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OVERVIEW

This talk is based on:

S.A. Mutter, A.-C. Radu, and A. Vdovina

C?-algebras of higher-rank graphs from groups acting on buildings, and explicit
computation of their K-theory

https://arxiv.org/abs/2012.05561

It will look like this:

1. Higher-rank graphs

2. k-cube groups

3. Why k-cube groups are higher-rank graphs

4. Higher-rank graph C?-algebras

5. K-theory computations (non-scary version)
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PREFACE
WHY DO WE WANT MORE C?-ALGEBRAS?

k-rank graphs are primarily studied for their associated graph algebras,

though they themselves are defined categorically.

Our approach is geometrical—certain groups acting on buildings and

products of trees have the structure of a k-rank graph.

The K-theory of these algebras is a great way to distinguish them from each

other, showing that our constructions do indeed produce new C?-algebras.

Thus we have new bridges between operator algebras, geometric group

theory, and category theory.
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HIGHER-RANK GRAPHS

We might describe a directed graph G by its vertex

set Λ0 and edge set Λ1.

An edge e ∈ Λ1 is an arrow connecting two vertices.

We can denote this by an ordered pair of vertices

(sG(e), rG(e)), telling us the domain sG and range rG

of e.

A sink is a vertex which is the domain of no edges.

A source is a vertex which is the range of no edges.

A path in a graph is a finite sequence of edges (en)

such that rG(ei) = sG(ei+1).
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HIGHER-RANK GRAPHS

We write Λ to denote the set of all paths in G.

Two paths µ = (µi)
m
i=1 and ν = (νi)

n
i=1 in Λ are

concatenatable iff rG(µm) = sG(ν1).

There is a function d : Λ→ N which returns the

length of a path.

Clearly d(µν) = d(µ) + d(ν).

We write Λn for the set of paths λ with d(λ) = n.

Λ and d encode all the necessary information to

replicate G (in fact we only need Λ0 and Λ1).
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HIGHER-RANK GRAPHS

DEFINITION (1-RANK GRAPH)

Let Λ be a countable category. We are interested in the morphisms of this
category, so we identify Ob(Λ) with the identity morphisms in Hom(Λ).

For a morphism λ ∈ HomΛ(A,B), define domain and range maps s(λ) := A, and
r(λ) := B.

Now, two morphisms ν, µ are composable iff r(ν) = s(µ); then µν ∈ Λ.

Let d : Λ→ N be a functor with the following factorisation property:

For every λ ∈ Λ and m,n ∈ N with d(λ) = m + n, there are unique elements
µ, ν ∈ Λ such that λ = µν, d(µ) = m and d(ν) = n.

We call the pair (Λ, d) a 1-rank graph.
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HIGHER-RANK GRAPHS

(1-RANK GRAPH)
Λ countable category.

ν, µ ∈ Λ composable iff r(ν) = s(µ).

d : Λ→ N s.t. d(λ) = m + n⇒ d(µ) = m, d(ν) = n,
and λ = µν for some unique µ, ν ∈ Λ.

How do we build a graph G from (Λ, d)?

Write Λn := {λ ∈ Λ | d(λ) = n}.
The vertex and edge sets of G are Λ0, Λ1 resp.

rG(λ) = s(λ) and sG(λ) = r(λ).

The converse construction also works.
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HIGHER-RANK GRAPHS

(k-RANK GRAPH)
Λ countable category, and k ≥ 1.

ν, µ ∈ Λ composable iff r(ν) = s(µ).

d : Λ→ Nk s.t. if d(λ) = m + n for some m,n ∈ Nk, then we can find
unique elements µ, ν ∈ Λ such that d(µ) = m, d(ν) = n, and λ = µν.

We call d the degree map.

Write Λn := {λ ∈ Λ | d(λ) = n}. We call elements of Λ0 vertices.

Define the set Λn(v) := {λ ∈ Λn | r(λ) = v}.
We say Λ is row-finite if Λn(v) is finite, and that Λ has no sources if

Λn(v) 6= ∅, for all v ∈ Λ0 and n ∈ Nk.
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HIGHER-RANK GRAPHS
EXAMPLES

We can draw any 1-graph as a directed graph.

When k ≥ 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set.

In general a k-coloured graph will not have the required

factorisation property, so we shoehorn it in.

Consider this example where k = 2. Give blue edges degree

(1,0), and orange edges degree (0,1).

d(e1) = (1,0), d(f1) = (0,1), and d(f1e1) = (1,1). But

d(e2f1) = (1,1), and f1e1 and e2f1 both go from v1 to v2.

So, in the 2-graph, we must define f1e1 = e2f1. Likewise, we

identify f2e2 = e1f2.
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HIGHER-RANK GRAPHS
EXAMPLES

Let Ωk be the countable category defined by object set Ob(Ωk) = Ω0
k := Nk,

and morphism set Hom(Ωk) := {(m,n) ∈ Nk × Nk | m ≤ n (entrywise)}.

Define range and domain maps r(m,n) := m, s(m,n) := n, degree map

d(m,n) := n−m, and composition (l,m)(m,n) := (l,n).

This is a k-rank graph, which we can draw as a non-negative integer lattice.
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HIGHER-RANK GRAPHS
EXAMPLES
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k-CUBE GROUPS

Let E1, . . . , Ek be alphabets, sets of even size ≥ 4, each equipped with a

fixed-point-free involution e 7→ e−1. E.g. E1 = {x1, x2, x−1
1 , x−1

2 }.
We are going to construct

(k
2

)
sets of squares, with each pair of parallel sides

labelled from one alphabet.

The squares will be pointed and oriented, and the sides will be directed

arrows, with e−1 being the reverse arrow to e.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 12 / 32



k-CUBE GROUPS

Let E1, . . . , Ek be alphabets, sets of even size ≥ 4, each equipped with a

fixed-point-free involution e 7→ e−1. E.g. E1 = {x1, x2, x−1
1 , x−1

2 }.

We are going to construct
(k

2

)
sets of squares, with each pair of parallel sides

labelled from one alphabet.

The squares will be pointed and oriented, and the sides will be directed

arrows, with e−1 being the reverse arrow to e.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 12 / 32



k-CUBE GROUPS

Let E1, . . . , Ek be alphabets, sets of even size ≥ 4, each equipped with a

fixed-point-free involution e 7→ e−1. E.g. E1 = {x1, x2, x−1
1 , x−1

2 }.
We are going to construct

(k
2

)
sets of squares, with each pair of parallel sides

labelled from one alphabet.

The squares will be pointed and oriented, and the sides will be directed

arrows, with e−1 being the reverse arrow to e.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 12 / 32



k-CUBE GROUPS

Let E1, . . . , Ek be alphabets, sets of even size ≥ 4, each equipped with a

fixed-point-free involution e 7→ e−1. E.g. E1 = {x1, x2, x−1
1 , x−1

2 }.
We are going to construct

(k
2

)
sets of squares, with each pair of parallel sides

labelled from one alphabet.

The squares will be pointed and oriented, and the sides will be directed

arrows, with e−1 being the reverse arrow to e.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 12 / 32



k-CUBE GROUPS

x1

y1

x2

y2

x2

y3

x−1
2

y4

x2

y2

x1

y1

x1

z1

x2

z−1
2

x3

z−1
1

x−1
1

z6

y3

z−1
1

y2

z−1
3

y1

z−1
7

y−1
3

z−1
2

y2

z−1
3

y−1
1

z1

y5

z1

y−1
3

z7

Let E1, . . . , Ek be alphabets, sets of even size ≥ 4, each equipped with a

fixed-point-free involution e 7→ e−1. E.g. E1 = {x1, x2, x−1
1 , x−1

2 }.
We are going to construct

(k
2

)
sets of squares, with each pair of parallel sides

labelled from one alphabet.

The squares will be pointed and oriented, and the sides will be directed

arrows, with e−1 being the reverse arrow to e.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 12 / 32



k-CUBE GROUPS

x1

y1

x2

y2

x2

y3

x−1
2

y4

x2

y2

x1

y1

x1

z1

x2

z−1
2

x3

z−1
1

x−1
1

z6

y3

z−1
1

y2

z−1
3

y1

z−1
7

y−1
3

z−1
2

y2

z−1
3

y−1
1

z1

y5

z1

y−1
3

z7

Let E1, . . . , Ek be alphabets, sets of even size ≥ 4, each equipped with a

fixed-point-free involution e 7→ e−1. E.g. E1 = {x1, x2, x−1
1 , x−1

2 }.
We are going to construct

(k
2

)
sets of squares, with each pair of parallel sides

labelled from one alphabet.

The squares will be pointed and oriented, and the sides will be directed

arrows, with e−1 being the reverse arrow to e.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 12 / 32



k-CUBE GROUPS

x1

y1

x2

y2

x2

y3

x−1
2

y4

x2

y2

x1

y1

x1

z1

x2

z−1
2

x3

z−1
1

x−1
1

z6

y3

z−1
1

y2

z−1
3

y1

z−1
7

y−1
3

z−1
2

y2

z−1
3

y−1
1

z1

y5

z1

y−1
3

z7

We want to glue these squares together to make k-dimensional cubes.

We design our squares in such a way as to make this possible.

We also want the property that each possible “corner” of a cube occurs

exactly once.

Here, for example, we have {x1, y−1
1 , z−1

1 }, {x3, y−1
2 , z1}, and so on.
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k-CUBE GROUPS

DEFINITION (k-CUBE GROUP)

Let E1, . . . , Ek be a collection of alphabets, and let R be the set of pointed squares
labelled by (x, y, x′, y′) with x, x′ ∈ Ei and y, y′ ∈ Ej for i < j.

Suppose that R has the following properties:

1. If (x, y, x′, y′) ∈ R, then (x−1, (y′)−1, (x′)−1, y−1), (x′, y′, x, y), and
((x′)−1, y−1, x−1, (y′)−1) are all distinct, and in R.

2. The squares in R can be glued together to make pointed k-cubes.

3. Each combination {e1, . . . , ek | ei ∈ Ei} occurs at the corner of precisely one
k-cube, up to symmetry.

We call the group Γ := 〈E1 t · · · t Ek | xyx′y′ = 1 whenever (x, y, x′, y′) ∈ R〉 a
k-cube group.
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k-CUBE GROUPS

What does it mean “up to symmetry”?

Each geometric k-cube produces 2k pointed k-cubes.
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The symmetries map squares labelled from alphabets Ei, Ej to other squares

labelled from Ei, Ej.
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k-CUBE GROUPS
EXAMPLES

EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA,
2019)
Γ′{3,5,7} := 〈a1, a2, b1, b2, b3, c1, c2, c3, c4 | R〉, where

R :=
{

a1b1a2b2, a1b2a2b−1
1 , a1b3a−1

2 b1, a1b−1
3 a1b−1

2 ,

a1b−1
1 a−1

2 b3, a2b3a2b−1
2 , a1c1a−1

2 c−1
2 , a1c2a−1

1 c3,

a1c3a−1
2 c−1

4 , a1c4a1c−1
1 , a1c−1

4 a2c2, a1c−1
3 a2c1,

a2c3a2c−1
2 , a2c4a−1

2 c1, c1b1c3b−1
3 , c1b2c4b−1

2 , c1b3c−1
4 b2,

c1b−1
3 c4b3, c1b−1

2 c2b1, c1b−1
1 c4b−1

1 , c2b2c−1
3 b−1

3 ,

c2b3c4b1, c2b−1
3 c3b3, c2b−1

2 c3b2, c2b−1
1 c3b−1

1 , c3b1c4b2
}

.
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c2

b1

a2c4

b2

a2

b1

a1
c3
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k-CUBE GROUPS
EXAMPLES

EXAMPLE (k = 4, FREE GROUP)
Consider the product of four free groups, each with two generators, defined as
follows:

F4
2 := 〈a1, a2, b1, b2, c1, c2, d1, d2 | [ai, bj], [ai, cj], [ai, dj],

[bi, cj], [bi, dj], [ci, dj] for all i, j ∈ {1,2}〉.

This is a 4-cube group.
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k-CUBE GROUPS
EXAMPLES

EXAMPLE (k = 4, MRV)
Γ{1,2,3,4} := 〈a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3 | R〉, where
R :=

{
a1b1a−1

3 b1, a1b−1
1 a−1

2 b3, a1b2a2b2, a1b−1
2 a3b−1

3 , a1b3a−1
2 b−1

1 , a1b−1
3 a3b−1

2 ,

a2b3a3b3, a3b1a−1
2 b2, a3b2a−1

2 b1, a1c1a−1
2 c1, a1c−1

1 a1c−1
3 , a1c2a−1

1 c−1
2 , a1c3a3c3,

a2c1a2c−1
2 , a2c2a−1

3 c2, a2c3a−1
2 c−1

3 , a3c−1
1 a−1

3 c1, a3c2a3c−1
3 , a1d1a−1

3 d3, a1d−1
1 a2d2,

a1d2a2d−1
1 , a1d−1

2 a1d−1
3 , a1d3a−1

3 d1, a2d1a2d−1
3 , a2d−1

2 a3d3, a2d3a3d−1
2 , a3d1a3d2,

b1c1b−1
3 c1, b1c−1

1 b−1
2 c3, b1c2b2c2, b1c−1

2 b3c−1
3 ,

b1c3b−1
2 c−1

1 , b1c−1
3 b3c−1

2 , b2c3b3c3, b3c1b−1
2 c2, b3c2b−1

2 c1,

b1d1b−1
2 d1, b1d−1

1 b1d−1
3 , b1d2b−1

1 d−1
2 , b1d3b3d3,

b2d1b2d−1
2 , b2d2b−1

3 d2, b2d3b−1
2 d−1

3 , b3d−1
1 b−1

3 d1, b3d2b3d−1
3 ,

c1d1c−1
3 d1, c1d−1

1 c−1
2 d3, c1d2c2d2, c1d−1

2 c3d−1
3 ,

c1d3c−1
2 d−1

1 , c1d−1
3 c3d−1

2 , c2d3c3d3, c3d1c−1
2 d2, c3d2c−1

2 d1
}

.
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k-CUBE GROUPS
EXAMPLES
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k-CUBE GROUPS

THEOREM

A group Γ is a k-cube group iff it acts freely and transitively on the set of vertices
of the product of k trees.

Given a k-cube group Γ = 〈E1, . . . , Ek | R〉, the subgroup generated by alphabets
E1, . . . , Ek−1 is a (k− 1)-cube group.

We can find k different (k− 1)-cube subgroups in this way. The group Γ is the
product of these groups, amalgamated over the free groups generated by their
pairwise intersections.

In general the converse is not true—it is difficult to find a family of k-cube

groups whose amalgamated product forms a (k + 1)-cube group.
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k-CUBE GROUPS
CONSTRUCTING A SHIFT SYSTEM

Let ∆ be the rank k affine building which is the k-dimensional cube complex

T|E1| × · · · × T|Ek|.

We identify elements of Γ with edges of ∆, so the set of

k-cubes Sk can be identified with the set of pointed, oriented chambers of ∆.

DEFINITION (ADJACENCY FUNCTIONS)

Let A,B ∈ Sk. We define adjacency functions M1, . . . ,Mk : Sk × Sk → {0,1},
where Mi(A,B) = 1 iff:

The first (k− 1)-dimensional face of A labelled by alphabets
E1, . . . , Êi, . . . , Ek coincide with the second such (k− 1)-face of B, and

Whenever Mi(A,B) = 1, if we stack A and B together so that their common
(k− 1)-faces overlap, we never have e and e−1 pointing to the same vertex.
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k-CUBE GROUPS
CONSTRUCTING A SHIFT SYSTEM

Consider this example for k = 3.

Suppose all black edges are labelled

from E1, magenta from E2, and

blue from E3.

M2(A,B) = 1 iff (u1, v1, u2, v2) =

(a−1
4 , b−1

3 , a−1
3 , b−1

2 ) and c1 6= w−1
1 ,

c3 6= w−1
3 , etc.

M3(A,C) = 1 iff (u2,w2, u3,w3) =

(x−1
1 , z−1

4 , x−1
4 , z−1

1 ) and y3 6= v−1
3 ,

etc.

u3

u1

u2

v2

v3

v2

v1
w4

w1

w2

w3
A

x4

x1

y2

y3

z4

z1

y2

y3

C

a4

a3

b2

b3

c4

c1

c2

c3
B
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k-CUBE GROUPS
A k-CUBE GROUP INDUCES A k-RANK GRAPH

THEOREM (MRV)

Let Γ be a k-cube group, and write the adjacency functions M1, . . . ,Mk as
matrices. Then each Mi has at least 3 non-zero entries in each row, and
MiMj = MjMi for all i, j.

THEOREM (MRV)
A k-cube group Γ has the unique common extension property.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 23 / 32



k-CUBE GROUPS
A k-CUBE GROUP INDUCES A k-RANK GRAPH

THEOREM (MRV)
Let Γ be a k-cube group, and write the adjacency functions M1, . . . ,Mk as
matrices. Then each Mi has at least 3 non-zero entries in each row, and
MiMj = MjMi for all i, j.

THEOREM (MRV)
A k-cube group Γ has the unique common extension property.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 23 / 32



k-CUBE GROUPS
A k-CUBE GROUP INDUCES A k-RANK GRAPH

THEOREM (MRV)
Let Γ be a k-cube group, and write the adjacency functions M1, . . . ,Mk as
matrices. Then each Mi has at least 3 non-zero entries in each row, and
MiMj = MjMi for all i, j.

THEOREM (MRV)
A k-cube group Γ has the unique common extension property.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 23 / 32



k-CUBE GROUPS
A k-CUBE GROUP INDUCES A k-RANK GRAPH

The UCE property says that in every dimension

2 ≤ n ≤ k, if we start with an n-dimensional cube

and find n adjacent n-cubes (one in each direction),

then we can uniquely extend the arrangement into a

2× 2 supercube.

Assign to each k-cube in Γ a vertex.

Draw an i-coloured arrow from A to B if B is

adjacent to A in the i direction.

The UCE property ensures that this k-coloured graph

has all the factorisation properties of a k-rank graph.

A B2

B3 C23

B1 C12

C13 D
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WHAT CAN k-RANK GRAPHS DO?
THE k-RANK GRAPH ALGEBRA

DEFINITION (k-RANK GRAPH ALGEBRA OF KUMJIAN-PASK)

Let Λ = (Λ, d) be a row-finite k-rank graph with no sources. We define the
k-rank graph algebra A(Λ) to be the universal C?-algebra generated by a family
{sλ | λ ∈ Λ} of partial isometries which have the following properties:

1. The set
{

sv | v ∈ Λ0
}

satisfies (sv)
2 = sv = s∗v and susv = 0 for all u 6= v.

2. If r(λ) = s(µ) for some λ, µ ∈ Λ, then sµλ = sµsλ.

3. For all λ ∈ Λ, we have s∗λsλ = ss(λ).

4. For all vertices v ∈ Λ0 and n ∈ Nk, we have: sv =
∑

λ∈Λn(v) sλs∗λ.

Without the row-finiteness condition, property 4 is not well-defined.
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WHAT CAN k-RANK GRAPHS DO?
THE k-RANK GRAPH ALGEBRA

THEOREM (EVANS, 2008)

Let Λ be a row-finite 2-rank graph with no sources. Then the K-theory of A(Λ) is
well understood.
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WHAT CAN k-RANK GRAPHS DO?
THE k-RANK GRAPH ALGEBRA

Let k = 3, and ∂1 := [I −MT
1 , I −MT

2 , I −MT
3 ], ∂3 := [I −MT

3 ,M
T
2 − I, I −MT

1 ]T,

∂2 :=


MT

2 − I MT
3 − I 0

I −MT
1 0 MT

3 − I

0 I −MT
1 I −MT

2

 .
Then K1(A(Λ)) ∼= ker(∂1)/ im(∂2)⊕ G1, and there is a short exact sequence

0 −→ coker(∂1)/G0 −→ K0(A(Λ)) −→ ker(∂2)/ im(∂3) −→ 0,

where G0 ⊆ coker(∂1) and G1 ⊆ ker(∂3).
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WHAT CAN k-RANK GRAPHS DO?
THE k-RANK GRAPH ALGEBRA

THEOREM (MRV)
There are similar (nastier) short exact sequences and isomorphisms for k = 4
and k = 5.

THEOREM (MRV)

Let Γ be a k-cube group, and Λ be its induced k-rank graph. Then A(Λ) is a
Kirchberg algebra— in particular, it is completely classified (up to isomorphism)
by its K-theory.
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k-CUBE GROUPS
COMPUTATION OF K-THEORY

EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA, 2019)
Γ′{3,5,7} := 〈a1, a2, b1, b2, b3, c1, c2, c3, c4 | R〉.

We have K1(A(Γ)) ∼= Z21 ⊕ (Z/2)6 ⊕ (Z/4)2 ⊕ (Z/12)2 ⊕ G1 and

0 −→ Z7 ⊕ (Z/4)2 ⊕ (Z/12)

G0
−→ K0(A(Γ)) −→ Z21 ⊕ (Z/4)2 ⊕ (Z/12) −→ 0,

for some G0 ⊆ Z7 ⊕ (Z/4)2 ⊕ (Z/12) and G1 ⊆ Z7.

We can deduce that the torsion-free part of K0 is isomorphic to Zr, and that
K1 ∼= Zr ⊕ (Z/2)6 ⊕ (Z/4)2 ⊕ (Z/12)2, for some 21 ≤ r ≤ 28.
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k-CUBE GROUPS
COMPUTATION OF K-THEORY

EXAMPLE (k = 4, FREE GROUP)

F4
2 := 〈a1, a2, b1, b2, c1, c2, d1, d2 | [ai, bj], [ai, cj], [ai, dj],

[bi, cj], [bi, dj], [ci, dj] for all i, j ∈ {1,2}〉.

Our short exact sequences give us (something like)
K0(A(F4

2)) ∼= K1(A(F4
2)) ∼= Z64 ⊕ Zr, where 0 ≤ r ≤ 64.

Compare our sequences with the values obtained for K0 and K1 by the Künneth
Theorem for tensor products: K0 ∼= K1 ∼= Z128 and we see that r is maximal.
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k-CUBE GROUPS
COMPUTATION OF K-THEORY

EXAMPLE (MRV)
Γ{1,2,3,4} := 〈a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3 | R〉.

We have written a program in Python which determines whether a group is a
4-cube group, and if so, outputs four adjacency matrices. In this example, Γ is a
4-cube group, but the adjacency matrices are very large. We are still awaiting the
computations of the K-theory in MAGMA.
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EPILOGUE

The K-theory of these algebras is a great way to distinguish them from each

other, showing that our constructions do indeed produce new C?-algebras.

Computing K-theory of k-rank graph algebras is hard (e.g. SAM 2020).

Next step: make the code work!

S.A. Mutter, A.-C. Radu, and A. Vdovina, C?-algebras of higher-rank graphs
from groups acting on buildings, and explicit computation of their K-theory

https://arxiv.org/abs/2012.05561

S.A. Mutter, The K-theory of the C?-algebras of 2-rank graphs associated to
complete bipartite graphs

https://arxiv.org/abs/2004.11602
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