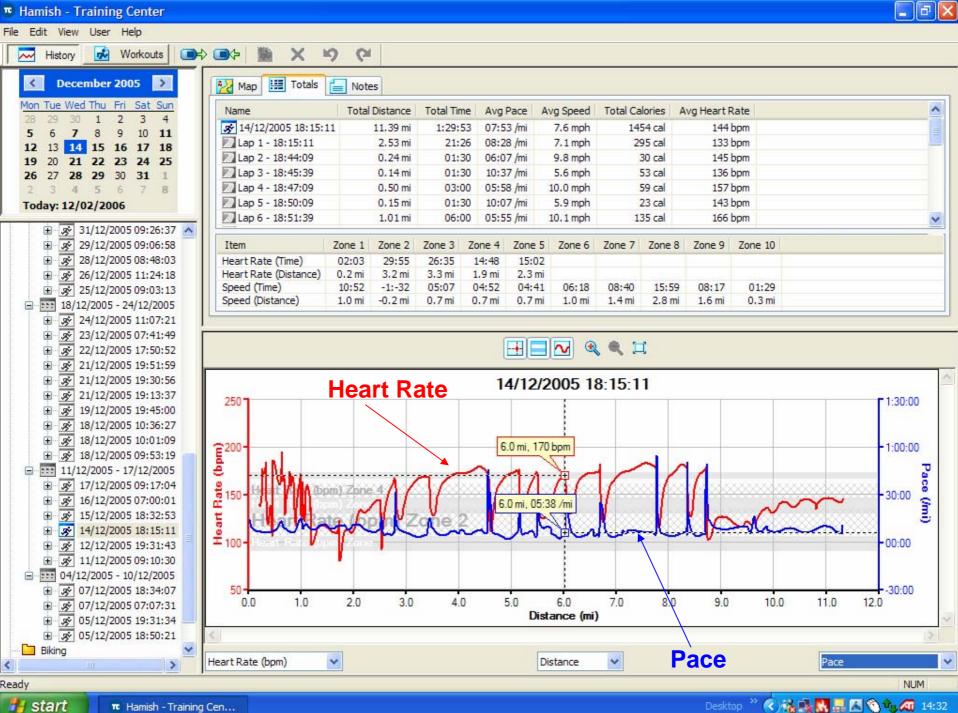
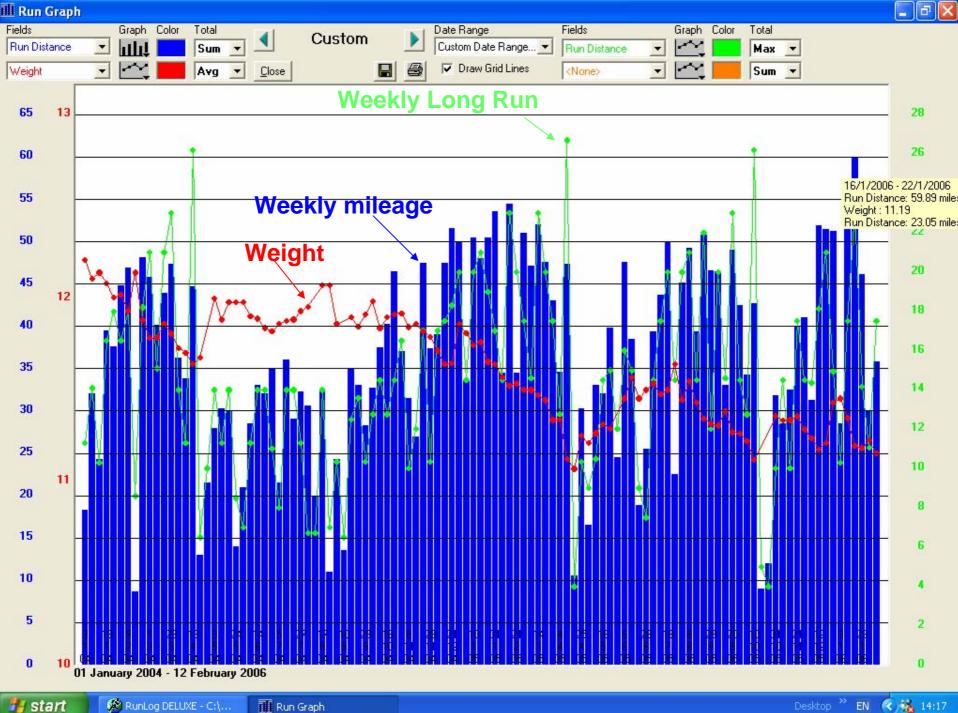


Psychobiology Research Group



Pharmacogenetics: Any relevance to clinical practice?


Hamish McAllister-Williams

Knowledge of the literature

Desktop 🐣 🔇 👬 🌺 🔣 📇 🗖 🕥 🦏 🛲 14:32

Experience

London 2004

London 2005

Amsterdam 2005

Plan

- What is pharmacogenetics and why might it be of interest in psychiatry?
- What are some of the findings in pharmacogenetics esp. relating to antidepressants and antipsychotics?
- Do these have any current or future clinical relevance?

Why Pharmacogenetics?

- Traditional use of medication in psychiatry
 - Complex poorly understood aetiology of illness
 - Trial and error
 - Restricted knowledge of drug action
 - Can take significant periods of time before it is known if a response will occur or whether side effects will be a problem
 - Biological predictors not come through to date: too great a variability between individuals?
 - Lowers compliance and affects prognosis (Black et al. 2001)

Pharmacogenetics

- Hypothesis
 - Variability in response, toxicity and adverse effects following drug treatment is influenced by genetic variation
- Advantages
 - Genotyping can be done any time
 - Not influenced by current treatment
 - Can be measured very reliably
 - Genome fully sequenced
 - Easy to do peripheral blood sample

Potential clinical place for pharmacogenetics

1. Narrow Therapeutic Window

- Accurate drug level critical
- May be in connection with Therapeutic Drug Monitoring

2. Significant Side Effects

- Side effects may cause major harm
- Side effects may lead to significant treatment cost

3. Efficacy Issues

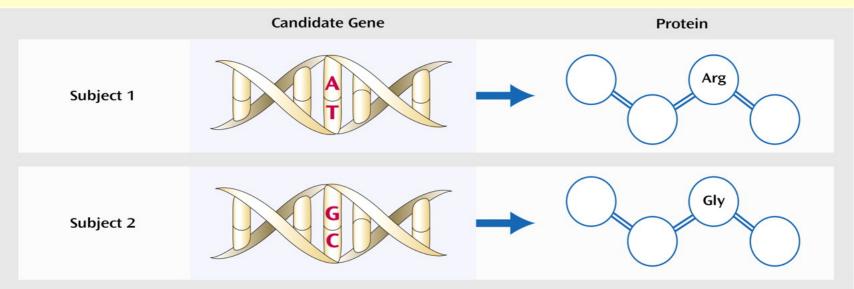
- Difficult to determine effectiveness of drug quickly
- The consequences of non-response are great
- 4. Non-emergency Applications (initially)
 - Sufficient turnaround time to conduct test has to be allowed
 - Need eliminated if prospective genotyping becomes standard

Heritability – a starting point

- FHx of response or side effects
 - Poor man's pharmacogenetics?
- Antidepressants
 - 38 family pairs concordant for response to Imipramine (Angst, 1964)
 - 12/12 and 10/12 concordance of first degree relatives (Pare et al. 1962; Pare & Mack, 1971)
 - Retrospective study in 4 families who responded to tranylcypromine but not other ADs (O'Reilly et al. 1994)
 - 67% of 1° rels of fluvoxamine responders responded (Franchini et al. 1998)
- Antipsychotics
 - Afro-Caribbean greater acute response than Caucasians (Emsley et al. 2002)
 - Little other supportive data

Definition of some terms

- Pharmacogenetics
 - The study of candidate genes that may influence drug effects and metabolism
- Pharmacogenomics
 - The study of all genes (and their expression) in the genome that may influence drug effects and metabolism
 - Needs large-scale high-through put techniques to screen the genome

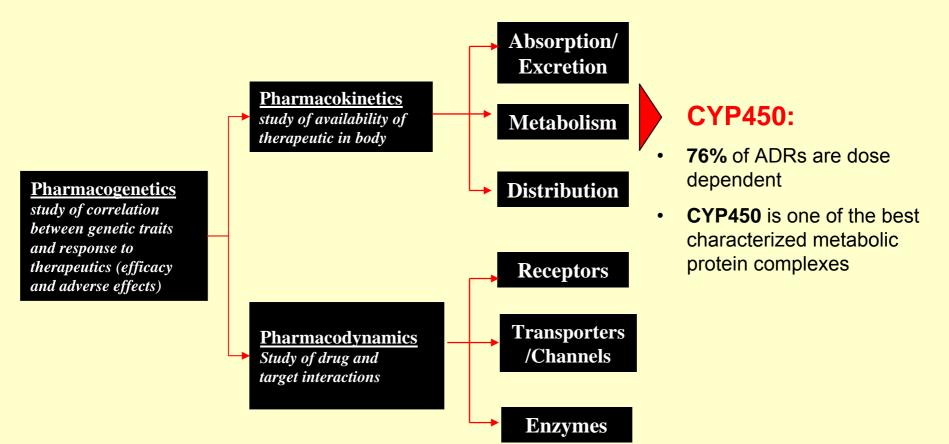

The origins of pharmacogenetics

- Isoniazid (Kalow, 1962)
 - Can lead to neurological problems in some patients
 - Due to being poor metabolisers of isoniazid due to reduced activity of N-acetyltransferase
 - Subsequently shown to be due to genetic variation in this gene

Genetic Variation

- Polymorphism
 - Genetic variation that occurs with a frequency
 ≥ 1% in the population
 - Various types
 - SNPs (Single nucleotide polymorphisms)
 - Repetitive DNA sequences
 - Must be functional (?)
 - Alter the expression levels or conformation of a drug-related protein

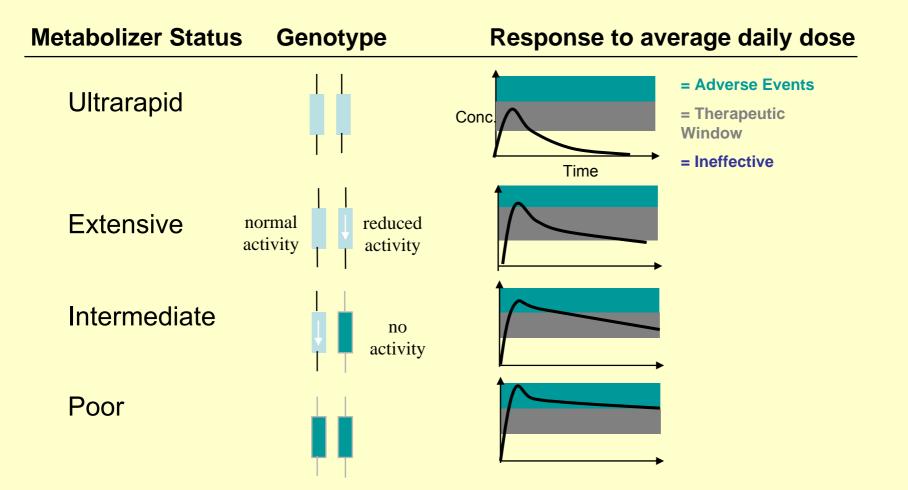
Single Nucleotide Polymorphism (SNP) in the Coding Region of a Gene

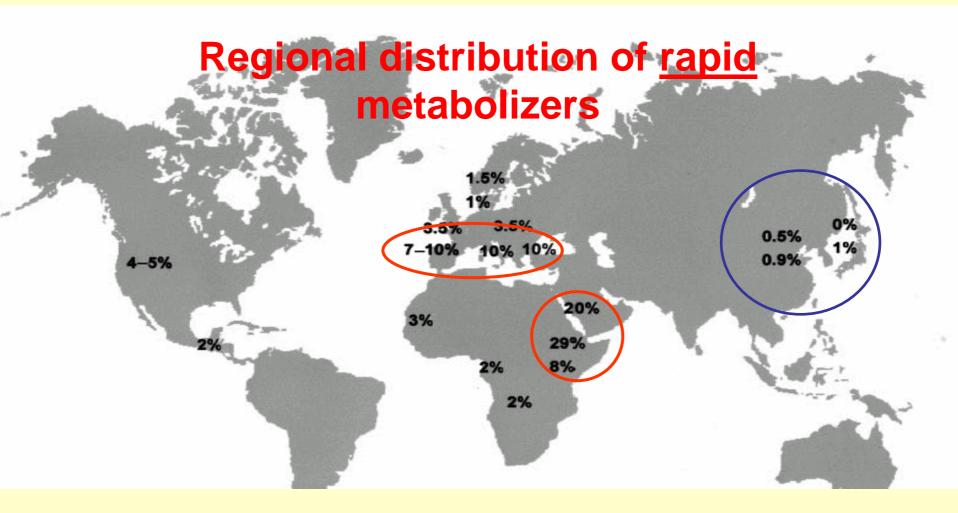

- SNP results in alteration of the amino acid sequence of the corresponding protein
 - arginine (Arg) substituted for glycine (Gly)
 - Distinct protein structures could result in phenotypic differences between the subjects, such as variation in response to medication.

Taken from Malhotra et al. 2004 Am.J.Psych.

Pharmacogenetics: Association studies

- Association of polymorphisms of candidate genes in individuals with different responses to treatment
- Useful for identifying genes of major effect
- Problems
 - Definition of phenotype
 - Diagnostic heterogeneity
 - Response assessment
 - Placebo response
 - Effects of previous treatments
 - Sample size
 - Duration of treatment
 - Ethnicity
 - Comorbid illness and concomitant medication
 - Response probably determined by multiple genes of small effect


Pharmacogenetic tree



Pharmacokinetics: CYP450

- CYP450 enzymes polymorphic with e.g. 70+ variants of CYP2D6 gene
 - Some of these affect functionality
 - Reduced activity
 - CYP1A2*1C, CYP2D6*10B, CYP2C9*2
 - Increased activity
 - CYP1A2*1F, CYP2D6*2xn

Drug Concentrations by Genotype

Ingelman-Sundberg (2001) Journal of Internal Medicine 250: 186

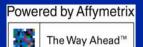
CYP2D6 and dosing of antidepressants

Genetic analysis may allow for appropriate dosing:

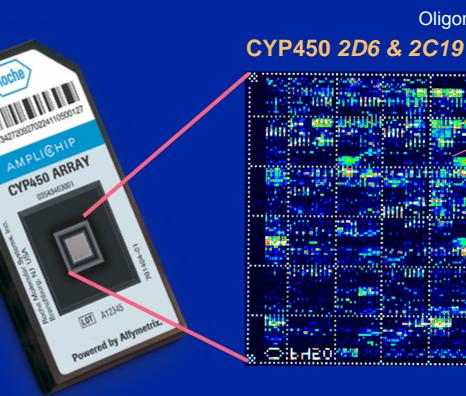
Percent of normal dose

Drug	UM	EM	IM	PM
Venlafaxine	-	130%	80%	20%
Desipramine	260%	130%	80%	20%
Fluoxatine	-	120%	-	60%
Mianserin	300%	110%	-	70%

Source: Kirchheiner et al., Acta Psychiatr. Scand 2001: 104: 173-192


CYP450 Polymorphism Findings

- No association between CYP450 polymorphisms and response to antipsychotics or antidepressants identified to date
- CYP2D6 and CYP1A2 associated with increased side effects of antipsychotics (TD and PSx)(Basile et al. 2000; Lam et al. 2001)
- CYP2D6 and CYP2C19 associated with increased side effects with sertraline (Wang et al. 2001)
 - N.B. wide therapeutic index with SSRIs


Roche

AMPLI©HIP

The AmpliChip tests are based on Affymetrix microarray technology AmpliChip CYP450 CE-IVD

labeled DNA target Oligonucleotide probe

> To address the relevant genetic variations, each array contains over 15,000 different probes complementary to sense and anti-sense P450 genomic DNA. Probes range in length from 18mer to 22mer

Pharmacodynamics

- The interaction of a drug with a target molecule
 - Receptors, enzymes, transporters, ion channels
- Leads to therapeutic effects
- Can lead to side effects

Dopamine receptors and antipsychotics

- DRD2 polymorphisms
 - Associated with early response to HDL and Risperidone (Malhotra et al. 1999; Schafer et al. 2001; Mata et al. 2002)
 - <u>Not</u> long-term clozapine response (Arranz et al. 1998)
 - <u>Not</u> TD (Kaiser et al. 2002)
 - BUT N.B. largest DRD gene with many polymorphisms
- DRD3 polymorphisms
 - Associated with clozapine response (Scharfetter et al. 1998)
 - Effect of olanzapine on +ve symptoms (Staddon et al. 2002)
 - Meta-analysis shows small risk of TD (Lerer et al. 2002)
- DRD4 polymorphisms
 - No consistent association with clozapine response (Malhotra et al. 2004)

DRD3 and antipsychotic induced TD

- DRD3 S9G polymorphism associated with TD shown in meta-analysis (Lerer et al. 2002)
 - G allele has higher affinity for DA (Lundstrom et al. 1996)
 - PET study before and after HDL (Potkin et al. 2002)
 - G/G genotype have greater metabolism in striatum
 - Greatest activity in striatum associated with greatest TD

5-HT Receptors and antipsychotics

- 5-HT_{2A} polymorphisms
 - 2 different ones associated with clozapine non-response in European and American populations (Arranz et al. 1995; Masellis et al. 1998)
 - 1 associated with risperidone and clozapine response in Chinese populations (Lane et al. 2002)
 - Increased risk of TD (Tan et al. 2001)
- 5-HT_{2C} polymorphisms
 - Meta-analysis suggests role in clozapine response (Sodhi et al. 1999)
 - Risk of TD (Segman et al. 2000)
 - Risk of weight gain (Reynolds et al. 2003)
- 5-HT₆
 - ?Clozapine response (Yu et al. 1999; Masellis et al. 2001)

5-HT Receptors and antipsychotics: The case of the non-functional polymorphism

- Association of 5-HT_{2A} T102C polymorphism with response to clozapine (Arranz et al. 1995)
- However.....
 - Not replicated by several (smaller) studies (Malhotra et al. 1996; Nothen et al. 1995; Lin et al. 1999; Masellis et al. 1998)
 - T102C does NOT result in amino acid substitution and does NOT effect function of 5-HT_{2A} receptor (Masellis et al. 1995)
- BUT....
 - Strong linkage disequilibrium with polymorphism in the promotor region of the gene (Arranz et al. 1998)
 - Meta-analysis confirms association (Arranz et al. 1998)
 - Opposite association in Chinese (Lane et al. 2002)

5-HT Receptors and antidepressants

- 5-HT_{2A} polymorphisms
 - Marginal association with SSRI response (Cusin et al. 2002)
- 5-HT_{1A} polymorphism
 - Functional
 - Associated with alterations in expression of 5-HT_{1A} receptors (Lemonde et al. 2003)
 - Associated with response to TCAs and SSRIs (Serretti et al. 2004; Lemonde et al. 2004)

5-HT Transporter

- Polymorphism in the 5-HTT promoter region (5-HTTLPR) – s and I forms
 - s/s associated with an stress X genetic interaction in vulnerability for depression (Wilhelm et al. 2006)
 - I/I associated with SSRI greater response in Caucasians (Smeraldi et al. 1998)
 - Response also faster (Pollock et al. 2000; Zanardi et al. 2000)
 - ? Effect in Asians non-response (Kim et al. 2000) but response in Chinese (Yu et al. 2002)
 - s/s associated with antidepressant induced mania (Mundo et al. 2001)

Other proteins

- Tryptophan Hydroxylase polymorphism
 - Poor response to fluvoxamine and paroxetine (Serretti et al. 2001)
 - N.B. non-functional
- MAO-A polymorphism
 - No association with antidepressant response (Serretti et al. 2004)
- G-protein polymorphisms
 - Association with depression and antidepressant response (Zill et al. 2000; Exton et al. 2003)
- BDNF polymorphism
 - Trend for association with SSRI response (Tsai et al. 2003)
- Inositol phosphate polymorphism
 - Inconsistent data with lithium (Steen et al. 1998)

Lithium

- Which candidate genes to look at??
- No association between lithium response and polymorphisms of:
 - DRD2, DRD3, DRD4, GABA_A, 5-HT_{2A}, 5-HT_{2C}, COMT, MAO-A, G-protein
 - Trend for association with tryptophan hydroxlyase
 - Association with 5-HTTLPR (Serretti et al. 2001)
- Genomic scan of lithium responders in a number of families (Turecki et al. 2001)
 - Association with markers on chromosomes 15 and 7

Combinations of genes

- Combining information from key response-related genes
 - Can constantly refine predictions by adding additional genes
 - Will need adjustments for ethnic mix
- Examples:
 - DRD3 and 5-HT_{2C} polymorphisms have additive effects on risk of TD (Segman & Lerer 2002)
 - DRD3 and CYP1A2 polymorphisms additive effects on risk of TD (Basile et al. 2000)
 - Response in Alzheimers predicted by combination of polymorphisms of APOE, PS1 and PS2 (Cacabelos et al. 2000)
- Problems
 - What statistical methods should be used?
 - Disequilibrium
 - Effects additive or synergistic?

Prediction of Clozapine response (Arranz et al. 2000)

- 200 schizophrenia patients (all white Caucasians of British origin) treated with clozapine (133 responded)
- 19 polymorphisms analysed
- 6 with strongest association with response (5-HT_{2A} X 2, 5-HT_{2C} X 2, 5-HTT, H₂) combined
 - PPV: 0.76 ± 0.08
 - NPV: 0.82 ± 0.16
 - Sensitivity 95.9% ± 0.04% (for identifying "satisfactory" responders)
 - Specificity 38.3 % ± 0.14% (for identifying poor responders)
- Utility?
 - "benefit of persevering with treatment in poor responders"
 - "more patients will benefit from clozapine if a positive response is predicted"
 - Other drugs
 - Olanz 70% correct predictions; add in DRD3 increases to 76%

Clozapine pharmacogenetic testing

- LGC (formerly the Laboratory of the Government Chemist, privatised in 1996)
 - DNA testing to identify patients with treatment resistant schizophrenia who may potentially respond to Clozapine
 - Based on Kerwin and Arranz findings
 - Cost of test = £150
 - Not recommended by D&T (see Newsletter Dec 2005)
 - Replication in prospective studies required (Malhotra et al. 2004)

Where to next?

- Independent replication of results needed
- Clarification of ethnic differences
- DNA micro-arrays for high through put analysis for a wider search of the genome
- Newer candidates
 - Genes who's expression is altered by disease
 - Signal transduction proteins

Conclusions

Pharmacogenetics:

Any relevance to clinical practice?

Possibly....

- CYP450 chip technology may be helpful for a minority of patients
 - A pragmatic trial is about to start
- Use of pharmacogenetics for efficacy predictions (e.g. for clozapine) less clear
- The future (5-10 years) does potentially look very interesting

Reviews

- General
 - Bolonna et al. (2004) Int Rev Psychiatry 16(4), 311-319
 - Malhotra et al. (2004) Am J Psychiatry 161(5), 780-796
- Antidepressants
 - Serretti & Artioli, (2004) Psychopharmacology 174, 490-503
- Antipsychotic induced weight gain
 - Correll & Malhotra (2004) Psychopharmacology 174, 477-489