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1 Introduction 2 Surface mass loading theory1. Introduction 2. Surface mass loading theory1. Introduction 2. Surface mass loading theory
Continental water storage (CWS) including ground water snow and ice is a key A surface mass load T which depends on positionContinental water storage (CWS), including ground water, snow and ice, is a key
climate variable which impacts many parts of Earth system science and

A surface mass load T which depends on position
Ω b d ib d i l l fclimate variable which impacts many parts of Earth system science and
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Ω may be described as an equivalent layer of sea

engineering. Changes in CWS will affect Earth’s geocentre, gravity field and water with thickness expressed as a spherical
shape through surface mass loading. If other effects on these geodetic

p p
harmonic expansion of coefficients T :shape through surface mass loading. If other effects on these geodetic

observables including tidal and other sources of surface mass loading and
harmonic expansion of coefficients Tnm:
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eliminated then it should be possible to where are spherical harmonic functions Figure 2a.  Love-Shida numbers h′n , k′n and l′n (in the = = Φ0 0n m( )ΩΦYeliminated, then it should be possible to
obtain consistent m lti techniq e

where are spherical harmonic functions.
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CF frame) as a function of spherical harmonic degree n. ( )ΩnmY
obtain consistent multi-technique For a spherical elastic Earth this will lead to a
estimates of regional CWS. It is change in gravitational potential V(Ω), withg
possible to discriminate surface mass

g g p ( ),
coefficients (Farrell 1972):possible to discriminate surface mass

loading in the frequency domain
coefficients (Farrell, 1972):
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because it is the only phenomenon that where g is the gravitational acceleration and ρ
( ) Eρ

changes the geodetic observables at where g is the gravitational acceleration and ρs
d h d i i f h E h d fchanges the geodetic observables at

decadal to seasonal periods (we are here and ρE are the mean densities of the Earth and ofdecadal to seasonal periods (we are here
li i d b h i f d ) sea water. Accompanying this there will belimited by the time span of our data). sea water. Accompanying this there will be

vertical displacements H(Ω) and lateralCWS is the largest source of surface vertical displacements H(Ω) and lateral
di l t ∇Ψ(Ω) ith Fi 2b E l b i f ti ( k d d 2g

mass loading (Figure 1); atmospheric displacements ∇Ψ(Ω), with Figure 2b.  Example basis function (masked degree 2, 
order 1 sine) showing attenuated but non uniform (massmass loading (Figure 1); atmospheric
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conserving gravitationally consistent) oceanic loadpressure loading can be modelled and ;( )+= nmnnnm ThH
Eρ12 ( )+=Ψ nmnnnm Tl

Eρ12 conserving, gravitationally consistent) oceanic load. 

removed comparatively easily, and Love-Shida numbers h′n , k′n and l′n (Figure 2a) may be taken from a standard Earth modelp y y,
loading due to changes in ocean

n , n n ( g ) y
such as PREM (Dziewonski & Anderson 1981) In practice the observed variability ofloading due to changes in ocean

d i i li ibl H
such as PREM (Dziewonski & Anderson, 1981). In practice, the observed variability of

f l d (Fi 1) k it f bl t bi h i l h i i t tdynamics is negligible. However, surface mass loads (Figure 1) makes it preferable to combine spherical harmonics into a set
longer-term (secular) changes in CWS of modified basis functions that allow continental load variation whilst maintaining a mass-g ( ) g
cannot so readily be discriminated from

g
conserving gravitationally-equilibrated ocean response (Figure 2b; Clarke et al 2007) an

Figure 1 Annual amplitude of surface mass load
cannot so readily be discriminated from
other geophysical phenomena which

conserving, gravitationally equilibrated ocean response (Figure 2b; Clarke et al., 2007), an
approach analogo s to “fingerprinting” (e g Tamisiea t l 2001)Figure 1.  Annual amplitude of surface mass load 

variations due to atmospheric pressure (top)
other geophysical phenomena which
d f h h bl l

approach analogous to “fingerprinting” (e.g. Tamisiea et al., 2001).
variations due to atmospheric pressure (top), 
continental water storage (middle) and ocean bottomdeform the Earth, notably plate continental water storage (middle), and ocean bottom 
pressure (bottom), all expressed as equivalenttectonics and glacio-isostatic adjustment pressure (bottom), all expressed as equivalent 
thickness of sea water using a common colour scale.

tectonics and glacio isostatic adjustment
(GIA) which we address here g(GIA), which we address here.

3 Tectonic plates and boundary zones3. Tectonic plates and boundary zonesp y
E th’ f i di id d i t4 Glacio isostatic adjustment Earth’s surface is divided into4. Glacio-isostatic adjustment around a dozen major platesj j p
separated by boundary zones

GIA is a slow, steady deformation of the Earth, caused by visco-elastic relaxation
separated by boundary zones
which vary from near zero to aGIA is a slow, steady deformation of the Earth, caused by visco elastic relaxation

of the mantle in response to the progressive redistribution of surface mass during
which vary from near-zero to a

of the mantle in response to the progressive redistribution of surface mass during
h l d l i i (Fi 4) GIA b d ll d i i l d hi

few hundred kilometres in width
the last deglaciation (Figure 4). GIA can be modelled using an ice load history (Figure 3). In plate tectonic
coupled with a layered Earth model. Present-day surface motion is both lateral and

(Figure 3). In plate tectonic
theory the secular motion ofp y y

vertical; maximum vertical velocities are 2-3 times maximum lateral velocities
theory, the secular motion of
i i hi h bl lvertical; maximum vertical velocities are 2-3 times maximum lateral velocities,

lth h th ti t l ti i U lik l t t t i th
sites within the stable plate

although the ratio at a location varies. Unlike plate tectonics, there are no interiors is purely lateral and
undeforming areas which can be used to constrain present-day surface mass

interiors is purely lateral and
may be described by rigid bodyg p y

loading alone
may be described by rigid-body

t ti b t th l t ’ E lloading alone. rotation about the plate’s Euler Figure 3.  Long-running continuous GPS sites (blue/green) on rigid plate 
pole. Provided the plates are interiors.  Other  campaign and continuous GPS sites (yellow) in deforming p p
large enough and are sufficiently plate boundary zones (red) are also shown.  After Kreemer et al. (2007).large enough and are sufficiently
d l t d thi ll d ti f l t t t i ti f th t d tdensely monumented, this allows ready separation of plate tectonic motion from that due to
large-scale loading, because the latter incorporates lateral deformation and vertical motion.g g, p
However sites in the plate boundary zones and any others known to be experiencing localHowever, sites in the plate boundary zones and any others known to be experiencing local

ti t t ib t t th ti ti f th l t d f l d d lmotions cannot contribute to the estimation of the plate and surface mass load models.Figure 4.  (a) during glaciation, the mantle flows viscously away from under an ice sheet; (b) during and after 
Furthermore, sites in the plate interiors may suffer from glacio-isostatic adjustment (Box 4).deglaciation, reverse mantle flow takes place until isostatic equilibrium is restored. , p y g j ( )
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