

the vast majority of continents and hence GPS sites being situated in the hemisphere 357 

centred on the positive X axis.  The new basis functions are significantly less affected by 358 

this problem.  11
CT  is slightly less extreme, but again the new basis functions are 359 

consistently better throughout the time series and this advantage becomes more 360 

pronounced during the latter half.  10
CT  is estimated slightly better by spherical harmonics 361 

in the case of degree-1 truncation, but at all higher truncation degrees the new basis 362 

functions outperform standard spherical harmonics. 363 
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 364 

Both sets of basis functions are able to fit the low-degree zonal coefficients 20
CT  and 30

CT  365 

reasonably accurately (Figure 9, Table 1), although the new basis is slightly better in 366 

each case because it is less prone to “overshoot” at the seasonal extreme values.  For 40
CT , 367 

the new basis functions are considerably more accurate at fitting the synthetic data; this 368 

feature persists throughout the time series and demonstrates the ability of the new basis 369 

functions to track moderate-degree features of the surface mass load even with relatively 370 

sparse data geometry.  A maximum degree of 3 or 4 (16 or 25 estimated parameters) 371 

gives the best overall fit to the low-degree coefficients, over the whole time series. 372 

 373 

For comparison with previous published results which have tended to concentrate on the 374 

seasonal fit to the data, we also compare the seasonal periodic (annual and semi-annual 375 

harmonic) variation in the estimated low-degree coefficients (Table 2, Table 3).  We see 376 

that the annual and semi-annual harmonic fit to 10
CT  is reasonably robust, regardless of the 377 

basis set and the maximum degree of fit.  The annual fit to 11
CT  is very poor for standard 378 

spherical harmonics, although the fit to the small semi-annual signal is fortuitously good.  379 

For 11
ST , the annual spherical harmonic fit is reasonably accurate in amplitude but almost 380 

in quadrature to the “true” signal; again the semi-annual signal is small.  For all of these 381 

coefficients and for 20
CT , the new basis functions are well able to track both the annual 382 

and semi-annual signals. 383 

 384 

 385 

6.  Discussion and conclusions 386 

 387 

We have demonstrated that a physically reasonable set of basis functions, derived from 388 

spherical harmonics, can be used to represent the variation in surface mass load and 389 

associated displacements of the solid Earth.  Our representation achieves better fit to 390 

realistic synthetic data than does a spherical harmonic estimate with the same degree of 391 

freedom, is more robust to the biasing effect of network geometry, and is less prone to 392 

widespread oscillation in unconstrained regions.  Our results represent a lower bound on 393 

the uncertainty with which the low-degree surface mass loads can be estimated using 394 

GPS.  Non-equilibrium ocean loads are not presently included in our method, but they are 395 
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small compared with the land load.  If GPS network geometry were favourable, it would 396 

be possible to include a complementary set of mass-conserving basis functions, zeroed on 397 

land, to model the dynamic ocean load at low degrees.  The truncation level of this 398 

complementary basis set could be chosen independently to that of the land-oriented basis 399 

set, to allow for the lower density of oceanic GPS sites.  Systematic errors not accounted 400 

for in the formal variance-covariance matrix of GPS solutions will add further biases to 401 

the estimates, but these should reduce in future as the GPS measurement model improves. 402 

 403 

The basis functions directly incorporate the physics of reference frame definition, 404 

conservation of mass, and equilibrium ocean response to the land load, whilst 405 

parameterising the land load in a way that is independent of any hydrological or climate 406 

model.  Previous inversion schemes (Wu et al., 2003, 2006; Kusche & Schrama, 2005) 407 

have incorporated information from models or other satellite data, either directly or via an 408 

oceanic smoothing constraint.  Our method allows the use of GPS data alone to estimate 409 

the low-degree coefficients of the surface mass load.  GRACE data are unable to recover 410 

the degree-1 load coefficients, and at degrees 2 – 4, GPS data are expected to contribute 411 

the majority of the data strength in a combined GPS – GRACE inversion (Kusche & 412 

Schrama, 2005).  GPS data have to date only been demonstrated to recover the seasonal 413 

and interannual variations in the surface mass load, not the secular variations, because of 414 

the difficulty of isolating the effects of the latter from plate tectonic and post-glacial 415 

rebound motions.  However, we expect future improvements in the modelling of glacio-416 

isostatic adjustment to enable the use of GPS to estimate secular changes in surface mass 417 

loading. 418 
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Table 1.  Root mean square goodness of fit between synthetic and estimated low-degree 504 

load coefficients, for varying maximum degrees of estimation.  Units are mm of sea-505 

water equivalent.  Top figure is rms residual to estimate using new basis functions; lower 506 

figure is rms residual to estimate using standard spherical harmonics.  Numbers in 507 

parentheses represent model skill (the fitted percentage of variance in that coefficient); an 508 

asterisk denotes negative skill (the residual variance is greater than that of the original 509 

synthetic coefficient). 510 

 511 

 Signal 
rms 

Max deg 1 Max deg 2 Max deg 3 Max deg 4 

10
CT  9.16 8.14 (21%)

7.09 (40%) 
5.92 (58%)
6.05 (56%)

5.94 (58%)
5.65 (62%) 

5.35 (66%) 
5.85 (59%) 

11
CT  6.29 5.06 (35%)

6.23   (2%) 
4.95 (38%)
6.42 (*) 

4.69 (44%)
6.37 (*) 

4.81 (42%) 
6.65 (*) 

11
ST  5.98 4.42 (45%)

6.50 (*) 
4.60 (41%)
6.12 (*) 

4.50 (43%)
6.40 (*) 

4.44 (45%) 
6.28 (*) 

20
CT  11.34  5.07 (80%)

7.26 (59%)
4.82 (82%)
5.74 (74%) 

5.07 (80%) 
6.30 (69%) 

30
CT  10.80   5.14 (77%)

5.66 (73%) 
4.74 (81%) 
5.52 (74%) 

40
CT  6.92    4.56 (57%) 

6.07 (23%) 
 512 
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Table 2.  Annual harmonic terms fitted to the estimated low-degree load coefficients, for 513 

varying maximum degrees of estimate, compared with those fitted to the synthetic 514 

dataset.  Units of amplitude are mm of sea-water equivalent; phases are in degrees.  The 515 

upper figure is obtained using the new basis functions; the lower figure is obtained using 516 

standard spherical harmonics. 517 

 518 

Synthetic Max deg 1 Max deg 2 Max deg 3 Max deg 4 Coeff amp pha amp pha amp pha amp pha amp pha

10
CT  9.42 58 16.40 

13.50 
48
48

11.60 
8.62 

47
43

12.25
9.94 

52 
54 

10.77 
7.14 

53
52

11
CT  6.91 25 8.55 

0.96 
33
75

6.69 
0.43 

32
98

6.42
0.75 

43 
95 

5.61 
0.48 

41
162

11
ST  7.01 -24 6.13 

4.95 
-23
49

5.36 
3.45 

-38
46

5.05
3.51 

-40 
53 

5.08 
2.90 

-36
53

20
CT  13.09 62  14.48 

17.64 
69
79

11.29 
14.87 

63 
69 

12.33 
16.92 

62
69

30
CT  12.88 132   12.94

15.31 
126 
137 

11.92 
14.72 

133
135

40
CT  4.53 120     4.66 

2.31 
111
178

 519 
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Table 3.  As Table 2, but for semi-annual harmonic terms. 520 

 521 

Synthetic Max deg 1 Max deg 2 Max deg 3 Max deg 4 Coeff amp pha amp pha amp pha amp pha amp pha

10
CT  3.94 -150 3.96 

2.62 
-161
-150

4.08 
1.88 

-175
-166

3.82
2.41 

-174 
-160 

3.74 
1.67 

-166
-154

11
CT  0.33 165 0.18 

0.29 
-35
-51

0.39 
0.17 

-54
-34

0.36
0.21 

-67 
-52 

0.65 
0.12 

-89
-29

11
ST  0.97 178 1.35 

1.35 
-168
-143

1.12 
1.03 

-177
-151

1.25
1.17 

-178 
-155 

1.32 
0.79 

-175
-135

20
CT  2.81 -72  2.49 

3.25 
-84
-99

2.30 
2.57 

-75 
-83 

2.19 
2.58 

-77
-88

30
CT  2.82 -159   2.76

2.68 
-156 
-142 

3.14 
4.00 

-162
-166

40
CT  4.31 -21     4.56 

6.36 
-31
-25

 522 
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 523 
 524 

Figure 1.  Root mean square weekly variability in surface mass load over the period 525 

1997–2005 (expressed as the height of an equivalent column of seawater), predicted by 526 

the combination of the LaD (continental hydrology), NCEP Reanalysis (atmospheric 527 

pressure), and ECCO (ocean bottom pressure) models, corrected for overall mass 528 

conservation.   529 
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 530 
 531 

Figure 2.  Departure from orthogonality of the normalised basis functions ( )ΩΦ
nmB .  The 532 

function number is given by mnn ++ )1(  for C=Φ , and mnn −+ )1(  for S=Φ . 533 
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 534 
 535 

Figure 3.  Mean and standard deviation, over the period 1997–2005, of the percentage of 536 

load variance fitted by standard spherical harmonics (solid line and shaded area) and by 537 

the new basis functions (dashed line and dotted bounds), as a function of the number of 538 

estimated parameters at each epoch. 539 
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 540 
 541 

Figure 4.  The JPL (left) and SIO-reanalysis (right) AC networks for GPS weeks 0898 542 

(top) and 1322 (bottom). 543 
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  544 
 545 

Figure 5.  Root mean square degree amplitude of the estimated load (solid lines) and 546 

misfit degree amplitude (pecked lines) using standard spherical harmonic basis functions 547 
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(black/dotted lines with crosses), and the new basis functions (grey/dashed lines and 548 

triangles), computed over the entire time series for various maximum degrees of fit.  The 549 

true (synthetic) degree amplitude is shown as a heavy line in each plot.  Amplitude units 550 

are mm of seawater equivalent to the surface load.  (left) SIO network, (right) JPL 551 

network. 552 
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  553 
 554 

Figure 6.  As Figure 5, but for the JPL network geometry with estimated and misfit 555 

degree amplitudes computed over weeks 900–999 (left) and weeks 1200–1299 (right). 556 
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 557 
 558 

Figure 7.  Spatial distribution of root mean square misfit between estimated surface loads 559 

and synthetic data, computed over the entire time series, for estimates truncated at degree 560 

4 (left) and 6 (right).  The bottom plots show the variability of the synthetic data.  561 

Numbers indicate the overall root mean square of the misfit/data (in mm).  The inversion 562 

data have JPL network geometry. 563 
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(a) 564 

 565 
(b)  566 

567 



Clarke et al. Basis functions for surface mass loading (REVISED) 

Page 31 of 33 

(c) 568 

 569 
 570 

Figure 8.  (a) Comparison between synthetic load coefficient 10
CT  (heavy line) and its 571 

estimate using standard spherical harmonic basis functions (grey line, offset by -10) and 572 

the new basis functions (thin line, offset by +10).  JPL network geometry is used, with 573 

maximum degree of fit 4.  Amplitude units are mm of seawater equivalent to the surface 574 

load. 575 

(b, c) As Figure 8(a) but for coefficient 11
CT  (b), 11

ST  (c). 576 
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(a) 577 

 578 
 579 

(b) 580 

 581 
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(c) 582 

 583 
 584 

Figure 9.  As Figure 8 but for coefficients 20
CT  (a), 30

CT  (b), 40
CT  (c). 585 




