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@ k-rank graphs are primarily studied for their associated graph algebras,
though they themselves are defined categorically.

«AO> 4F>r «=)r « =) = o>



@ k-rank graphs are primarily studied for their associated graph algebras,
though they themselves are defined categorically.

products of trees have the structure of a k-rank graph.
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@ k-rank graphs are primarily studied for their associated graph algebras,
though they themselves are defined categorically.

@ Our approach is geometrical—certain groups acting on buildings and
products of trees have the structure of a k-rank graph.

@ The K-theory of these algebras is a great way to distinguish them from each
other, showing that our constructions do indeed produce new C*-algebras.
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PREFACE

WHY DO WE WANT MORE C*-ALGEBRAS?

@ k-rank graphs are primarily studied for their associated graph algebras,
though they themselves are defined categorically.

@ Our approach is geometrical—certain groups acting on buildings and
products of trees have the structure of a k-rank graph.

@ The K-theory of these algebras is a great way to distinguish them from each
other, showing that our constructions do indeed produce new C*-algebras.

@ Thus we have new bridges between operator algebras, geometric group
theory, and category theory.
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@ We might describe a directed graph G by its vertex
set A? and edge set Al
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@ An edge e € Al is an arrow connecting two vertices.
We can denote this by an ordered pair of vertices

(sg(e),rg(e)), telling us the domain sg and range g
of e.
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@ We might describe a directed graph G by its vertex
set A° and edge set Al

We can denote this by an ordered pair of vertices
of e.

@ An edge e € Al is an arrow connecting two vertices.

(sg(e),rg(e)), telling us the domain sg and range g

@ A sink is a vertex which is the domain of no edges.
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@ We might describe a directed graph G by its vertex o\
set A? and edge set Al

@ An edge e € Al is an arrow connecting two vertices.
We can denote this by an ordered pair of vertices
(sg(e),rg(e)), telling us the domain sg and range 1¢
of e.

@ A sink is a vertex which is the domain of no edges.

@ A source is a vertex which is the range of no edges.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 4/32



HIGHER-RANK GRAPHS

@ We might describe a directed graph G by its vertex °
set A? and edge set Al e

@ An edge e € Al is an arrow connecting two vertices.
We can denote this by an ordered pair of vertices
(sg(e),rg(e)), telling us the domain s and range r¢ €2
of e.

@ A sink is a vertex which is the domain of no edges. €3

@ A source is a vertex which is the range of no edges.

@ A path in a graph is a finite sequence of edges (en)
such that rG(ei) = SG(6i+1).
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@ We might describe a directed graph G by its vertex
set A? and edge set Al

@ An edge e € Al is an arrow connecting two vertices.
We can denote this by an ordered pair of vertices
(sg(e),rg(e)), telling us the domain sg and range 1¢
of e.

@ A sink is a vertex which is the domain of no edges. €35,..
@ A source is a vertex which is the range of no edges.

@ A path in a graph is a finite sequence of edges (en)
such that rG(ei) = SG(6i+1).
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@ We write A to denote the set of all paths in G.
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@ Two paths y1 = (p;)"; and v = (1)1 in A are
concatenatable iff rg(um) = sg(v1).
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@ We write A to denote the set of all paths in G.

@ Two paths y1 = (p;)"; and v = (1)1 in A are
concatenatable iff rg(um) = sg(v1).

@
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@ We write A to denote the set of all paths in G.

@ Two paths y1 = (p;)"; and v = (1)1 in A are
concatenatable iff rg(um) = sg(v1).

@ There is a function d : A — N which returns the
length of a path.
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@ We write A to denote the set of all paths in G.

concatenatable iff rg(um) = sg(v1).

length of a path.

@ Two paths y1 = (p;)"; and v = (1)1 in A are

L 23
@ There is a function d : A — N which returns the

@ Clearly d(pv) = d(p) +d(v).

V1
M3

uv € A
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@ We write A to denote the set of all paths in G.

concatenatable iff rg(um) = sg(v1).

length of a path.

@ Two paths y1 = (p;)"; and v = (1)1 in A are

L 23
@ There is a function d : A — N which returns the

@ Clearly d(pv) = d(p) +d(v).

V1

@ We write A" for the set of paths A with d(\) = n.

M3

uv € A
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@ We write A to denote the set of all paths in G. °

@ Two paths y1 = (p;)"; and v = (1)1 in A are H1

concatenatable iff rg(um) = sg(v1).

There is a function d : A — N which returns the < g!
M2

length of a path.

Clearly d(pv) = d(u) +d(v).
We write A" for the set of paths A with d(\) = n.

A and d encode all the necessary information to

25
°

replicate G (in fact we only need A° and A%). uv € A
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DEFINITION (1-RANK GRAPH)
Let A be a countable category. We are interested in the morphisms of this
category, so we identify Ob(A) with the identity morphisms in Hom(A).
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DEFINITION (1-RANK GRAPH)

Let A be a countable category. We are interested in the morphisms of this
category, so we identify Ob(A) with the identity morphisms in Hom(A).

For a morphism X € Homy (A, B), define domain and range maps s(\) := A, and
r(\) :=B.
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category, so we identify Ob(A) with the identity morphisms in Hom(A).

For a morphism X € Homy (A, B), define domain and range maps s(\) := A, and
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Now, two morphisms v, u are composable iff r(v) = s(u); then uv € A.
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Let A be a countable category. We are interested in the morphisms of this
category, so we identify Ob(A) with the identity morphisms in Hom(A).

For a morphism X € Homy (A, B), define domain and range maps s(\) := A, and
r(\) :=B.

Now, two morphisms v, u are composable iff r(v) = s(u); then uv € A.
Let d : A — N be a functor with the following factorisation property:
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DEFINITION (1-RANK GRAPH)
Let A be a countable category. We are interested in the morphisms of this
category, so we identify Ob(A) with the identity morphisms in Hom(A).

For a morphism X € Homy (A, B), define domain and range maps s(\) := A, and

r(\) :==B.
Now, two morphisms v, u are composable iff r(v) = s(u); then uv € A.
Let d : A — N be a functor with the following factorisation property:

For every A € A and m,n € N with d(\) = m + n, there are unique elements

w,v € A such that A\ = pv, d(p) = mand d(v) = n.
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DEFINITION (1-RANK GRAPH)
Let A be a countable category. We are interested in the morphisms of this
category, so we identify Ob(A) with the identity morphisms in Hom(A).

For a morphism X € Homy (A, B), define domain and range maps s(\) := A, and

r(\) :==B.
Now, two morphisms v, u are composable iff r(v) = s(u); then uv € A.
Let d : A — N be a functor with the following factorisation property:

For every A € A and m,n € N with d(\) = m + n, there are unique elements

w,v € A such that A\ = pv, d(p) = mand d(v) = n.
We call the pair (A,d) a 1-rank graph.

[m]
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@ A countable category.

® v, i € A composable iff r(v) = s(u).

0d:A—Nst.dA\)=m+n=d(u) =m,dv)=n,
and \ = pv for some unique pu,v € A.
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® v, i € A composable iff r(v) = s(u).

0d:A—Nst.dA\)=m+n=d(u) =m,dv)=n,
and \ = pv for some unique pu,v € A.

@ How do we build a graph G from (A,d)?
@ Write A" :={A € A |d(\) =n}.
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® v, i € A composable iff r(v) = s(u).

@d:AN—>Nst.dN)=m+n=d(p) =m dv)=n,
and \ = pv for some unique pu,v € A.
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(1-RANK GRAPH)
@ A countable category.

® v, i € A composable iff r(v) = s(u).

@d:AN—>Nst.dN)=m+n=d(p) =m dv)=n,
and \ = uv for some unique u,v € A.

V1

3
@ How do we build a graph G from (A,d)?

@ Write A" :={A € A|d(\) =n}.

@ The vertex and edge sets of G are A°, Al resp. p € A
@ r6(\) =s(A\) and sg(A\) =r(N).

@ The converse construction also works.
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@ A countable category, and k > 1.

® v, i € A composable iff r(v) = s(u).
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® v, i € A composable iff r(v) = s(u).
ed:A—Nksit.
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@ A countable category, and k > 1.

® v, i € A composable iff r(v) = s(u).

@ d: A — Nfs.t. ifd(\) = m+ n for some m,n € N, then we can find

unique elements p,v € A such that d(u) =m, d(v) =n, and X = pv.
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@ A countable category, and k > 1.

® v, i € A composable iff r(v) = s(u).

e d: A — Nkst ifd(\) = m + n for some m,n € NK, then we can find
@ We call d the degree map.

unique elements p,v € A such that d(u) =m, d(v) =n, and X = pv.

@ Write A" := {\ € A | d()\) = n}. We call elements of A vertices.
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@ A countable category, and k > 1.

® v, i € A composable iff r(v) = s(u).

e d: A — Nkst ifd(\) = m + n for some m,n € NK, then we can find
unique elements p,v € A such that d(u) =m, d(v) =n, and X = pv.

@ We call d the degree map.
@ Write A" := {\ € A | d()\) = n}. We call elements of A vertices.
@ Define the set A™(v) := {\ € A" | r(\) = v}.

@ We say A is row-finite if A®(v) is finite, and that A has no sources if
AM(v) # ), for all v € A® and n € Nk,
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@ We can draw any 1-graph as a directed graph.

@ When k > 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set.
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@ We can draw any 1-graph as a directed graph.

@ When k > 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set.

@ In general a k-coloured graph will not have the required
factorisation property, so we shoehorn it in.
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@ We can draw any 1-graph as a directed graph.

@ When k > 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set.

€1
@ In general a k-coloured graph will not have the required
factorisation property, so we shoehorn it in.

@ Consider this example where k = 2.

U1

S fo

€2
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@ We can draw any 1-graph as a directed graph.

€1
@ When k > 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set. (0
@ In general a k-coloured graph will not have the required
factorisation property, so we shoehorn it in.
@ Consider this example where k = 2. Give blue edges degree
(1,0), and orange edges degree (0,1).
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€2
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EXAMPLES

@ We can draw any 1-graph as a directed graph. €1
@ When k > 2, we represent a k-graph as a collection of k

coloured graphs which share the same vertex set. U1
@ In general a k-coloured graph will not have the required

factorisation property, so we shoehorn it in. fi fo
@ Consider this example where k = 2. Give blue edges degree

(1,0), and orange edges degree (0,1). e U
o d(er) = (1,0), d(f) = (0,1), and d(fie1) = (1,1). Q

€2
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EXAMPLES
@ We can draw any 1-graph as a directed graph. €1
@ When k > 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set. U1

@ In general a k-coloured graph will not have the required
factorisation property, so we shoehorn it in. fi fo
@ Consider this example where k = 2. Give blue edges degree

(1,0), and orange edges degree (0,1). e U

) d(el) = (1,0), d(fl) = (0, 1), and d(flel) = (1, 1) But 0

d(eaf1) = (1,1), and fre; and eaf; both go from vy to va. o
2
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EXAMPLES
@ We can draw any 1-graph as a directed graph. €1
@ When k > 2, we represent a k-graph as a collection of k
coloured graphs which share the same vertex set. U1

@ In general a k-coloured graph will not have the required
factorisation property, so we shoehorn it in. fi fo
@ Consider this example where k = 2. Give blue edges degree
(1,0), and orange edges degree (0,1). e U
o d(er) = (1,0, d(f.) = (0,1), and d(fie1) = (1,1). But Q
d(eaf1) = (1,1), and fre; and eaf; both go from vy to va.
@ So, in the 2-graph, we must define fie; = eaf;. Likewise, we
identify foes = eqfa.

€9
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@ Let () be the countable category defined by object set Ob({) = QF := NK,
and morphism set Hom({) := {(m,n) € N* x N* | m < n (entrywise)}.
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@ Let () be the countable category defined by object set Ob({) = QF := NK,
and morphism set Hom({) := {(m,n) € N* x N* | m < n (entrywise)}.

@ Define range and domain maps r(m, n) := m, s(m,n) := n, degree map

d(m,n) := n —m, and composition (I, m)(m,n) := (I,n).
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and morphism set Hom({) := {(m,n) € N* x N* | m < n (entrywise)}.

d(m,n) := n —m, and composition (I, m)(m,n) := (I,n).

@ Define range and domain maps r(m, n) := m, s(m,n) := n, degree map

@ This is a k-rank graph, which we can draw as a non-negative integer lattice.
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@ This is a k-rank graph, which we can draw as a non-negative integer lattice.

@ Let () be the countable category defined by object set Ob({) = QF := NK,
and morphism set Hom({) := {(m,n) € N* x N* | m < n (entrywise)}.

d(m,n) := n —m, and composition (I, m)(m,n) := (I,n).

O S

@ Define range and domain maps r(m, n) := m, s(m,n) := n, degree map
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EXAMPLES

@ Let () be the countable category defined by object set Ob({) = QF := NF,
and morphism set Hom({) := {(m,n) € N* x N* | m < n (entrywise)}.

@ Define range and domain maps r(m,n) := m, s(m, n) := n, degree map
d(m,n) := n — m, and composition (I, m)(m,n) := (1,n).

@ This is a k-rank graph, which we can draw as a non-negative integer lattice.

i i i i i
< ®

S e S CERETEERE Q@<= €= Q@<
s(A)
4,
A S Q(Q 2 @<---- @ ® @<
r(\) @ o o o 0
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EXAMPLES

@ Let () be the countable category defined by object set Ob({) = QF := NF,
and morphism set Hom({) := {(m,n) € N* x N* | m < n (entrywise)}.

@ Define range and domain maps r(m,n) := m, s(m, n) := n, degree map
d(m,n) := n — m, and composition (I, m)(m,n) := (1,n).

@ This is a k-rank graph, which we can draw as a non-negative integer lattice.
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@ Let Eq,...,E; be alphabets, sets of even size > 4, each equipped with a
fixed-point-free involution e — e~!. E.g. E; = {xl,xz,xl_l,xz_l}.
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@ Let Eq,...,E; be alphabets, sets of even size > 4, each equipped with a
labelled from one alphabet.

fixed-point-free involution e — e~!. E.g. E; = {xl,xz,xl_l,xz_l}.

@ We are going to construct (’2‘) sets of squares, with each pair of parallel sides
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k-CUBE GROUPS

@ Let Eq,...,E; be alphabets, sets of even size > 4, each equipped with a
fixed-point-free involution e — e~ 1. E.g. E; = {xl,x27x1_1,x2_1}.

@ We are going to construct (5) sets of squares, with each pair of parallel sides
labelled from one alphabet.

@ The squares will be pointed and oriented, and the sides will be directed
arrows, with e~! being the reverse arrow to e.
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To l‘;l T Y2 1/;1
Y2 Y1 Ya Ys nt A P 2ozt
€1 X2 T Ys Y2
o oyt vs ' vs'
Y Y2 26 ozt P Z7 21
T T3 Y1 Ys
@ Let Eq,...,E; be alphabets, sets of even size > 4, each equipped with a

fixed-point-free involution e — e~ 1. E.g. E; = {xl,x27x1_1,x2_1}.

@ We are going to construct (5) sets of squares, with each pair of parallel sides
labelled from one alphabet.

@ The squares will be pointed and oriented, and the sides will be directed
arrows, with e~! being the reverse arrow to e.
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k-CUBE GROUPS

To l‘;l T Y2 1/;1
Y2 Y1 Ya Ys nt A P 2ozt
€1 X2 T Ys Y2
o oyt vs ' vs'
Y1 Y2 26 ozt P Z7 21
T T3 Y1 Ys
@ Let Eq,...,E; be alphabets, sets of even size > 4, each equipped with a

fixed-point-free involution e — e~ 1. E.g. E; = {xl,x27x1_1,x2_1}.

@ We are going to construct (5) sets of squares, with each pair of parallel sides
labelled from one alphabet.

@ The squares will be pointed and oriented, and the sides will be directed
arrows, with e~! being the reverse arrow to e.
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T2

1 €T —1
To ? Y2 i
Y2 W Ys  Ys nt A 2t ot 2ozt
T T2 Iy Ys Y2
o ! vs ' us'
Y Y2 26z ! Zy ! 27 ! 27 21
To T3 n Ys
@ We want to glue these squares together to make k-dimensional cubes.
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Y2 Y1

@ We want to glue these squares together to make k-dimensional cubes.
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T2

Y2 Y1

@ We want to glue these squares together to make k-dimensional cubes.

«Or «Fr o« > DAy

a




T2

Y2 Y1

T

26

Y2
21

Z3

@ We want to glue these squares together to make k-dimensional cubes.
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T2

yt
Y2 U 2ozt
T Y2
T
Z6 21
Z3

@ We want to glue these squares together to make k-dimensional cubes.
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T2

yt
Y2 2ozt
T Y2
x1
26 21
T3

@ We want to glue these squares together to make k-dimensional cubes.
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T2
Y2 Y1

T
26 21

T3

Z1

Y2

Y1

z3

@ We want to glue these squares together to make k-dimensional cubes.
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T2
Y2 Y1

T

26

21Y A

T3

Y1

Y2

z3

@ We want to glue these squares together to make k-dimensional cubes.
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Y2

T

x

26

T

Y1 4

Z1

Z3

21

Y1

Y2

z3

@ We want to glue these squares together to make k-dimensional cubes.

Y2

Y2
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Y2

T

x

26

T

Y1 4

21

Z3

21

Y1

Y2

z3

@ We want to glue these squares together to make k-dimensional cubes
@ We design our squares in such a way as to make this possible.

Y2

Y2
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k-CUBE GROUPS

To X2 Z3
Y2 Y1
T
Y2 Y2
T 1
26 21 Y~ Z3
€3 Y2 26 X3

@ We want to glue these squares together to make k-dimensional cubes.
@ We design our squares in such a way as to make this possible.

@ We also want the property that each possible “corner” of a cube occurs

exactly once.
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k-CUBE GROUPS

To X2 Z3
Y2 Y1
T
Y2 Y2
T 1
26 21 Y~ Z3
€3 Y2 26 X3

@ We want to glue these squares together to make k-dimensional cubes.
@ We design our squares in such a way as to make this possible.

@ We also want the property that each possible “corner” of a cube occurs
exactly once.

@ Here, for example, we have

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021 13/32



k-CUBE GROUPS

T2
Y2 Y1
Z1
T 1
26 21 Y~ Z3
Z3 Y2

@ We want to glue these squares together to make k-dimensional cubes.
@ We design our squares in such a way as to make this possible.

@ We also want the property that each possible “corner” of a cube occurs
exactly once.

@ Here, for example, we have {xl,yl_l,zl_l},
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k-CUBE GROUPS

T2
Y2 Y1
Z1
T 1
26 21 Y~ Z3
Z3 Y2

@ We want to glue these squares together to make k-dimensional cubes.
@ We design our squares in such a way as to make this possible.

@ We also want the property that each possible “corner” of a cube occurs
exactly once.

@ Here, for example, we have {x1,y;*,27'}, {x3,¥,',21}, and so on.
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DEFINITION (k-CUBE GROUP)
Let E1, ..., Ej be a collection of alphabets, and let R be the set of pointed squares
labelled by (x,y,x’,y’) with x,x’ € E;andy,y' € Ej for i <.

[m]
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DEFINITION (k-CUBE GROUP)

Let E1, ..., Ej be a collection of alphabets, and let R be the set of pointed squares
labelled by (x,y,x’,y’) with x,x’ € E;andy,y' € Ej for i <.

Suppose that R has the following properties:
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DEFINITION (k-CUBE GROUP)

Let E1, ..., Ej be a collection of alphabets, and let R be the set of pointed squares
labelled by (x,y,x’,y’) with x,x’ € E;andy,y' € Ej for i <.

Suppose that R has the following properties:

1. If (x,y,x,y') €R, then (x71,(y')"1, ()~ 1,y 1), (., x.y), and
()~ Ly 1 x1, (y/)71) are dll distinct, and in R.

o F = E E DAl
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k-CUBE GROUPS

DEFINITION (k-CUBE GROUP)

Let E1, ..., Ej be a collection of alphabets, and let R be the set of pointed squares
labelled by (x,y,x’,y’) with x,x’ € E;andy,y' € Ej for i <.
Suppose that R has the following properties:

1. If (x,y,X,y") €R, then (x~1,(y/)~1, ()~ 1,y 1), (¥, x,y), and
()~ Ly 1 x1, (y/)71) are dll distinct, and in R.

2. The squares in R can be glued together to make pointed k-cubes.

4

o = = =
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Dac



k-CUBE GROUPS

DEFINITION (k-CUBE GROUP)

Let E1, ..., Ej be a collection of alphabets, and let R be the set of pointed squares
labelled by (x,y,x’,y’) with x,x’ € E;andy,y' € Ej for i <.
Suppose that R has the following properties:
1. If (x,y,x',y") €R, then (x~ 1, ()L, ()~ L,y™ 1), (x,y,x,y), and
()~ Ly 1 x1, (y/)71) are dll distinct, and in R.
2. The squares in R can be glued together to make pointed k-cubes.

3. Each combination {ey, ..., ey | e; € E;} occurs at the corner of precisely one
k-cube, up to symmetry.

4

o F = = DAy
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k-CUBE GROUPS

DEFINITION (k-CUBE GROUP)

Let E1, ..., Ej be a collection of alphabets, and let R be the set of pointed squares
labelled by (x,y,x’,y’) with x,x’ € E;andy,y' € Ej for i <.
Suppose that R has the following properties:
1. If (x,y,x,y') €R, then (x~1,(y)~1, ()~ L,y~ 1), X,y ,x,y), and
()~ Ly 1 x1, (y/)71) are dll distinct, and in R.
2. The squares in R can be glued together to make pointed k-cubes.
3. Each combination {ey, ..., ey | e; € E;} occurs at the corner of precisely one
k-cube, up to symmetry.

We call the group T := (E1 U - - - U Ey | xyx'y’ = 1 whenever (x,y,x',y’) €R) a
k-cube group.

4

o = = =
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@ What does it mean “up to symmetry”?
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@ What does it mean “up to symmetry”?
@ Each geometric k-cube produces 2¢ pointed k-cubes.
«O> A Fr «=)» «=)» = o>
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k-CUBE GROUPS

@ What does it mean “up to symmetry”?
@ Each geometric k-cube produces 2¢ pointed k-cubes.

S

&
20
&
5
o

Sur

0
0%

P :
V=7
5

7,
\
s
/,

@ The symmetries map squares labelled from alphabets E;, E; to other squares
labelled from E;, E;.
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EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA,
2019)

F/{3’5,7} = <a1,a2,b1,bz,b3,C1,C2,C3,C4 |R>, where

R = {alblazbz,albzazbl_l, a1b3a2_1b1, albglalbz_l,
albl_laz_lbg, azbgazbz_l, alclaz_lcz_l, a1C2a1_1C3,
a1C3a2_1c;1, a1C4a1c1_1, a1C21a2C2, alcglazcl,
aQC3a2c2_1, aZC4a2_1c1, c1b1C3b§1, cleC4b2_1, C1b3CZlb2,
C1b§1C4b3, C1b2_1C2b1, C1b1_164b1_1, Czbzcglbgl,
Cobscaby, C2b§163b3, Czb2_1C3b2, c2b1_1C3b1_1, Cgb164b2} .

o ) = = A
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EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA,
2019)

/ . b b
F{3’5,7} = <al,a2,b1,bz,b3,C1,C2,C3,C4 |R>J where ’ !

R = {alblazbz,albzazbl_l, a1b3a2_1b1, albglalbz_l,
albl_laz_lbg, azbgazbz_l, alclaz_lcz_l, a1C2a1_1C3, Ca a2
a1C3a2_1c;1, a1C4a1c1_1, a1C21a2C2, alcglazcl,
a2C3a2c2_1, Cl2C4Cl2_1C1, C1b1C3b§1, Clb264b2_1, Clbgczlbz,
C1b§1C4b3, Clb2_1C2b1, C1b1_164b1_1, Czbzcglbgl,
Czb3C4b1, Czb:;ngbg, Czb2_1C3b2, c2b1_1C3b1_1, 03b1€4b2} o

o ) = = A
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EXAMPLE (k = 4, FREE GROUP)
Consider the product of four free groups, each with two generators, defined as
follows:
F3 := (a1,az,b1,ba,c1,c2,d1,d2 | lai, byl, lai, ¢, [ai, dj],
This is a 4-cube group.

[biacj]a [biadj]a [Ci7dj] fOT' all la] € {1a 2}>




k-CUBE GROUPS

EXAMPLES

EXAMPLE (k = 4, MRV)

['{123.4) = (a1,a2,0a3,b1,b2,b3,c1,¢2,¢3,d1,d2,d3 | R), where

R:= {aibia; 'b1, a1by 'a; ‘b3, a1boasba, arb, 'asby ' arbsa, 'by L arby tash, !,
asbzasbs, agblaz_lbz, agbzaz_lbl, alclaz_lcl, alcflalcgl, alczal_lcz_l, a;c3ascs,
azclazcz_l, azczag_lcz, aZC3a2_1c3_1, a3c1_1a3_1c1, agczagcgl, a1d1a3_1d3, aldl_lazdz,
aldzazd;l, aldz’laldg’l, aldga?:ldl, azdlazdgl, azdglagdg, azdgagdgl, agdlagdz,
b]Clb;1C17b1C1_1b2_1C3, b]Czszz7 b162_1b3C;1,

b1C3b2_1C1_1,b1C3_1b3C2_1, bscsbscs, b361b2_1C2, bgczbz_lcl,

b1d1b2_1d1, b1d1_1b1d3_1, bldzbl_ldz_l, b1dsbsds,

badibady L, badaby ida, bydsby 1d; L, byd: b 1dy, badabsds !,

C]dlcgldl, Cldilcgldg, Cldzczdz, Cld£1C3d;1,

C]d3C2_1d1_1, C1d3_1€3d2_1, Czd3C3d3, C3d1€2_1d2, ngzCz_ldl }

] = =

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021
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k-CUBE GROUPS

A group T is a k-cube group iff it acts freely and transitively on the set of vertices
of the product of k trees.

SAM A. MUTTER

k-CUBE GROUPS
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k-CUBE GROUPS

THEOREM

A group T is a k-cube group iff it acts freely and transitively on the set of vertices
of the product of k trees.

Given a k-cube group I' = (Eq, ... ,Ex | R), the subgroup generated by alphabets
Eq,...,Ex_q1is a (k — 1)-cube group.
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k-CUBE GROUPS

THEOREM

A group T is a k-cube group iff it acts freely and transitively on the set of vertices
of the product of k trees.

Given a k-cube group I' = (Eq, ... ,Ex | R), the subgroup generated by alphabets
Eq,...,Ex_q1is a (k — 1)-cube group.

We can find k different (k — 1)-cube subgroups in this way. The group T is the
product of these groups, amalgamated over the free groups generated by their

pairwise intersections.
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k-CUBE GROUPS

THEOREM

A group T is a k-cube group iff it acts freely and transitively on the set of vertices
of the product of k trees.

Given a k-cube group I' = (Eq, ... ,Ex | R), the subgroup generated by alphabets
Eq,...,Ex_q1is a (k — 1)-cube group.

We can find k different (k — 1)-cube subgroups in this way. The group T is the
product of these groups, amalgamated over the free groups generated by their

pairwise intersections.

@ In general the converse is not true—it is difficult to find a family of k-cube
groups whose amalgamated product forms a (k + 1)-cube group.

SAM A. MUTTER k-CUBE GROUPS

22ND FEBRUARY 2021
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Tig, % - X Tig,-

@ Let A be the rank k affine building which is the k-dimensional cube complex
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@ Let A be the rank k affine building which is the k-dimensional cube complex

T, % -+ X Tg,|- We identify elements of I with edges of A, so the set of
k-cubes S; can be identified with the set of pointed, oriented chambers of A.
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@ Let A be the rank k affine building which is the k-dimensional cube complex
T, % -+ X Tg,|- We identify elements of I with edges of A, so the set of
k-cubes S; can be identified with the set of pointed, oriented chambers of A.
DEFINITION (ADJACENCY FUNCTIONS)




@ Let A be the rank k affine building which is the k-dimensional cube complex
T, % -+ X Tg,|- We identify elements of I with edges of A, so the set of
k-cubes S; can be identified with the set of pointed, oriented chambers of A.
Let A,B € S. We define adjacency functions My, ..., My : S x S — {0,1},
where M;(A,B) = 1 iff:

[m]
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@ Let A be the rank k affine building which is the k-dimensional cube complex
T, % -+ X Tg,|- We identify elements of I with edges of A, so the set of
k-cubes S; can be identified with the set of pointed, oriented chambers of A.
DEFINITION (ADJACENCY FUNCTIONS)

Let A,B € S. We define adjacency functions My, ..., My : S x S — {0,1},

where M;(A,B) = 1 iff:

@ The first (k — 1)-dimensional face of A labelled by alphabets
E1,....E;, ... Ey coincide with the second such (k — 1)-face of B, and
~ SAMA.MurteR  k-cuseGroups

[m]

e - ~

£ DAl
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k-CUBE GROUPS

CONSTRUCTING A SHIFT SYSTEM

@ Let A be the rank k affine building which is the k-dimensional cube complex
T, % -+ X Tg,|- We identify elements of I with edges of A, so the set of
k-cubes S; can be identified with the set of pointed, oriented chambers of A.

DEFINITION (ADJACENCY FUNCTIONS)

Let A,B € S. We define adjacency functions My, ..., My : S x S — {0,1},
where M;(A,B) = 1 iff:

@ The first (k — 1)-dimensional face of A labelled by alphabets
E1,...,E;, ... Ey coincide with the second such (k — 1)-face of B, and

@ Whenever M;(A,B) = 1, if we stack A and B together so that their common

(k — 1)-faces overlap, we never have e and e~ ! pointing to the same vertex.

W

] = =
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@ Consider this example for k = 3.

Cy C2
C1 b2 C3
a4
as
by
v
U1

U1

Wy

Y2
x1
(%) Y3
w2 24
w1 v | W3 21 Yo
T4
us
U3 Y3
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@ Consider this example for k = 3.

@ Suppose all black edges are labelled
from E;, magenta from E5, and
blue from Es.

Cy C2
C1 b2 C3
a4
as
by
v
U1

U1

Wy

Y2
z
U9 Y3
w2 24
w1 v | W3 21 Yo
T4
us
U3 Y3
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@ Consider this example for k = 3.

@ Suppose all black edges are labelled
from E;, magenta from E5, and
blue from Es.

Cy C2
B

C1 b2 C3
Qay

. as

o Mz(A,B) =1 iff (ul,Vl,UQ,Vz) = by
-1 3,-1 -1 1.1 -1
(ag",b3 " a5 ,by ") and ¢y #wi s

c3 # w3, etc “,

U1

Wy

Y2
Z1
U9 Y3
Wa 24
w1 v | W3 21 Yo
Tq
ug
U3 Y3
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@ Consider this example for k = 3.

@ Suppose all black edges are labelled
from E;, magenta from E5, and
blue from Es.

as
b3
-1 -1 -1 1 -1
(X7 7,24 ,x, 7,27 ) and y3 # vy,
etc.

uy

c4 C2
cy Bb2 c3
a4
] Mz(A,B) = 1 iff (ul,vl,uz,vz) =
(a;'.b3t a3, by t) and ¢ #wit,
c3 # wgl, etc
)] Mg(A, C) =1 iff (uZ,Wz,U3,W3) =

V2

U1
Wy

Y2
Z1
U9 Y3
Wa 24
w1 v | W3 21 Yo
Tq
ug
U3 Y3
«O>» «Fr «=)>r < » o™
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k-CUBE GROUPS

A k-CUBE GROUP INDUCES A k-RANK GRAPH

Let T" be a k-cube group, and write the adjacency functions My, ..., M as
matrices. Then each M; has at least 3 non-zero entries in each row, and
M;M; = M;M; for all i,j.
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k-CUBE GROUPS

A k-CUBE GROUP INDUCES A k-RANK GRAPH

Let T" be a k-cube group, and write the adjacency functions My, ..., M as
matrices. Then each M; has at least 3 non-zero entries in each row, and
M;M; = M;M; for all i,j.

A k-cube group T' has the unique common extension property.
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@ The UCE property says that in every dimension
2 < n <k, if we start with an n-dimensional cube
and find n adjacent n-cubes (one in each direction),

then we can uniquely extend the arrangement into a
2 x 2 supercube.
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@ The UCE property says that in every dimension
2 < n <k, if we start with an n-dimensional cube
and find n adjacent n-cubes (one in each direction),

then we can uniquely extend the arrangement into a
2 x 2 supercube.

@ Assign to each k-cube in T' a vertex.

«AO> 4F>r «=)r « =) = o>



@ The UCE property says that in every dimension
2 < n <k, if we start with an n-dimensional cube
and find n adjacent n-cubes (one in each direction),
then we can uniquely extend the arrangement into a
2 x 2 supercube.

@ Assign to each k-cube in T' a vertex.

@ Draw an i-coloured arrow from A to B if B is
adjacent to A in the i direction.




k-CUBE GROUPS

A k-CUBE GROUP INDUCES A k-RANK GRAPH

@ The UCE property says that in every dimension

2 < n <k, if we start with an n-dimensional cube

and find n adjacent n-cubes (one in each direction),

then we can uniquely extend the arrangement into a

2 X 2 supercube.

@ Assign to each k-cube in I a vertex.

@ Draw an i-coloured arrow from A to B if B is

adjacent to A in the i direction. SR 2

@ The UCE property ensures that this k-coloured graph

has all the factorisation properties of a k-rank graph.

SAM A. MUTTER k-CUBE GROUPS 22ND FEBRUARY 2021
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DEFINITION (k-RANK GRAPH ALGEBRA OF KUMJIAN-PASK)
«4O>» <Fr «=Zr «E>» = o>
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Let A = (A, d) be a row-finite k-rank graph with no sources.

DEFINITION (k-RANK GRAPH ALGEBRA OF KUMJIAN-PASK)
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DEFINITION (k-RANK GRAPH ALGEBRA OF KUMJIAN-PASK)

Let A = (A, d) be a row-finite k-rank graph with no sources. We define the
k-rank graph algebra A(A) to be the universal C*-algebra generated by a family
{sx | A € A} of partial isometries which have the following properties:

[m]
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Let A = (A, d) be a row-finite k-rank graph with no sources. We define the
k-rank graph algebra A(A) to be the universal C*-algebra generated by a family
{sx | A € A} of partial isometries which have the following properties:

1. The set {s, | v € A®} satisfies (s,)* = s, = s} and sus, = O for all u #

2. Ifr(\) = s(u) for some X\, i € A, then s,y = s,5».

3. Forall A € A, we have s3s) = s;(»).

4. For all vertices v € A° and n € NK, we have: s, = Y, An(y) SAS)-

V.

[m]
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WHAT CAN k-RANK GRAPHS DO?

THE k-RANK GRAPH ALGEBRA

DEFINITION (k-RANK GRAPH ALGEBRA OF KUMJIAN-PASK)

Let A = (A, d) be a row-finite k-rank graph with no sources. We define the
k-rank graph algebra A(A\) to be the universal C*-algebra generated by a family
{sx | A € A} of partial isometries which have the following properties:

1. Theset {s, | v € A} satisfies (s,)* = s, = s} and sus, = O for all u # v.
2. Ifr(\) = s(u) for some X\, i € A, then s,y = s,5».
3. Forall A € A, we have s3s) = s;(»).

4. For all vertices v € A° and n € NK, we have: s, = Y, An() SAS)-

Without the row-finiteness condition, property 4 is not well-defined.

[m] = = =
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THEOREM (EVANS, 2008)

«AO> 4F>r «=)r « =) o>



THEOREM (EVANS, 2008)

well understood.

Let A be a row-finite 2-rank graph with no sources. Then the K-theory of A(A) is

[m]

5 =
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WHAT CAN k-RANK GRAPHS DO?

THE k-RANK GRAPH ALGEBRA

Letk =3, and &y := I —MI,1— M}, 1—ML), 95 :=[[ — ML M} —I,I - M1,

MI-1 MI-1I O
= |I-M] 0 M-I
o I-MI 1-M]

Then K1 (A(A)) = ker(01)/im(02) @ G1, and there is a short exact sequence
0— coker(@l)/Go — K()(.A(A)) — ker(az)/im(a:;) — O,

where Gy C coker(01) and G C ker(0s3).
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and k = 5.

There are similar (nastier) short exact sequences and isomorphisms for k = 4

=
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WHAT CAN k-RANK GRAPHS DO?

THE k-RANK GRAPH ALGEBRA

THEOREM (MRYV)
There are similar (nastier) short exact sequences and isomorphisms for k = 4
and k = 5.

| A\

THEOREM (MRV)

Let T be a k-cube group, and A be its induced k-rank graph. Then A(A) is a
Kirchberg algebra— in particular; it is completely classified (up to isomorphism)
by its K-theory.

N\,
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EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA, 2019)
(357} = (a1,a2,b1,ba,b3,c1,¢2,¢3,¢4 | R).
«4O>» <Fr «=Zr «E>» = o>
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00—

/ —
F{3’5,7} = (al,az,bl,bz,bg,Cl,Cz,Cg,C4 |R>

Go

for some Gy C 77 @ (Z/4)? ® (Z/12) and G, C 7.

EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA, 2019)

We have K1(A(T")) = 722! ¢ (2/2)® @ (Z/4)? @ (Z/12)? ® G1 and
7 ® (Z/4)? o (Z/12)

— Ko(A(D)) — 2 @ (Z/4)* ® (Z/12) — 0,
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00—

EXAMPLE (RUNGTANAPIROM, STIX, VDOVINA, 2019)
F/{3’5’7} = (al,az,bl,bz,bg,Cl,Cz,Cg,C4 | R>.

Go

We have K1(A(T")) = 722! ¢ (2/2)® @ (Z/4)? @ (Z/12)? ® G1 and
7 ® (Z/4)? o (Z/12)

for some Gy C 77 @ (Z/4)? ® (Z/12) and G, C 7.

— Ko(A(D)) — 2 @ (Z/4)* ® (Z/12) — 0,

We can deduce that the torsion-free part of K is isomorphic to 7', and that
K1 27 @ (2/2)° @ (Z/4)* ® (Z/12)?, for some 21 <r < 28.
~ SAMA.MurteR  k-cuseGroups
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EXAMPLE (k = 4, FREE GROUP)
F} := (a1,a2,b1,ba,c1,¢2,d1,da | [ai, bjl, [ai, ¢, [ai, dj],
[biacj]a [bi>dj]7 [Cia d]] fOT all la] € {17 2}>




EXAMPLE (k = 4, FREE GROUP)

Fg = <a1,a2,b1,b2,c1,cz,d1,d2 | [ai,bj], [ai,cj], [ai,dj]
[bi,cjl, [bi,dj], [ci,dj] for all i,j € {1,2}).

Our short exact sequences give us (something like)
Ko(A(F3)) 2 K1 (A(F3)) 2 2% & Z", where 0 < r < 64.




EXAMPLE (k = 4, FREE GROUP)

Fg = <a1,a2,b1,b2,c1,cz,d1,d2 | [ai,bj], [ai,cj], [ai,dj],
[bi,Cj], [bi,dj], [Ci, d]] fOT all i,j € {1, 2})

Our short exact sequences give us (something like)
Ko(A(F9)) 2 K1 (A(F3)) 2 75 @ 7", where 0 < r < 64.

Compare our sequences with the values obtained for Ko and K; by the Kiinneth
Theorem for tensor products: Ko =2 Ky = 71?8 and we see that r is maximal.
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ExXAMPLE (MRYV)
['{123.4) = (a1,a2,0a3,b1,b2,b3,c1,¢2,¢3,d1,d2,d3 | R).

«AO> 4F>r «=)r « =) = o>



ExAMPLE (MRV)

['{123.4) = (a1,a2,0a3,b1,b2,b3,c1,¢2,¢3,d1,d2,d3 | R).
We have written a program in Python which determines whether a group is a
4-cube group, and if so, outputs four adjacency matrices. In this example, I' is a

4-cube group, but the adjacency matrices are very large. We are still awaiting the
computations of the K-theory in MAGMA.
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EPILOGUE

@ The K-theory of these algebras is a great way to distinguish them from each
other, showing that our constructions do indeed produce new C*-algebras.

@ Computing K-theory of k-rank graph algebras is hard (e.g. SAM 2020).

@ Next step: make the code work!

S.A. Mutter, A.-C. Radu, and A. Vdovina, C*-algebras of higher-rank graphs
from groups acting on buildings, and explicit computation of their K-theory

https://arxiv.org/abs/2012.05561

S.A. Mutter, The K-theory of the C*-algebras of 2-rank graphs associated to
complete bipartite graphs

https://arxiv.org/abs/2004.11602
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