

Grace Nield¹, Valentina Barletta², Andrea Bordoni, Matt King^{1,3}, Pippa Whitehouse⁴, Peter Clarke¹ and Eugene Domack⁵ ¹ School of Civil Engineering and Geosciences, Newcastle University; ² Geodynamics Department, Technical University of Denmark, DTU Space; ³ School of Geography and Environmental Studies, University of Tasmania; ⁴ Department of Geography, Durham University; ⁵ Department of Geosciences, Hamilton College, Clinton, NY 13323, USA

Summary

The collapse of Antarctic Peninsula ice shelves during the past few decades has resulted in increased ice mass loss from tributary glaciers due to removal of the buttressing ice shelf [De Angelis and Skvarca, 2003; Rignot et al., 2004]. Most notably the collapse of the Larsen B ice shelf in 2002 has led to continued acceleration and thinning of glaciers flowing into this embayment [Berthier et al., 2012]. Ice mass changes in this region induce a solid Earth response, which, due to the low viscosity nature of the Earth [*lvins et al.*, 2011], occurs on a decadal timescale and may be observed as uplift in GPS records. Using the long term GPS record from Palmer Station (Figures 1 and 3) located close to the Larsen B embayment, we show that ongoing elastic effects of present-day ice mass loss from Prince Gustav, Larsen A, and Larsen B tributary glaciers alone are not enough to explain the observed uplift. The uplift time series can be used to constrain a high resolution viscous model to obtain a range of Earth models that fit the data. We then use six LARISSA (LARsen Ice Shelf System, Antarctica) GPS stations installed in 2009-2010, which are ideally located close to the site of mass loss, to place tighter constraints on the Earth's structure in this region.

The range of rheological parameters that fit the GPS observations using the current ice loss data are a lithospheric thickness of 40 – 100km and an upper mantle viscosity of 1 – 3.2 x 10¹⁸ Pa s, which will be further refined with improved mass loss datasets and a compressible Earth model.

Estimation of Antarctic Peninsula Earth structure from viscoelastic modelling constrained by GPS observations

Civil Engineering and Geosciences • Cassie Building • Newcastle University • Newcastle

O'Higgins and Rothera 1995 to 2013, Palmer 1998 to 2013. Blue are LARISSA GPS 2009-2010 to 2013

glacier (scale increased by 3 for clarity); b) Larsen B ice shelf tributary glaciers for 2001-2006 and c) 2006-2011.

4. Viscoelastic response?

The elastic response alone cannot reproduce the uplift seen at Palmer, suggesting there must also be a viscous component. A wide range of Earth models can reasonably reproduce the uplift time series, however a typical Earth model for Antarctica cannot (see Figure 4).

Layer	Depth to base (km)	Viscosity (Pa s)
Lithosphere	10 - 170	1 x 10 ⁵¹
Upper Mantle	400	1 x 10 ¹⁵ – 1 x 10 ²⁰
Transition Zone	670	4 x 10 ²⁰ (no sensitivity)
Lower Mantle	-	$1 \ge 10^{22}$ (no sensitivity)
Table 1: Input viscous model parameters		

Figure 4: GPS observations at Palmer (grey dots) with combined modelled elastic and viscous uplift for a selection of Earth models Includes an estimate of the pre-1995 uplift rate.

The range of rheological parameters that fit the GPS observations using the current ice loss data are a Figure 7 shows the elastic, viscous and combined uplift for an Earth model in this range, (lithosphere 60km,

Regions with similar values: Alaska: lithosphere 54km, upper mantle viscosity 5.58 x 10^18 Pa s [Sato et al., 2011], Patagonia lithosphere 45-65km, upper mantle viscosity 4-8 x 10 ^18 Pa s [Dietrich et al., 2010].

uplift rate (mm/yr)

Figure 7: Spatial pattern of modelled uplift for the a) elastic, b) viscous, and c) combined components for a well fitting Earth model (including the pre-1995 rate). GPS observed uplift rates are shown in the circles on the same colour scale.

References

- Barletta, V. R., C. Ferrari, G. Diolaiuti, T. Carnielli, R. Sabadini, and C. Smiraglia (2006), Glacier shrinkage and modeled uplift of the Alps, Geophys. Res. Lett., 33(14), L14307, doi: 10.1029/2006gl026490.
- Berthier, E., T. A. Scambos, and C. A. Shuman (2012), Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002, Geophys. Res. Lett., 39(13), L13501, doi: 10.1029/2012gl051755.
- De Angelis, H., and P. Skvarca (2003), Glacier Surge After Ice Shelf Collapse, Science, 299(5612), 1560-1562, doi: 10.1126/science.1077987.
- Dietrich, R., E. R. Ivins, G. Casassa, H. Lange, J. Wendt, and M. Fritsche (2010), Rapid crustal uplift in Patagonia due to enhanced ice loss, Earth and Planetary Science Letters, 289(1-2), 22-29, doi: 10.1016/j.epsl.2009.10.021.
- Ivins, E. R., M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke (2011), Onland ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009, J. Geophys. Res., 116(B2), B02403, doi: 10.1029/2010jb007607
- Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas (2004), Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf, *Geophys. Res. Lett.*, 31(18), L18401, doi: 10.1029/2004gl020697
- Sato, T., C. F. Larsen, S. Miura, Y. Ohta, H. Fujimoto, W. Sun, R. J. Motyka, and J. T. Freymueller (2011), Reevaluation of the viscoelastic and elastic responses to the past and present-day ice changes in Southeast Alaska, Tectonophysics, 511(3-4), 79-88, doi: 10.1016/j.tecto.2010.05.009.
- Shuman, C. A., E. Berthier, and T. A. Scambos (2011), 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula, Journal of Glaciology, 57(204), 737-754, doi: 10.3189/002214311797409811.

Acknowledgements

Part of this work was supported by COST Action ES0701 "Improved constraints on models of Glacial Isostatic Adjustment". We thank Etienne Berthier, Christopher Shuman and Ted Scambos for providing ice mass loss data, the LARISSA team for providing GPS data and Simon Williams for helpful advice with CATS. GAN is supported by a NERC PhD studentship.