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Abstract 

We test a unified observation model for estimating surface loading induced geocenter 

motion using GPS. In principle this model is more complete than current methods, since 

both the translation and deformation of the network are modeled in a frame at the center 

of mass of the entire Earth system. Real and synthetic data for 6 different GPS analyses 

over the period 1997.25-2004.24 are used to a) build a comprehensive appraisal of the 

errors and b) compare this unified approach with the alternatives. The network shift 

approach is found to perform particularly poorly with GPS. Furthermore, erroneously 

estimating additional scale changes with this approach can suggest an apparently 

significant seasonal variation which is due to real loading. An alternative to the network 

shift approach involves modeling degree-1 and possibly higher-degree deformations of 

the solid earth in a realization of the center of figure frame. This approach is shown to be 

more robust for unevenly distributed networks. We find that a unified approach gives the 

lowest formal error of geocenter motion, smaller differences from the true value when 

using synthetic data, the best agreement between 5 different GPS analyses, and the 

closest agreement (sub-millimeter) with the geocenter motion predicted from loading 

models and estimated using SLR. For 5 different GPS analyses, best estimates of annual 

geocenter motion have a weighted root mean square agreement of 0.6, 0.6 and 0.8 mm in 

amplitude and 21º, 22º, 22º in phase, for x, y and z respectively. 
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1. Introduction 

The mass contained in the Earth’s fluid envelope (oceans + atmosphere + continental 

water) is constant at human timescales. However, its distribution over the surface of the 

Earth changes continually. Much of this geographic redistribution of surface mass 

happens periodically at 24 hour to annual periods, and is related to the rotation of the 

Earth on its axis (e.g. thermally driven atmospheric tides) as well as motion of the Earth 

around the Sun (e.g. annual global water cycle). In the absence of external forces the 

center of mass of the entire solid Earth + load system (CM) is a fixed point in space; 

relative to this point a change in the location of the center of mass of the surface load 

must (by conservation of linear momentum) induce a change in the relative location of 

the center of mass of the solid Earth (CE). This “geocenter motion” causes a detectable 

translation of a geodetic network attached to the solid Earth, relative to the center of 

satellite orbits, which is CM [Chen et al., 1999; Watkins and Eanes, 1993; Watkins and 

Eanes, 1997]. While geocenter motion is principally a product of mass balance relations, 

the geodetic network is located on the surface of the solid Earth which also deforms due 

to redistribution of the load. Thus the same process (redistribution of surface mass) is 

expressed in the geodetic network in two quite different ways: displacement of the 

Earth’s center related to mass balance, and subsequent deformation of the solid Earth due 

to the load. For a totally rigid Earth there would be no deformation; in an elastic Earth the 

deformational movement at a point can reach up to 40% of the magnitude of the 

geocenter trajectory and must be taken in to account [Blewitt, 2003]. A graphical 

representation of these concepts is given in Figure 1. 
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Estimates of geocenter motion from space geodesy are important since they 

fundamentally relate to how we realize the terrestrial reference frame [Blewitt, 2003; 

Dong et al., 2003] . Conventionally the center of the International Terrestrial Reference 

Frame (ITRF) is defined to be at the center of mass of the entire Earth system i.e. CM 

[McCarthy and Petit, 2004]. Estimates of geocenter motion can also help to constrain 

models involving global redistribution of mass [Chen et al., 1999; Cretaux et al., 2002; 

Dong et al., 1997] and sea level [Blewitt and Clarke, 2003], since they are directly related 

to the degree-1 component of the surface mass load. This is particularly relevant because 

current estimates of the degree-1 surface mass load derived from environmental models 

disagree. A number of authors estimate the annual and semi-annual components of 

geocenter motion induced by different models of surface mass redistribution [Bouillé et 

al., 2000; Chen et al., 1999; Cretaux et al., 2002; Dong et al., 1997; Moore and Wang, 

2003]. While the geocenter motions from different atmospheric mass models tend to 

agree for all components, significant differences (up to 50%) are observed in annual and 

semi-annual geocenter motion from ocean bottom pressure and, more importantly, from 

continental water mass. The standard deviation about the mean of the modeled annual 

geocenter from 11 different model combinations [Bouillé et al., 2000; Chen et al., 1999; 

Cretaux et al., 2002; Dong et al., 1997; Moore and Wang, 2003] suggests the precision of 

the modeled annual geocenter variation is of the order ~1mm in amplitude and ~20º in 

phase. 

The Gravity Recovery and Climate Experiment (GRACE) mission results [Tapley et 

al., 2004] will provide significant new information on the surface mass variations over 

the Earth down to periods of one month. However, the GRACE products do not include 
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degree-1 to which GRACE is insensitive. The determination of degree-1 coefficients of 

the Earth’s surface mass load from observational data and the discrimination of modeled 

environmental data sets is therefore left to other geodetic techniques such as Satellite 

Laser Ranging (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite 

(DORIS) and the Global Positioning System (GPS). 

It should be noted that no geodetic estimates of secular geocenter motion 

currently exist; tectonic deformation will produce a net translation of CF relative to CM 

which is generally first removed by estimating tectonic velocities at each site. Only if a 

plate rotation model is used can such an estimate be made and so far is considered 

systematic reference frame error rather than physical signal [Argus et al., 1999], much 

further work is required to solve this important reference frame issue. In this work the 

estimation is considered for the more common use of the term “geocenter motion”, i.e. 

assuming tectonic deformation has been first removed. This work does not reflect the 

ability of a network shift or Helmert transformation approach to resolve the 

aforementioned reference frame issues associated with what might be called secular 

“geocenter motion” or even its ability to resolve secular differences between reference 

frames. 

There have been a number of different approaches to estimating geocenter 

motions from geodetic measurements [Ray, 1999] including (i) the so called “network 

shift approach” [Blewitt et al., 1992; Dong et al., 2003; Heflin and Watkins, 1999] also 

called the “geometric approach” [Cheng, 1999; Pavlis, 1999] which directly models the 

translation between coordinate frames (ii) the “dynamic approach” [Chen et al., 1999; 

Pavlis, 1999; Vigue et al., 1992] which estimates degree-1 coefficients of the 
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geopotential and (iii) the “degree-1 deformation” approach [Blewitt et al., 2001; Dong et 

al., 2003] which equates solid Earth deformation caused by the load to geocenter motion. 

The dynamic and network shift approach are equivalent (where constraints are minimal) 

and in this work we only consider the latter. We note that describing the “network shift 

approach as “geometric” is misleading because this approach principally depends on 

satellite dynamics to locate the Earth Center of Mass and so is fundamentally a dynamic 

approach. Here we are consistent with the terminology of Dong et al. [2003]. Lavallée 

and Blewitt [2002] show that even the non-satellite technique of Very Long Baseline 

Interferometry (VLBI) is sensitive to geocenter motions via the degree-1 deformation. 

However, to quote Boucher and Sillard [1999], commenting on the geocenter series 

submitted to the 1999 International Earth Rotation Service (IERS) analysis campaign to 

investigate motions of the geocenter, “It appears that, even if Space Geodesy geocenter 

estimates are sensitive to seasonal variations, the determinations are not yet accurate and 

reliable enough to adopt an empirical model that would represent a real signal.” 

Disagreement between different geodetic analyses is still considerably larger than that 

between loading models. Much of this disagreement comes from differences between 

GPS analyses; estimates from SLR tracking of Lageos 1&2 [Bouillé et al., 2000; Chen et 

al., 1999; Cretaux et al., 2002; Moore and Wang, 2003] are in much better agreement.  

The source of the disagreement between GPS analyses has been difficult to track 

down, Dong et al. [2002] and Wu et al. [2002] estimate the size of the error in the 

network shift approach due to an imperfect network, and Wu et al. [2002] estimate 

aliasing errors in the degree-1 deformation approach. A number of authors [Blewitt, 2003; 

Dong et al., 2003; Wu et al., 2002] state that the network shift approach is biased by 
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deficiencies in GPS orbit modeling but a quantitative consideration of how all errors 

trades off against each other for different networks and approaches has not been 

completed. Although Dong et al. [2003] suggest the degree-1 deformation approach 

produces more stable geocenter estimates, Wu et al. [2002] suggest the ignored higher 

degrees produce a significant error. This uncertainty in how best to estimate geocenter 

motions from GPS makes it difficult to recommend procedures for defining the terrestrial 

reference frame [Ray et al., 2004] or make robust inferences about degree-1 surface mass 

loading. Dong et al. [2003] even suggest that given the improved precision of modern 

geodetic techniques geocenter motions should be included in the definition of the ITRF 

as estimable parameters.  

Current methods to model geocenter motion consider either the translational or 

the deformation expression of change in the center of mass of the surface load; here we 

test a model that unifies these two aspects. In principle this is a better way to model 

geocenter motions: it is complete, in that all the displacements associated with geocenter 

motion are modeled, and it is also conventional, such that displacements are modeled in 

the CM frame. We complete an appraisal of possible errors in the current geocenter 

motion estimation strategies applied to GPS and make a comparison of the unified 

approach with these alternatives. 

 

2. Estimating geocenter motions from space geodesy 

For mathematical convenience we define “geocenter motion” in the context of this paper 

as the 3D vector displacement CMCF −∆r of the center of surface figure (CF) of the solid 

Earth’s surface relative to the center of mass (CM) of the entire Earth system (solid Earth, 



 9

oceans and atmosphere). Although the term “geocenter motions” has been used to 

describe the vector difference between a number of frames [Blewitt, 2003; Dong et al., 

1997], CMCF −∆r  or its opposite in sign ( CFCM −∆r ) are the most commonly estimated 

geocenter parameters from GPS [Heflin et al., 2002; Malla et al., 1993; Ray, 1999; Vigue 

et al., 1992], SLR [Bouillé et al., 2000; Chen et al., 1999; Cretaux et al., 2002; Moore 

and Wang, 2003], and DORIS [Bouillé et al., 2000; Cretaux et al., 2002], so we treat it as 

the desired estimable parameter. As discussed the center mass of the solid Earth (CE) is 

displaced from CM due to the changing location of the center of mass of the load. CF is a 

useful point that represents the geometrical center of the Earth’s surface. It is displaced 

from CE due to the deformation of the solid Earth accompanying loading; if the Earth 

were rigid these points would coincide. Since CF is essentially the global average of the 

surface deformation it differs in location to CE by only ~2% [Blewitt, 2003] however this 

can be misleading since at specific locations the deformational displacement can be of the 

order of 40%. 

The 3-dimensional displacement (east north and up) of a point on the Earth’s 

surface due to surface mass loading can be described [Diziewonski and Anderson, 1981; 

Farrell, 1972; Lambeck, 1980] using spherical harmonic expansion and a spherically 

symmetric, layered, non-rotational and isotropic Earth model of the form 
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Where Φ
nmT  are the spherical harmonic coefficients of the surface load density following 

the conventions of [Blewitt and Clarke, 2003] and expressed as the height of a column of 

seawater, nh'  and nl '  are the degree-n Love numbers which for degree 1 must be 

specified in our chosen frame [Blewitt, 2003], sρ  is the density of seawater and Eρ  is the 

mean density of the Earth.  

It can be shown [Trupin et al., 1992] that surface integration of (1) gives the 

following geocenter motion between the CM and CF frames:  
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We choose to use CE-frame Love numbers in (2) since the right hand side term in 

brackets helps demonstrate the concept of translation and then deformation of the solid 

Earth. The second (unity) term in the brackets is the translation from CM to CE which is 

much larger than the first term which describes the average deformation of the solid Earth 

that displaces CF from CE. The first term has a magnitude of 0.021 using the Love 

numbers of Farrell [1972]; it is important to recall however that the deformation at a 

point given by (1) can be much larger than this. 
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2.1 A unified observation model 

A unified approach for geocenter motion models displacements in the CM frame at each 

site using the equations in (1), where Love numbers are in the CM frame. In this way 

both the translation and deformation of the network are modeled. Strictly speaking, only 

the degree-1 deformation need be modeled as the higher degrees do not relate to the 

center of mass of the load. Higher degree deformation will however be present in 

geodetic observations and could alias estimates of geocenter motion if not included, so it 

can be beneficial to include some of them. For short we call this unified model the “CM 

method”. The design matrix for this approach is given in Appendix A. 

A note of caution must be attached to the CM method when anything but a full 

weight matrix is used during estimation. Estimating the translational aspects of geocenter 

motions relies on determining the CM frame via simultaneous solution for GPS satellite 

orbital dynamics and coordinates of a global site network. This information is present in 

the off diagonal elements of the stochastic model; information on the determination of 

individual site coordinates relative to the network as a whole is given along the diagonal. 

It is the stochastic model that determines the relative influence of translation and 

deformation on the estimate of geocenter motion. If the covariance matrix of observations 

is diagonal or block diagonal the translation of the network is effectively given a much 

larger weight than the deformation and the CM method gives identical results to the 

network shift method 

This is particularly pertinent for GPS results obtained using precise point 

positioning [Zumberge et al., 1997], in which orbits are fixed (considered perfect in the 

stochastic model). While point positioning is a very useful approach for regional analysis, 
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it is generally not suitable for estimating global parameters such as geocenter motion. The 

results obtained will be identical to those from the network shift approach for a global 

network and the same as common mode filtering [Wdowinski et al., 1997] on a regional 

scale. Davis et al. [2004] attempt to estimate degree-1 deformation from continental-scale 

point positioning results in this manner so that the remaining higher degree (>1) 

deformation can be compared to GRACE measurements. However, Davis et al. [2004] 

have removed only a mean from their GPS results (and not the degree-1 deformation), so 

this is equivalent to common mode filtering on a continental scale. 

 

2.2 The network shift approach 

Estimation of CMCF −∆r  from GPS measurements has been most commonly performed by 

modeling displacements as a translation only [Heflin et al., 2002; Heflin and Watkins, 

1999]. Generally a least squares approach is used to estimate a Helmert transformation 

with up to 7 parameters [Blewitt et al., 1992]. We follow [Dong et al., 2003] in calling 

this the “network shift approach”. This approach models only the translational aspect of 

geocenter motions and it is easy to see how such a procedure could be developed from 

equation (2) since the globally-averaged deformation is very small. Modeling coordinate 

displacements as only a translation, however, ignores the quite large deformations that 

can occur on a site by site basis and the estimate in reality defines a center of network 

(CN) frame [Wu et al., 2002] giving geocenter motion CMCN −∆r  which is only an 

approximation of CMCF −∆r .  

When estimating a Helmert transformation it can be necessary to estimate rotation 

parameters since in fiducial-free GPS analysis network orientation is only loosely 
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constrained [Heflin et al., 1992]; however, a scale parameter should not be estimated. A 

scale parameter is sometimes included when estimating Helmert transformations to 

investigate any systematic differences in the definition of scale between different 

techniques e.g. VLBI, SLR, GPS or DORIS [Altamimi et al., 2002] . When estimating 

CMCF −∆r  however there is no reason to include a scale parameter since we are using only 

one technique and the scale definition is the same. An estimated scale parameter could 

absorb some of the loading deformation due to an imperfect (e.g. continentally-biased) 

network giving an apparent scale error; this error is unfortunate and can be completely 

avoided by not estimating scale. 

 

2.3 Degree-1 deformation approach 

Blewitt et al. [2001] estimate the degree-1 coefficients of the surface mass load 

(expressed as the load mass moment) from GPS using a priori information about the 

Earth’s elastic properties given by the loading model specified in equation (1) and the 

degree-1 Love numbers of [Farrell, 1972] in the CF frame. By modeling only the 

deformation, the translational aspect of geocenter motion does not influence the estimate. 

Blewitt et al. [2001] model GPS displacements in a realization of the CF frame with  
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Where m is the “load moment”, [ ]CFh 1' and [ ]CFl 1'  are degree-1 Love numbers in the CF 

frame and for simplification the height and lateral degree-1 spherical harmonic functions 
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(1) are identified with the elements of the geocentric to topocentric rotation matrix 

G (Appendix A). In the notation of this paper this is identical to equations (1) for the CF 

frame where we identify 
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and hence (3) is a method to estimate CMCF −∆r  through equation (2). [Dong et al., 2003] 

named this the “degree-1 deformation” approach; this is an alternative method to the 

network shift but is dependent on the specific elastic Earth model (Love numbers) used in 

(3). 

 Blewitt et al. [2001] did not provide details on how they realized the CF frame 

which led [Wu et al., 2002] to incorrectly assume that the results of [Blewitt et al., 2001] 

were biased by using Love numbers in the CF frame rather than the CN frame. In fact 

Blewitt et al. [2001] used a stochastic approach [Davies and Blewitt, 2000] for implicit 

estimation of translation parameters, which can be shown [Blewitt, 1997] to be equivalent 

to explicit estimation using the functional model; 
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In this approach the frame-dependent choice of degree-1 Love numbers used in (3) is 

inconsequential, because the translation parameter t ensures no-net translation of the 

network, thus the CN frame is realized. The design matrix for this deformation approach 

is given in Appendix A. 

This approach has the advantages that it is not subject to errors due to 

approximating CMCF −∆r with CMCN −∆r  as in the network shift, and errors in the GPS 

determination of CM (orbit errors) which map equally (i.e. as a translation) into all site 

displacements are removed by the translation in (5). Removing common-mode errors in 

site displacements by estimating a Helmert transformation and expressing displacements 

in a CN frame is common in GPS analysis [Davies and Blewitt, 2000; Heflin et al., 2002; 

Wdowinski et al., 1997]; however, the residual displacements had not been previously 

used to estimate degree-1 coefficients of the load. The results are still subject to errors 

due to the ignored higher degrees in equations (1) [Wu et al., 2002], and GPS 

observational errors not common to all sites; both errors are of course network dependent. 

 Dong et al. [2003], Wu et al. [2003] and Gross et al. [2004] extended this 

approach to estimate coefficients of the load up to degree 6 using equivalent forms of 

equation (1). Such an approach should reduce the errors in the estimate of degree 1 which 

may exist in the estimates of Blewitt et al. [2001] caused by ignoring the higher degrees 

[Wu et al., 2002]. Additionally estimating higher degree terms, however, requires a dense 

and well distributed network.  

 In their estimation procedure both Dong et al. [2003] and Wu et al. [2003] place 

their observations in the CN frame by first removing a 7 parameter Helmert 

transformation and estimating loading coefficients from the residuals. Both these results 
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could be biased downwards due to the inclusion (and subsequent removal from the 

displacements) of a scale parameter.  

 

3. GPS error analysis 

In order to fully test the different techniques for estimating geocenter motion we first 

investigate the likely error sources involved. Errors are highly network dependent so it is 

crucial to considering different (but realistic) networks. The likely errors naturally fall 

into two categories: random and systematic GPS technique-specific errors, and 

systematic errors due to mismodeling of the loading deformation. Random errors are 

considered in section 3.3 by propagation of the GPS formal error. The systematic effects 

of mismodeling are considered in section 4 by creating synthetic GPS data sets with 

known statistical properties so that the estimated value can be compared to the “true” 

value used to create the data. The effects of GPS-specific systematic errors are difficult to 

analyze here, orbit errors tend to affect the z component more than x or y since they are 

modulated by Earth rotation [Watkins and Eanes, 1994] and some degree of uncertainty 

in geocenter motion is attributable to not resolving ambiguities. Other GPS-specific 

systematic errors are also likely, such as second-order ionospheric effects [Kedar et al., 

2003] and tidal aliasing [Penna and Stewart, 2003]; however their consideration is 

beyond the scope of this paper and we concentrate on the systematic errors, which are 

generated by the loading deformation itself, due to mismodeling. 

 

3.1 GPS data 
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We use global GPS data from six International GNSS Service (IGS) analysis centers over 

the seven-year period 1997.25-2004.25: GeoForschungsZentrum (GFZ), the European 

Space Agency (ESA), the NASA Jet Propulsion Laboratory (JPL), Natural Resources 

Canada (EMR), the US National Geodetic Survey (NGS) and Scripps Institution of 

Oceanography (SIO). Weekly coordinate Solution INdependent EXchange (SINEX) files 

[Blewitt et al., 1994] from each analysis center are produced and archived each week as 

part of routine IGS activity. Each SINEX file contains a precise and rigorous estimate of 

the IGS polyhedron, using the most up to date methods and techniques [Blewitt et al., 

1994]; the orbit, timing and coordinate products from both the IGS and individual 

analysis centers are used in much of the ongoing global and regional scientific GPS 

processing, and the analysis center solutions are a core contribution to the ITRF.  

Each IGS analysis center processes its own particular subset of the IGS network, 

using software which can have quite different approaches to determining site coordinates 

from GPS data. As such they provide an ideal data set for exploring the errors in 

geocenter motions and the best method to estimate them, since the major processing 

software and strategies are represented yet produce solutions from the same GPS data. 

Most importantly the SINEX format allows for complete archival of estimated site 

coordinates, the full variance-covariance matrix and the full set of applied constraints; 

these constraints can be subsequently removed to produce “loose” or “free” networks 

[Davies and Blewitt, 2000; Heflin et al., 1992]. This is important since we wish to assess 

the determination of geocenter motions free from any particular frame that the individual 

analysis center has chosen to represent its weekly coordinates. Once these constraints are 

removed, the SINEX files form GPS realizations of the CM frame. 
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Velocities are estimated and removed from the analysis center solutions using a 

consistent rigorous least squares strategy with full covariance information [Davies and 

Blewitt, 2000; Lavallée, 2000]. Sites with less than 104 weekly observations over 2.5 

years are rejected. Two and a half years is chosen to eliminate velocity errors associated 

with annual signals [Blewitt and Lavallée, 2002]. Outliers and data segments with known 

problems are rejected, and offsets due to equipment changes (particularly radome and 

antenna changes), earthquakes or site moves are estimated. The analysis centers ESA and 

SIO do not apply the pole tide correction so this is applied using IERS standards 

[McCarthy and Petit, 2004]. 

To maintain a consistent level of formal error scaling, the input weight matrices 

are scaled by the unit variance (chi squared per degree of freedom) in the case where 

residuals are estimated assuming the network shift approach, which is standard in GPS 

analysis. It is difficult to ascertain whether formal errors will be overestimated or 

underestimated in this case. If un-modeled observational errors are larger than the real 

geophysical loading then errors will be underestimated; conversely if the loading 

dominates then this approach could overestimate the errors. We take this scaling to be at 

least a commonly-accepted approach. 

 

3.2 Networks 

The estimation of geocenter motions is fundamentally linked to the representation of the 

Earth’s surface using a geodetic network. Network size and distribution are therefore key 

factors in the error assessment of different methods. The analysis centers have different 

approaches to choosing the weekly subset of the IGS global network they analyze. Figure 
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2 shows the number of sites analyzed each week after the rejections necessary to estimate 

velocities mentioned above. Some analysis centers such as EMR restrict their analysis to 

a small number of sites whereas SIO maintain an analysis that more closely mirrors the 

overall growth of the IGS network. A crude but informative way to assess network 

distribution, particularly in the context of geocenter motions, is to look at the percentage 

of sites within opposing hemispheres centered on the direction of each Cartesian axis. 

Figure 3 plots the percentage of sites in the hemisphere centered upon each coordinate 

axis, the center line at 50% represents an “ideal” equally distributed network. Although 

there are a number of factors, the distribution of a realistic global geodetic network is 

governed primarily by the ocean-land distribution (~ 70% of the Earth’s surface is 

ocean). Figure 3 clearly reflects this: the inequality between the North and South 

hemispheres in the z direction is the largest, reaching up to almost 80% of sites in the 

Northern hemisphere, 30% larger than the “ideal”. The inequality in the x and y 

directions varies up to only 15% yet there is still a noticeable tendency towards sites 

being located in the hemisphere centered on the x axis (Europe) and the hemisphere 

centered on the negative y axis (N America). JPL maintain the best north-south 

distributed network in this simple analysis but only at the expense of network size. What 

is clear is that although the IGS network is growing considerably the distribution is not 

improving at the same rate, and realistically this is always likely to be the case due to the 

ocean-land distribution. There is always a trade-off between reducing random error by 

increasing network size, and possibly introducing systematic error in the geocenter 

motion estimates by degrading distribution. The best method for determining geocenter 



 20

motions from space geodesy should therefore be able to take advantage of improved 

network size without necessarily better distribution. 

 

3.3 Propagation of observational formal errors 

Assessment of how the GPS formal errors map into each estimate is performed by 

propagating the formal covariance matrix of the observations to the covariance matrix of 

the parameters in each method. The scaling of the formal covariance matrix from each of 

the different analysis centers relates to the a priori variance assigned to the initial GPS 

phase estimate and any other scaling applied during the GPS processing, so it would be 

unwise to interpret the scaling of formal errors between analysis centers in detail. It is 

also unnecessary; it is the relative scaling, i.e. the performance of each geocenter 

estimation method, that is of concern. 

Figures 4 and 5 plot the changes in formal errors over time, for two end-member 

cases of network size/distribution during the interval 1997.25-2004.25. The higher 

degrees are ignored in the degree-1 deformation and combined approaches for the time 

being, Table 1 lists the mean formal error over the interval for each component (x, y and 

z), method, and analysis center. The strength of an approach in dealing with different 

networks is reflected in the similarity between the CMCF −r  x, y and z formal error; in a 

robust approach the formal error on the geocenter will be the same in all directions 

whatever the network distribution.  

Figure 4 shows the formal error in the JPL geocenter x, y and z components from 

each of the three methods for this interval. The formal error in all approaches reduces 

with time; this to some degree reflects improvements in GPS software models, but mostly 
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reflects the increase in size of the GPS tracking network (Figure 2) which is about 100% 

over the entire interval. The distribution of the network (Figure 3) remains relatively well 

balanced and consistent over time and this is reflected in the formal errors for the 

network shift approach being roughly identical in x, y and z directions (Figure 4 and 

Table 1). The network shift method is predicted to perform slightly better than the 

degree-1 deformation approach for all components. In part this is due to dilution of 

precision: it is necessary to estimate 3 extra translation parameters in the degree-1 

deformation approach. Of most interest is that the CM approach is predicted to give mean 

formal errors between 42-52% smaller than either the network shift or degree-1 

deformation approaches. 

Figure 5 shows the formal error in the SIO geocenter x, y and z components from 

each of the three methods for the same interval. The results are quite different to those of 

the JPL network since the SIO network includes more sites (Figures 2 and 3). In this case 

the most noticeable effect is the poor performance of the network shift. Because of the 

uneven network, the z component of geocenter formal error is approximately 3 times that 

in the x and y (Figure 5). The degree-1 deformation approach however performs much 

better with both smaller and virtually identical formal errors in all directions (Figure 5 

and Table 1). The CM approach again improves the formal errors in all directions. The 

improvement in mean formal error in x, y and z respectively is 2%, 72%, and 69% over 

the degree-1 deformation approach, and 16%, 44%, and 83% over the network shift 

approach.  

Figures 4-5 and Table 1 demonstrate that the network shift approach should 

perform well when a network is well distributed, in fact as well as the degree-1 
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deformation approach (although this does not include the error in assuming 

CMCNCMCF −− = rr  or aliasing effects) but when a network is poorly distributed the degree-1 

deformation approach should be far superior. This can explain the observation that the 

degree-1 deformation approach produces geocenter motions that are more stable with 

time [Blewitt et al., 2001; Dong et al., 2003], since the degree-1 deformation approach 

should perform much better as network distribution changes. The CM approach is 

predicted to perform considerably better than either approach (Table 1) despite the 

network distribution; in principle this will always be the case as the information content 

of both the other approaches is used. This suggests that it may be possible to exploit the 

improvement in IGS network size with time despite the relatively small improvement in 

N-S distribution. 

 

4. Analysis of geocenter motion mismodeling errors 

4.1 Synthetic data 

Synthetic GPS data are created by adding displacements predicted by a hydrological 

loading model to site positions specified by the analysis center networks. We use surface 

atmospheric pressure from the National Center for Environmental Prediction (NCEP) 

reanalysis data set [Kalnay et al., 1996]. The data are provided on a 2.5 degree x 2.5 

degree global grid at 6 hourly intervals. We average 7 days of data (28 epochs) centered 

on the GPS week corresponding to the SINEX files. The ocean is treated as a pure 

inverted barometer; that is, we set the pressure to zero over the oceans. 

For the ocean bottom pressure, we use values derived from a simulation of the 

oceans completed at JPL as part of their involvement in the Estimating the Circulation 
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and Climate of the Ocean (ECCO) consortium [Stammer et al., 1999]. The ocean model 

used in this simulation spans the globe between 77.5º south and 79.5º north latitude with 

a latitudinal grid-spacing ranging from 1/3º at the equator to 1º at high latitudes and a 

longitudinal grid-spacing of 1º. The model is forced twice daily with wind stress and 

daily surface heat flux and evaporation-precipitation fields from the NCEP/NCAR 

reanalysis project. The 12-hourly data was averaged into weekly values. 

We use continental water storage variations derived from simulations of global 

continental water and energy balances, created by forcing the Land Dynamics (LaD) 

model [Shmakin et al., 2002] with estimated atmospheric variables. The water storage 

data (snow, groundwater and soil moisture) are provided at 1° x 1º global resolution at 

monthly time periods. The most recent version of the model, LaD World-Danube, 

extends from January 1980 to April 2004. The monthly data were linearly interpolated to 

weekly values. 

The total load is made gravitationally self-consistent and mass-conserving by 

adding a spatially-variable surface mass layer over the oceans [Clarke et al., 2005]. This 

amplifies the annual degree-1 component of the load and also CMCF −∆r by 26%, 13% and 

17% in x, y and z components respectively (Table 2). Figure 6 and Table 2 summarize 

the total load. The power spectra of the model-predicted geocenter motion are plotted in 

Figure 6. The overwhelming majority of spectral power is at the annual frequency since 

geocenter motion is driven by the seasonal water cycle. A small amount of power exists 

at the semi-annual frequency in the z component. The variance reduction when fitting a 

pure annual signal to the x, y and z total load is 65%, 70% and 53% respectively. This is 

the reason that most work [Bouillé et al., 2000; Chen et al., 1999; Dong et al., 1997; 
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Dong et al., 2003; Moore and Wang, 2003] concentrates on the annual component of 

geocenter motion and if only to avoid plotting a very large number of time series we also 

consider the annual signal for inter-comparison purposes. 

A synthetic loading deformation dataset is produced for each analysis center by 

creating correlated Gaussian normal deviates with a mean centered on the predicted 

deformation and variance- covariances obtained from the full weekly SINEX formal 

covariance matrices. We assume that the SINEX covariance matrices represent a 

reasonable assessment of the random errors and a much better approximation than 

uncorrelated errors with a blanket value for the noise in each east, north and up 

component. The synthetic dataset now includes specified random errors and can be used 

to investigate how the random errors expected in CMCF −∆r  (section 3.3) combine with 

systematic effects from mismodeling and site network distribution. 

 

4.2 Errors due to approximation of CMCF −r with CMCN −r  

The network shift approach will always be sensitive to systematic error so long as the 

satellite tracking network incompletely samples the Earth’s surface. The size of this error 

depends on the network distribution and observational errors, Wu et al. [2002] estimate 

this error for the 30-site SLR network of [Bouillé et al., 2000] to be approximately 1 mm, 

Dong et al. [2002] also find this error to be sub-millimeter. In both cases uncorrelated 

errors are assumed. Whilst 1 mm is still significant when the modeled signal is of the 

order 3-4 mm [Chen et al., 1999; Dong et al., 1997; Moore and Wang, 2003], assuming 

uncorrelated errors is likely to seriously underestimate the error when estimating the 

mean site displacement if real correlations exist . We compute this error for each analysis 



 25

center network series using correlated synthetic data. The results are plotted in Figures 7 

and 8 and discussed in section 4.4 below. 

 

4.3 Errors due to higher degrees of loading 

The degree-1 deformation and CM approaches are not subject to errors in approximating 

CMCF −r with CMCN −r  since the deformation is modeled at each site (i.e. in the CN frame); 

however only the degree-1 deformation is modeled, and degrees > 1 are ignored. Ignoring 

these higher degrees could cause significant aliasing into the estimated geocenter motion 

[Wu et al., 2002]. Wu et al. [2002] conduct a sensitivity analysis to estimate geocenter 

motion annual amplitude, and consider uncertainties for the 66-site network of Blewitt et 

al. [2001] to be (9, 8, 10) and (3, 2, 9) mm in x, y and z respectively for two different 

load scenarios. Wu et al. [2002] scaled the degree 2-50 coefficients in their load scenarios 

by 6.6, the load moment z component of Blewitt et al. [2001]. Wu et al. [2002] may have 

overestimated the effects of aliasing with such a scaling, especially since the load 

moment results of Blewitt et al. [2001] were likely already aliased.  

We compute the aliasing error for each analysis center network series, the degree-

1 deformation and CM approaches using the correlated synthetic data. The results are 

plotted in Figures 7 and 8 and discussed in section 4.4 below. 

 

4.4 Results 

Estimates of the two mismodeling errors discussed in sections 4.2 and 4.3 are plotted 

alongside each other in Figures 7 and 8; values estimated from the synthetic data sets are 

compared with the “true” values used to create the data. This way the systematic errors 
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introduced in the network shift approach by approximation of CF with CN can be 

contrasted with the systematic errors introduced in the degree-1 deformation and CM 

approaches by higher degree aliasing. Observational random errors (section 3.3) are the 

same for all methods as they are specified by the synthetic data. 

Previous work with uncorrelated synthetic data [Dong et al., 2002; Wu et al., 

2002] suggests that annual mismodeling errors are on the order of ~1 mm for the network 

shift approach and up to ~6 mm in the degree-1 deformation approach; similar results 

have been obtained with uncorrelated data by the authors of this paper. Such results can 

however be misleading, since global GPS solutions will have correlated random errors. If 

we look at our synthetic data set where inter-site correlations are considered (Figures 7 

and 8) a very different picture emerges, in this case network shift annual amplitude can 

vary from the true value by as much as ~4 mm in x and y, up to 10 mm in z, and between 

analysis centers by almost as much. The phase variations are even more extreme with 

some phases shifted almost 180º from both the true value and between analysis centers. 

These results indicate that correlated errors in global geodetic solutions could cause 

significant errors and disagreement between estimates of geocenter motion when using 

the network shift approach (particularly when using different networks); this error is 

much larger than aliasing effects in the deformation approach. This conclusion is 

enhanced by the poor agreement between GPS geocenter motion estimates using the 

network shift approach [Ray, 1999] and observations that the degree-1 deformation 

approach produces more stable results [Dong et al., 2003].  

The degree-1 deformation method produces better results than the network shift 

approach (Figures 7 and 8), with annual amplitudes that are generally closer to the true 
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value and in better agreement between different networks (particularly in z). The 

improvement in phase stability is quite considerable. Aliasing of higher degrees still has 

an effect and the best degree-1 deformation results are achieved when degree-2 is also 

estimated; in this case errors are up to 0.8, 0.9 and 2.6 mm in x, y and z amplitudes 

respectively, in phase, errors are up to 31º, 42º and 26º respectively.  

The CM method consistently produces results which are closer to the true value 

than either the network shift or degree-1 deformation approaches (Figures 7 and 8). When 

degree-2 is also estimated, amplitude errors are predicted to be up to 0.5, 0.3 and 2.5 mm 

in x, y and z respectively; if the network is well distributed then the error in z can be as 

low as 0.6 mm. Phase errors are predicted to be up to 22º, 26º and 28º in x, y and z 

respectively. The method is in principle the best way to model the observations and from 

this simulated analysis is indeed the best performer. 

It can be observed that for all methods the SIO network produces results in 

amplitude and phase that are usually furthest from the true value, particularly when 

degree-2 is not estimated. This network contains a large number of regional sites and 

demonstrates the effects of a very uneven network. It is unlikely that such sites would 

normally be included in a geocenter estimation analysis; however, inclusion of these sites 

provides a useful end member estimate of the errors. For such a large network it is 

possible to estimate spherical harmonic degrees greater than 2 with the deformation 

approaches [Wu et al., 2003]. Only the SIO network is really large enough to do this 

reliably (Figure 2). We estimate up to degree 6 with the degree-1 deformation approach 

and CM approach from the synthetic data, in this case we find that the annual x and y 

amplitudes do not get any closer to their true values compared to the case when only 
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degrees 1 and 2 were estimated, but the SIO z amplitudes now varies from the true value 

by only 0.4 mm, an improvement of 84%, with the annual phase hardly effected. This 

suggests that, whilst aliasing from degrees beyond 2 is minimal for x and y, the tendency 

for an uneven network in the z direction requires higher degrees to be estimated to 

overcome aliasing, and that this may be a viable approach for large but regionally dense 

networks such as SIO. 

 

5 Network scale 

It is common when estimating Helmert transformations to estimate a scale parameter 

[Heflin et al., 2002]. In the case of an uneven network this scale parameter could absorb 

some of the real deformation due to surface mass loading, and is unnecessary when 

geocenter motions are estimated. This effect has been found significant for the network 

shift approach with noise-free, uncorrelated synthetic site data from just atmospheric 

pressure loading [Tregoning and van Dam, 2005]. The effect on the estimated CMCF −∆r  

of including a scale parameter is investigated here, for correlated and noisy synthetic data 

from the entire surface load and additionally real GPS data.  

With the synthetic data, estimating scale has the largest effect on CMCF −∆r  

estimated using the network shift approach. This effect is very significant in the z 

component; the annual amplitude is altered by up to 0.33, 0.16 and 1.5 mm in x, y and z 

components respectively. When using either of the deformation approaches the z 

component changes only up to 0.4 mm, phase differences are at most 3º for x and y with 

a network shift z value of 10º .  
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For the real data the picture is very similar: the effect on the estimated CMCF −∆r  is 

significant with a maximum effect on annual amplitude of 1.29 mm in x, 2.11 mm in y 

and 4.6 mm in z. These differences are again maximal for the network shift approach; for 

the unified approach, the maximum effect is 0.86, 0.81 and 3.23 mm in z. The effect on 

annual phase can reach 68º in x with the network shift method. 

The size of the estimated scale parameter is also significant. In the synthetic data 

there is no true scale variation, only scale error arising through the interaction between 

loading and network geometry. Figure 9 plots the power spectra of the scale series 

estimated for each method (network shift, degree-1 deformation etc.), averaged over all 

analysis centers. The averaging is simply for clarity, the same observations are made 

from each individual analysis center scale spectrum. In the synthetic data (Figure 9a), the 

scale series power spectrum is flat with a sharp peak at the annual frequency; this is 

largest (and significant at 5%) for the network shift approach and gets progressively 

smaller (and no longer significant) when using the degree-1 deformation and CM 

approaches respectively. If degree-2 is included in these latter methods then it gets 

smaller still. Figure 9b also plots the power spectra of the scale estimated from the real 

data, there is a clear annual peak which is largest for the network shift approach and 

reduces in amplitude when increasing amounts of the loading deformation are estimated. 

The mean amplitude of seasonal scale estimated from the network shift approach is 0.15 

ppb for the synthetic data and 0.37 ppb for the real data. It is likely that the observed 

seasonal changes in scale of 0.37 ppb and other results of the order 0.3 ppb [Heflin et al., 

2002] are due to aliasing of the loading signal. It is encouraging to realize that the 
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seasonal signals observed in GPS scale are at least partly due to a real loading signal 

rather than any particular GPS specific systematic error. 

Another possible scale error exists when results are put in the CN frame using a 7 

parameter Helmert transformation and then the residuals are used to estimate the 

deformation due to surface loading with the degree-1 deformation approach [Dong et al., 

2003; Wu et al., 2003]. In this scenario it is possible that the estimation and subsequent 

removal from the data of a scale parameter could also remove some actual deformation 

due to loading. We estimate the size of the error in geocenter motions estimated this way 

from the synthetic data to be up to 1.84 mm in annual amplitude and up to 40º in phase. 

With the real data, using such a two-step procedure can change the estimates by as much 

as 4.3 mm in annual amplitude and 85º in phase. The effect of this two-step approach is 

generally to reduce load amplitude since some of the power is absorbed by the scale 

parameter; It is likely that this accounts for the significant reduction in annual degree-1 

amplitude observed by Dong et al. [2003] compared to Blewitt et al. [2001]. 

 

6. Comparison of estimated geocenter motion  

Geocenter motions for the period 1997.25-2004.25 are estimated from the GPS solutions 

for each of the 6 IGS analysis centers. Annual amplitude and phase are shown in Figures 

10 and 11; for comparison the predicted values from the loading model are also given. 

Comparing these solutions gives insight into both network and modeling effects; each 

analysis center has used the same GPS data but sometimes very different networks, 

analysis software, and procedures. The most noticeable result of this analysis is the large 

disagreement between analysis centers in geocenter motion annual phase for the network 
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shift approach z component (Figure 11), this can be as large as 166º and apart from one 

comparison is always greater than 50º. Such a situation is predicted by the simulated data 

(section 4.4, Figure 8) and results from a very uneven network in the z direction. This 

result combined with that from the synthetic analysis clearly explains the disagreement 

previously seen amongst GPS estimated geocenter motions using the network shift 

approach [Ray, 1999]. Furthermore it suggests serious shortcomings in the network shift 

approach for estimating geocenter motions from GPS. In addition to network effects, one 

possible explanation is the different strategies taken to ambiguity fixing however only 

JPL resolve all ambiguities; the other analysis centers fix some or none at all and no 

consistent differences are observed in Figures 10 & 11. 

The two deformation methods give considerably better agreement in phase 

(Figure 11); in fact, the estimates of annual phase from these methods appear to be much 

less affected by aliasing, network size, and distribution than is the estimated annual 

amplitude, another result predicted by the simulated data analysis. The Weighted Root 

Mean Square (WRMS) annual phase values (about the weighted mean) are around 15º in 

all components for the CM and degree-1 deformation methods compared with 15º, 17º 

and 108º in x, y and z for the network shift method (Table 3).  

In Figure 10 the solution for ESA is in disagreement with the other analysis 

centers for all approaches; the reason for this is unknown. If we treat this solution as an 

outlier and exclude it, then annual amplitude agreement between the remaining 5 analysis 

center solutions is much improved (Table 3).  

The deformation methods are affected by aliasing. If degree-2 is also estimated 

then the deformation methods perform much better in amplitude as predicted by the 
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simulated results, particularly for the large network SIO (Figure 10). The SIO network is 

very unevenly distributed, not normally a choice for estimating geocenter motions or 

defining a frame. If we restrict ourselves to “reasonable” networks only (the remaining 4 

analyses) then the network shift method gives WRMS amplitude variation of around 1.5 

mm, the degree-1+2 method has a larger z agreement, but by far the best performance is 

achieved when using the CM + 2 approach: WRMS variation is entirely sub-millimeter at 

0.6, 0.6 and 0.3 mm in x, y and z (Table 3). In this context “reasonable” means that 

clustering in one axis centered hemisphere is limited to less than 70% of sites (Figure 3). 

The simulated analysis (section 4.4) and Wu et al. [2003] suggest that estimating 

additional higher degrees of the load may overcome the problems of an uneven network. 

We estimate degrees 1 through 6 for the SIO network. In this case the WRMS variation 

in x, y and z amplitude is 0.6, 0.6 and 0.8 mm for the CM approach (Table 3). These 

results suggest that estimating higher degrees in the CM frame is a valid approach to take 

for large unevenly distributed networks; it performs almost as well as when using evenly 

distributed networks and just estimating degrees 1 and 2. Table 3 also suggests that 

modeling higher degree deformations in the CM rather than CN frame gives improved 

results. Removing higher degree deformations using GRACE results, [Davis et al., 2004], 

is another approach that may improve geocenter estimates; however, this would not be 

possible prior to 2002. In section 2.1 it was stated that the CM method reduces to the 

network shift method in the case of a diagonal or block diagonal weight matrix. This is 

easily verified and has been done for the results presented here; the CM and network shift 

methods produce near identical results in this case. 
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The estimated annual amplitude and phase are compared with those predicted by 

the load model (section 4.1). Horizontal dashed lines representing the load model values 

are included in Figures 10 and 11, and the mean estimated values in Table 3 can be 

compared with the loading model predicted values in Table 2. In this comparison the CM 

method where degree-2 is also estimated is in best agreement with the loading model; 

consistently the annual amplitude and phase are closer to that predicted by the loading 

model than any other method, whether SIO is included or not (still treating ESA as an 

outlier). Excluding SIO and ESA, agreement of the weighted mean annual amplitude with 

the load model is 0.09, 0.95 and 0.91 mm. If degrees up to 6 are estimated from SIO then 

the results are only slightly different (Table 3). Phase differences with the load model are 

14º, 3º and 35º in x, y and z respectively. These difference are much larger than our 

formal errors (Table 3); however, if only because of aliasing, the formal errors are 

obviously too small. An improved estimate of the observational errors comes from the 

WRMS agreement between the analysis center values (Table 3). In this case the load 

model falls within 2 standard deviations of the CM approach best-estimate (mean of 4 

analysis centers). 

The annual amplitude and phase are also compared to network shift results from 

SLR tracking of Lageos 1&2 [Bouillé et al., 2000; Chen et al., 1999; Cretaux et al., 2002; 

Moore and Wang, 2003]. The 4 SLR results are in very good agreement with a mean 

annual amplitude 2.60, 3.00 and 3.55 mm, mean phase of 221º, 130 º and 219 º, RMS 

amplitude of 0.56, 0.86 and 0.66 mm and RMS phase of 13º, 11º and 5º in x, y and z 

respectively. Compared to the best estimates from GPS using the CM+2 approach (Table 

3) SLR has near identical annual amplitude RMS but half that achieved by GPS in annual 
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phase RMS. It is clear that the SLR results do not have the same errors in the network 

shift as GPS; the improved sensitivity of Lageos 1&2 to the geocenter means the 

combination of observational and approximation errors (CF with CN) are smaller. The 

systematic error from approximating CF with CN still exists however, and since the SLR 

tracking network does not vary to the degree GPS does, is likely similar between 

estimates. The CM approach could improve SLR geocenter estimates still further.  

The mean SLR result is plotted on Figures 10 & 11, differences between the mean 

SLR estimate, the best GPS mean estimate (CM+2) and the loading model are 

insignificant at 2 sigma when the RMS is used as an estimate of formal error. At the 1 

sigma level there is a significant discrepancy between the geodetic measurements (which 

agree) and the load model in z amplitude and the y annual phase from SLR is 

significantly different from both GPS and the load model.  

The considerably improved precision of the CM approach is still not small enough 

to reliably discriminate between different load models; however, the level of agreement 

between geodetic estimates of geocenter annual motion (Table 3) is now about the same 

level as that between different load models, a considerable improvement in observational 

precision over that previously seen from GPS. 

 

7. Conclusions  

Historically the “network shift” approach has been the most commonly used approach to 

estimating geocenter motions from geodetic data. We find that it has a number of 

shortcomings when applied to GPS. Estimated and predicted results from synthetic data 

demonstrate that the geocenter annual phase estimated by the network shift is particularly 
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unstable. Significant levels of seasonal scale variation observed in GPS analysis are at 

least in part due to the interaction of surface mass loading with a sparse geodetic network, 

and mis-modeling of the Earth’s degree-1 deformations with the network shift approach. 

Scale should not be estimated with geocenter motions, or biased results will be obtained. 

Alternative approaches for estimating geocenter motions with GPS have involved 

modeling the degree-1 (and sometimes higher) deformations in realizations of the CF 

frame [Blewitt et al., 2001; Dong et al., 2003; Wu et al., 2003]. In terms of formal error, 

modeling the deformations in this way is much more robust when networks are uneven. 

Aliasing from un-estimated higher degrees, although important, can be alleviated by 

estimating the total load to degree 2, but in the case of very large unevenly distributed 

networks even higher degrees must be estimated.  

In principle an approach that unifies both the translation and deformation aspects 

of geocenter motion is more complete, should take advantage of all GPS information 

content, and is conventional since all deformations are modeled in the CM frame. Such 

an approach is found to give the lowest geocenter motion formal error, smaller 

differences from the true value when using synthetic data, the best agreement between 5 

different GPS analyses and the closest agreement with the geocenter motion predicted 

from loading models and estimated from SLR.  

A note of caution must be attached, however: unless the unified (CM) method 

uses a full weight matrix that is obtained from simultaneous estimation of station 

coordinates with orbit parameters, the relative weight of information between the 

translation and deformation would be incorrect. For example, using the covariance matrix 
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from precise point positioning (which fixes the orbits) would be inappropriate, and would 

produce nearly identical, poorer results to the network shift approach. 

With this newest approach, provided care is taken to ensure a balanced network or 

higher degrees are estimated as required, we demonstrate that it is possible to estimate 

geocenter motions from GPS with unprecedented sub-millimeter levels of precision. This 

level of precision is still however insufficient to reliably discriminate between different 

loading models. Geocenter motion agreement between different GPS solutions is now at 

the same level as geocenter motion agreement between different loading models. With 

improved GPS error modeling and mitigation, reprocessing of older data and further 

placement of GPS sites in the southern hemisphere, a level of precision that can in the 

near future discriminate between load models does now appear possible. 
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Appendix A: Least Squares design matrices. 

CM approach 

Displacements are modeled completely in the CM frame using equations (1) and Love 

numbers in the CM frame. The parameter vector is 

 

( )Trx C
n

CSCSC
CMCFzyx TTTTTTrrr 02021212222  −∆=   (A1) 

 

Where r  are rotation parameters, CMCF −∆r  is the geocenter motion, and Φ
nmT  are spherical 

harmonic coefficients of the higher degrees (>1) of the total surface load. The choice to 

include higher degrees is optional. The least squares design matrix for i th site is 
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where iG is the 33×  matrix that rotates geocentric into topocentric displacements (east, 

north and up) about a point with latitude ϕ  and longitude λ . 
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 The matrix iB  contains the partial derivatives for higher degrees (>1) from equation (1). 
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Network shift approach 

Generally a least squares approach is used to estimate a Helmert transformation with up 

to 7 parameters 

 

( )Tx zyxzyx rrrsttt=      (A4)  

 

where the parameter ( )Tt zyx ttt=ˆ is the least squares estimate of CMCF −∆r  and s  is an 

optional scale parameter, the design matrix is 
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Degree-1 deformation approach 

In the degree-1 deformation approach the parameter vector is 

 

( )Trx C
n

CSCSC
CMCFzyxzyx TTTTTTrrrttt 02021212222  −∆=  (A6) 

 

With translation t  and rotation r  (which are both discarded), geocenter motion CMCF −∆r  

and higher degrees up to degree n of the surface mass load, the design matrix is 
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Figure 1. Graphical representation of the displacements within a geodetic network due to 

the changing location of the center of mass of the surface load. CM is the center of mass 

of the solid Earth + load, the origin of satellite orbits which is essentially a kinematic 

fixed point in space. Two quite different expressions are observed, the displacement of 

the center of the solid Earth (CE) and the deformation of the solid Earth 

 

Figure 2. Number of sites in each analysis center weekly solution for the period 1997.25-

2004.25. Values are given after outlier rejection and elimination of sites with less than 

104 weekly observations or less than 2.5 years of data. 

 

Figure 3. Percentage of all analysis center sites in the hemisphere centered on the 

positive x, y and z axes respectively for the period 1997.25-2004.25. The 50% line 

represents the ideal situation of a well distributed network. 

 

Figure 4. JPL geocenter formal error for the period 1997.25-2004.25: top “network shift” 

method, middle “degree-1 deformation” method, and bottom “CM method”. x formal 

error is plotted with a dotted line, y with a dashed line and z with a solid line. 

 

Figure 5. SIO geocenter formal error for the period 1997.25-2004.25: top “network shift” 

method, middle “degree-1 deformation” method, and bottom “CM method”. x formal 

error is plotted with a dotted line, y with a dashed line and z with a solid line. 
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Figure 6. Top; normalized square root annual load degree amplitudes in units of mm of 

seawater. Square points: ocean load, diamonds: atmosphere, triangles: continental water 

and open circles: total load. Filled circles are the equilibrated total load. Bottom: power 

spectra of equilibrated total load model predicted CMCF −∆r  variations. 

 

Figure 7. Histogram of CMCF −∆r  annual amplitude differences (mm) between those 

estimated from the synthetic data and the true value used to create the data. Shaded bars 

indicate that in addition to degree-1 deformation, degree-2 deformations were also 

estimated. Error bars are 1 standard deviation. 

 

Figure 8. Histogram of CMCF −∆r  annual phase differences (º) between those estimated 

from the synthetic data and the true value used to create the data. Dotted outline bars 

indicate that in addition to degree-1 deformation, degree-2 deformations were also 

estimated. Error bars are 1 standard deviation. 

 

Figure 9. Average power spectra of estimated scale, a) for the synthetic GPS data and b) 

for the real GPS data. Scale estimated with the network shift approach is plotted with a 

solid line + points, degree-1 deformation with a dotted line + points and CM method with 

a dashed line + points. The two lowermost solid lines (without points) in both plots are 

the degree-1 and CM deformation approaches where degree-2 is also estimated. The 

horizontal dot-dashed line in a) is the 5% significance level assuming background white 

noise with a variance estimated from the background spectra. 
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Figure 10. Histogram of GPS estimated CMCF −∆r  annual amplitude (mm). Shaded bars 

indicate that in addition to degree-1 deformation, degree-2 deformations were also 

estimated. Error bars are 1 standard deviation. Solid horizontal lines are the mean SLR 

estimates discussed in the text. Dotted horizontal lines are the equilibrated load model 

predicted values of CMCF −∆r  annual amplitude. 

 

Figure 11. Histogram of estimated CMCF −∆r  annual phase (º). Dotted outline bars indicate 

that in addition to degree-1 deformation, degree-2 deformations were also estimated. 

Error bars are 1 standard deviation. Solid horizontal lines are the mean SLR estimates 

discussed in the text. Dotted horizontal lines are the equilibrated load model predicted 

values of CMCF −∆r annual phase.
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Table 1. Mean geocenter formal error for the period 1997.25-2004.25. 

Network Shift Degree-1 Deformation CM Method Analysis 
Center X Y Z X Y Z X Y Z 
emr 10.73 11.62 28.56 10.62 11.45 10.87 9.33 6.64 6.49 
esa 7.56 7.53 33.67 10.58 10.74 10.19 9.81 5.49 5.14 
gfz 6.26 6.18 6.85 6.47 7.56 7.24 3.22 3.78 3.56 
jpl 6.12 5.96 6.20 6.97 6.67 6.31 3.51 3.23 3.09 
ngs 11.65 11.29 33.41 9.82 9.60 9.15 9.35 6.78 6.25 
sio 5.68 5.52 16.90 4.85 4.77 4.68 4.78 3.10 2.95 
 

Table 2. Annual amplitude (mm) and phase (º) of load model used to create synthetic 

geodetic loading data. Amplitude and phase are defined by ( )[ ]Φ−− 0(2cos ttA π  where 

0t is 1 January. 

CMCF −∆r  Annual 
Amplitude 

CMCF −∆r  
Annual phase º 

Model 

X Y Z X Y Z 

Atmosphere 0.35 1.37 1.02 159 170 154

Continental Water 0.80 0.73 2.39 234 103 255

Ocean Bottom 
Pressure 

0.92 0.38 0.10 197 201 78

Total load 1.86 2.00 2.33 205 157 229

Equilibrated 
total load 

2.35 2.25 2.72 207 160 231

 

 

Table 3. Mean and weighted RMS (WRMS) estimated analysis center CMCF −∆r  annual 

amplitude (mm) and phase (º) for the period 1997.25-2004.25. Amplitude and phase are 

defined by ( )[ ]Φ−− 0(2cos ttA π  where 0t is 1 January. 
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All Analysis Centers 
 CMCF −∆r  Annual Amplitude CMCF −∆r  Annual Phase 
 Mean σ WRMS Mean σ WRMS  
Network shift 
x 4.28 0.2 1.8 205 3 15 
y 7.45 0.2 1.1 158 2 17 
z 8.35 0.3 2.0 235 2 108 
Degree-1 deformation method + degree 2 of total load 
x 3.71 0.2 1.2 221 3 23 
y 2.52 0.2 1.3 183 5 39 
z 10.59 0.2 5.7 215 1 10 
CM method + degree 2 of total load 
x 1.93 0.1 0.9 218 3 19 
y 3.30 0.1 0.5 166 2 21 
z 5.05 0.1 3.8 234 1 24 

 
All Analysis Centers except ESA 

 CMCF −∆r  Annual Amplitude CMCF −∆r  Annual Phase 
 Mean σ WRMS Mean σ WRMS  
Network Shift 
x 4.68 0.2 1.9 208 3 11 
y 7.57 0.2 1.3 155 2 17 
z 8.01 0.3 1.0 270 2 65 
Degree-1 deformation method + degree 2 of total load 
x 3.82 0.2 1.2 220 3 24 
y 2.76 0.2 1.2 184 5 39 
z 9.20 0.2 3.6 214 1 13 
CM method + degree 2 of total load 
x 2.23 0.1 0.4 218 3 20 
y 3.21 0.1 0.5 161 2 19 
z 4.33 0.1 1.8 251 2 21 

 
Analysis Centers ESA and SIO Excluded 

 CMCF −∆r  Annual Amplitude CMCF −∆r  Annual Phase 
 Mean σ WRMS Mean σ WRMS  
Network Shift 
x 3.93 0.3 1.7 206 4 16 
y 6.98 0.3 1.0 156 2 21 
z 7.80 0.3 0.5 287 2 41 
Degree-1 deformation method + degree 2 of total load 
x 3.57 0.3 1.6 231 5 27 
y 2.44 0.3 1.4 161 7 40 
z 9.93 0.3 4.5 210 1 8 
CM method + degree 2 of total load 
x 2.26 0.2 0.6 221 4 22 
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y 3.20 0.2 0.6 157 3 22 
z 3.63 0.2 0.3 266 3 11 

 
All Analysis Centers except ESA, degrees up to 6 estimated for SIO 

 CMCF −∆r  Annual Amplitude CMCF −∆r  Annual Phase 
 Mean σ WRMS Mean σ WRMS  
Degree-1 deformation method + total load 
x 2.55 0.2 1.6 231 4 24 
y 2.90 0.2 1.0 176 4 26 
z 8.80 0.2 4.2 211 2 9 
CM Method + total load 
x 2.10 0.2 0.6 222 4 21 
y 3.23 0.1 0.5 163 2 22 
z 3.86 0.2 0.8 257 2 22 
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Figure 1. Graphical representation of the displacements within a geodetic network due to 

the changing location of the center of mass of the surface load. CM is the center of mass 

of the solid Earth + load, the origin of satellite orbits which is essentially a kinematic 

fixed point in space. Two quite different expressions are observed, the displacement of 

the center of the solid Earth (CE) and the deformation of the solid Earth. 
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Figure 2. Number of sites in each analysis center weekly solution for the period 1997.25-

2004.25. Values are given after outlier rejection and elimination of sites with less than 

104 weekly observations or less than 2.5 years of data. 
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Figure 3. Percentage of all analysis center sites in the hemisphere centered on the 

positive x, y and z axes respectively for the period 1997.25-2004.25. The 50% line 

represents the ideal situation of a well distributed network. 
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Figure 4. JPL geocenter formal error for the period 1997.25-2004.25: top “network shift” 

method, middle “degree-1 deformation” method, and bottom “CM method”. x formal 

error is plotted with a dotted line, y with a dashed line and z with a solid line. 
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Figure 5. SIO geocenter formal error for the period 1997.25-2004.25: top “network shift” 

method, middle “degree-1 deformation” method, and bottom “CM method”. x formal 

error is plotted with a dotted line, y with a dashed line and z with a solid line. 
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Figure 6. Top; normalized square root annual load degree amplitudes in units of mm of 

seawater. Square points: ocean load, diamonds: atmosphere, triangles: continental water 

and open circles: total load. Filled circles are the equilibrated total load. Bottom: power 

spectra of equilibrated total load model predicted CMCF −∆r  variations. 



 62

-1
0
1
2
3
4
5

CM methodDeformationNetwork shift

x

-1
0
1
2
3
4
5

D
if

fe
re

nc
e 

fr
om

 t
ru

e 
va

lu
e 

(m
m

)

CM methodDeformationNetwork shift

y

E
M

R
E

SA
G

F
Z

JP
L

N
G

S
SI

O
E

M
R

E
SA

G
F

Z
JP

L
N

G
S

SI
O

E
M

R
E

SA
G

F
Z

JP
L

N
G

S
SI

O

0

5

10

15
CM methodDeformationNetwork shift

z

 

 

Figure 7. Histogram of CMCF −∆r  annual amplitude differences (mm) between those 

estimated from the synthetic data and the true value used to create the data. Shaded bars 

indicate that in addition to degree-1 deformation, degree-2 deformations were also 

estimated. Error bars are 1 standard deviation. 
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Figure 8. Histogram of CMCF −∆r  annual phase differences (º) between those estimated 

from the synthetic data and the true value used to create the data. Dotted outline bars 

indicate that in addition to degree-1 deformation, degree-2 deformations were also 

estimated. Error bars are 1 standard deviation. 
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Figure 9. Average power spectra of estimated scale, a) for the synthetic GPS data and b) 

for the real GPS data. Scale estimated with the network shift approach is plotted with a 

solid line + points, degree-1 deformation with a dotted line + points and CM method with 

a dashed line + points. The two lowermost solid lines (without points) in both plots are 

the degree-1 and CM deformation approaches where degree-2 is also estimated. The 

horizontal dot-dashed line in a) is the 5% significance level assuming background white 

noise with a variance estimated from the background spectra. 
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Figure 10. Histogram of GPS estimated CMCF −∆r  annual amplitude (mm). Shaded bars 

indicate that in addition to degree-1 deformation, degree-2 deformations were also 

estimated. Error bars are 1 standard deviation. Solid horizontal lines are the mean SLR 

estimates discussed in the text. Dotted horizontal lines are the equilibrated load model 

predicted values of CMCF −∆r  annual amplitude. 
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Figure 11. Histogram of estimated CMCF −∆r  annual phase (º). Dotted outline bars indicate 

that in addition to degree-1 deformation, degree-2 deformations were also estimated. 

Error bars are 1 standard deviation. Solid horizontal lines are the mean SLR estimates 

discussed in the text. Dotted horizontal lines are the equilibrated load model predicted 

values of CMCF −∆r annual phase. 




