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Abstract

The concept of an amenable group was introduced by John von Neu-
mann in 1929 [44] as a means to justify the Banach–Tarski Paradox.
Since then, there have arisen a number of equivalent formulations of
amenability in fields as far-reaching as combinatorics, geometric group
theory, and functional analysis.

In this article, we develop three of these formulations – each from
a different starting point and with a different motivation – and we
demonstrate their equivalence.

Contents

1 Amenable Groups 2
1.1 Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Invariant Means on Discrete Groups . . . . . . . . . . . . . . 8
1.3 Locally Compact Groups . . . . . . . . . . . . . . . . . . . . . 11
1.4 Haar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Invariant Means on Locally Compact Groups . . . . . . . . . 27

2 Følner Sequences 33
2.1 Quasi-Isometries . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 The Følner Criterion . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 The Banach–Tarski Paradox 51
3.1 Paradoxical Decomposition . . . . . . . . . . . . . . . . . . . 51
3.2 The Pea and the Sun . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Alternative Formulations . . . . . . . . . . . . . . . . . . . . . 61

A Loose Ends 63

References 67

1



1 Amenable Groups

1.1 Measurability

Let a and b be real numbers with a < b, and let I denote one of the intervals
(a, b), (a, b], [a, b), or [a, b] in R. It is natural to define the length of I as
ℓ(I) := b−a, and in 1901, Henri Lebesgue generalised this notion to measure
the length of arbitrary subsets in R [20].

Definition 1.1 (Lebesgue measure). Let I ⊂ R be the union of a finite
number of intervals. We can then write I as the union of a finite number
of mutually disjoint intervals; I = I1 ∪ · · · ∪ In. We define the Lebesgue
measure of I to be:

λ(I) := ℓ(I1) + · · · + ℓ(In).

In order to further generalise this function to measure the length of unions
of countably-many intervals, we recall the following definitions: KLM

Let X be an arbitrary set, and let Σ be a collection of subsets of X. We say
that Σ is a σ-algebra if it satisfies the following conditions:

(a) X ∈ Σ,

(b) Σ is closed under complements: If A ∈ Σ, then Ac := X \A ∈ Σ,

(c) Σ is closed under countable unions: If (An) is a sequence of sets in Σ,
then

⋃∞
n=1An ∈ Σ [39, p512].

Note that, by de Morgan’s Laws (see [5, p374]), it follows from (b) and (c)
that a σ-algebra is also closed under countable intersections.

The Borel algebra on a topological space X, denoted by B(X), is the smallest
σ-algebra which contains all open subsets of X. Here, “smallest” is to say
that, if Σ is a σ-algebra which contains all open subsets of X, then B(X) ⊆ Σ
[38, p23].

By the fact that a σ-algebra is closed under complements, it can be shown
that the Borel algebra on X can alternatively be generated by the closed
subsets of X. We call the elements of B(X) Borel sets. In the case where
X = R, observe that each interval I is a Borel set [5, p4] [39, p529].

Let A ⊆ X be an arbitrary subset. We define an open covering of A to be
a collection U of open sets such that:

A ⊆
⋃
U∈U

U.

A subset K ⊆ X is said to be compact if every open covering of K contains
a finite sub-collection which also covers K [23, p164].
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In the case where X = R, we can define a countable open covering of a
subset A ⊆ R as a sequence of open intervals (In) such that:

A ⊆
∞⋃
n=1

In.

Now we are able to extend the measure λ to a countably-additive function
λ∗ : M(R) → R, where M(R) is defined below as a σ-algebra which contains
B(R). The process is as follows.

Let A ⊆ R be an arbitrary subset. We define the Lebesgue outer measure of
A to be:

λ∗(A) := inf

{ ∞∑
n=1

ℓ(In)

∣∣∣∣ (In) is a countable open covering of A

}

[35, p27].

Definition 1.2 (Lebesgue σ-algebra). We say that a subset E ⊆ R is
Lebesgue measurable if it satisfies Carathéodory’s criterion, that

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec),

for all subsets A ⊆ R. We define the Lebesgue σ-algebra on R, denoted by
M(R), to be the collection of all Lebesgue measurable sets [35, pp27-8].

Observe that for any subsets A,E ⊆ R, the equality

A = (A ∩ E) ∪ (A ∩ Ec)

holds. Since λ∗ is countably-subadditive (Prop A.1), it follows that

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A ∩ Ec), (1)

and hence to prove that a set E is Lebesgue measurable, we need only show
that the reverse inequality holds for all A ⊆ R [5, pp15-6].

We verify now that the Lebesgue σ-algebra is justly named:

Proposition 1.3. The collection M(R) defines a σ-algebra, and for all in-
tervals I ∈ M(R), we have λ∗(I) = λ(I).

Proof. We split the proof into a number of smaller steps, beginning by
showing that M(R) defines a field of sets (that is, that M(R) is closed
under finite unions, finite intersections, and complements).

3



Firstly, notice that R ∈ M(R), since λ∗(Rc) = λ∗(∅) = 0, and so for each
subset A ⊆ R we have:

λ∗(A ∩ R) + λ∗(A ∩ ∅) = λ∗(A) + 0.

Now, let E,F ∈ M(R). Then for each subset A ⊆ R we have:

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec)
= λ∗(A ∩ E) + λ∗((A ∩ Ec) ∩ F ) + λ∗((A ∩ Ec) ∩ F c)
= λ∗(A ∩ E) + λ∗((A ∩ Ec) ∩ F ) + λ∗((A ∩ (E ∪ F )c)

= λ∗(A ∩ E ∩ (E ∪ F )) + λ∗(A ∩ Ec ∩ (E ∪ F )) + λ∗(A ∩ (E ∪ F )c)

= λ∗(A ∩ (E ∪ F )) + 0 + λ∗(A ∩ (E ∪ F )c),

and so E ∪ F ∈ M(R).

Finally, it suffices to check that E \ F ∈ M(R). Indeed, by the symmetry
of Carathéodory’s criterion, we have that Ec ∈ M(R), and since E \ F =
(Ec ∪ F )c, the result follows immediately from the above argument.

Hence M(R) defines a field of sets.

In order to conclude that M(R) is a σ-algebra, we must show that it is
also closed under countable unions. Let (En) ∈ M(R) be a sequence of
pairwise-disjoint Lebesgue measurable sets. Firstly, we have to show that

λ∗(A) =
N∑
n=1

(
λ∗(A ∩ En) + λ∗

(
A ∩

(⋂N
n=1E

c
n

)))
, (2)

for each subset A ⊆ R and each N ∈ N. To do this, we use induction on N .

In the case where N = 1, the equation above is precisely Carathéodory’s
criterion. For the inductive step, observe that since EN+1 is Lebesgue mea-
surable, we have:

λ∗
(
A ∩

(⋂N
n=1E

c
n

))
= λ∗

(
A ∩

(⋂N
n=1E

c
n

)
∩ EN+1

)
+ λ∗

(
A ∩

(⋂N
n=1E

c
n

)
∩ EcN+1

)
,

and since Ei ∩ Ej = ∅ for all i ̸= j, it follows that

λ∗
(
A ∩

(⋂N
n=1E

c
n

))
= λ∗ (A ∩ EN+1) + λ∗

(
A ∩

(⋂N+1
n=1 E

c
n

))
,

and so (2) is proved. As we let N approach infinity, we obtain from (2) the
inequality

λ∗(A) ≥
∞∑
n=1

(
λ∗(A ∩ En) + λ∗

(
A ∩

(⋂∞
n=1E

c
n

)))
,
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and hence

λ∗(A) ≥
∞∑
n=1

(
λ∗(A ∩ En) + λ∗

(
A ∩

(⋃∞
n=1En

)c ))
. (3)

It is not difficult to show that if (An) is a sequence of subsets of R, then

λ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

λ∗(An) (4)

(see Prop A.1 in the appendix). From this it follows that

∞∑
n=1

(
λ∗(A ∩ Ei) + λ∗

(
A ∩

(⋃∞
n=1En

)c ))
≥ λ∗

(
A ∩

(⋃∞
n=1En

))
+ λ∗

(
A ∩

(⋃∞
n=1En

)c )
≥ λ∗(A),

which, together with (3), shows that
⋃∞
n=1En is Lebesgue measurable. Since

we can write the union of any sequence of sets in M(R) as the union of a
sequence of disjoint sets (Ei) [5, p17], we have shown that M(R) is closed
under countable unions, and is therefore a σ-algebra.

Now let I ⊆ R be an interval. Then for every ε > 0 we can find an open
interval J ⊇ I such that λ∗(I) ≤ λ(J) ≤ λ(J) + ε. Since we can set ε to
be arbitrarily small, this shows that λ∗(I) ≤ λ(I), and so it only remains to
show the reverse inequality.

Let ε > 0 be an arbitrary constant, and let (Ii) be a covering of I, where
each Ii is an open interval in R. Without loss of generality, we may assume
that I is bounded, since an unbounded interval has infinite Lebesgue outer
measure. Furthermore, we may assume I to be closed, since any bounded
interval has length which can be approximated arbitrarily closely by a closed
interval containing it [41, p34].

Hence we may suppose that I is compact. Then we can find a finite sub-
collection of open intervals I1, . . . In in R which form an open covering of I
[23, p164]. Hence, by induction on n, it follows that

λ(I) ≤
n∑
i=1

λ(Ii),

and hence that

λ(I) ≤
∞∑
i=1

λ(Ii).

So, by the definition of the Lebesgue outer measure, it follows that λ(I) ≤
λ∗(I) whenever I is compact, and therefore that λ∗(I) = λ(I) for all intervals
I ⊆ R [5, p14].
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Proposition 1.4. Every Borel subset of R is Lebesgue measurable [5, p18].

Proof. It can be shown that the Borel algebra B(R) is the smallest σ-algebra
generated by the collection {(−∞, b] | b ∈ R} [5, p4]. Hence we need only
verify that such an interval E = (−∞, b] is Lebesgue measurable – using
observation (1) on p3, this means checking that

λ∗(A) ≥ λ∗(A ∩ E) + λ∗(A ∩ Ec),

for all subsets A ⊆ R. Observe that this is certainly true if λ∗(A) = ∞, so
we may assume that A has finite measure.

Let ε > 0 be an arbitrary constant, and let (In) be a covering of A, where
each In is an open interval in R, such that

∞∑
n=1

ℓ(In) < λ∗(A) + ε.

For each n ∈ N, the sets In ∩ E and In ∩ Ec are disjoint intervals whose
union is In, and so

ℓ(In) = λ∗(In) = λ∗(In ∩ E) + λ∗(In ∩ Ec),

by Prop 1.3. But the collections {In∩E} and {In∩Ec} are open coverings of
A∩E and A∩Ec respectively, and since λ∗ is countably-subadditive (Prop
A.1), it follows that

λ∗(A ∩ E) + λ∗(A ∩ Ec) ≤
∞∑
n=1

(λ∗(In ∩ E) + λ∗(In ∩ Ec))

=

∞∑
n=1

ℓ(In)

< λ∗(A) + ε.

Since we can set ε to be arbitrarily small, this shows that each set E = (∞, b]
is in the Lebesgue σ-algebra M(R). But, since B(R) is the smallest σ-algebra
containing all such sets E, it follows that B(R) ⊆ M(R).

The Lebesgue measure possesses some interesting properties, including:

Lemmata 1.5 (Interesting properties).

1. Completeness. Let E ⊆ R be a subset such that λ∗(E) = 0. Then
every subset F ⊆ E is Lebesgue measurable. In such instances, the
measure of F is zero [35, p29].
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2. Invariance under translation. Let E ⊆ R be a measurable subset. Then
λ∗(E + t) = λ∗(E) for all t ∈ R [35, p28].

Proof.

1. Let λ∗(E) = 0. Then λ∗(A∩E) = 0 for all A ⊆ R, since (A∩E) ⊆ E.
Hence

λ∗(A ∩ E) + λ∗(A ∩ Ec) = λ∗(A ∩ Ec) ≤ λ∗(A),

for all A ⊆ R, and so E is Lebesgue measurable by observation (1).
Thus any subset F of E is Lebesgue measurable with λ∗(F ) = 0, by
the subadditivity of λ∗ [32, §2.3].

2. Let (In) be an covering of E, where each In is an open interval in R.
Then (In + t) = ({in + t | in ∈ In}) is an open covering of E + t, and

λ∗(E + t) ≤
∞∑
n=1

ℓ(In + t) =

∞∑
n=1

ℓ(In).

Since this is true for any open covering (In) of E, it follows that
λ∗(E + t) ≤ λ∗(E).

Similarly, by considering an open covering (I ′n) of E + t, such that
(I ′n − t) covers E, we can show that the reverse inequality also holds,
and hence that λ∗(E + t) = λ∗(E) [32, §2.2] [39, p526].

From now on, we are mainly going to be interested in the way the Lebesgue
measure λ behaves on the Borel algebra on R. In fact, λ is practically unique
when we restrict our vision to B(R).

Theorem 1.6. The Lebesgue measure λ is the unique complete translation-
invariant measure on B(R) such that λ[0, 1] = 1 [31, p623].

Proof. We defer a proof of this result until §1.4, whereupon it becomes a
corollary of Thm 1.22. If the reader is eager to see a direct proof, we direct
them to [5, p26].

So far, we have observed that the Lebesgue measure λ is the unique non-
negative, real-valued function on B(R) which satisfies the conditions:

(a) λ is complete,

(b) λ is translation-invariant,

(c) λ[0, 1] = 1,

(d) λ is countably-additive.
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At the turn of the twentieth century, Stanis law Ruziewicz asked the natural
question as to whether λ remains unique when the countable additivity of
(d) is replaced by finite additivity. In 1923, Stefan Banach confirmed that
uniqueness is not preserved in R, and in fact that there exists a complete
translation-invariant measure µ on R which is finitely- but not countably-
additive, and which is defined on all subsets of R [31, p623]. Such a measure
µ is called an invariant mean on R.

1.2 Invariant Means on Discrete Groups

Before considering the definition of an invariant mean on an arbitrary group,
we first restrict our observations to discrete groups (that is, topological
groups with the largest possible topology, in which all subsets are open [23,
p77]. In this way, we can use the tools already at our disposal from the
previous section and from elementary measure theory, before adding some
structure which will motivate the more general definition.

Definition 1.7 (Means on discrete groups). Let Γ be a discrete group,
and write P(Γ) for the collection of all subsets of Γ. We call a function
µ : P(Γ) → [0, 1] a mean on Γ if it has the following properties:

(a) µ is finitely-additive: if A,B ⊆ Γ are disjoint subsets, then µ(A∪B) =
µ(A) + µ(B),

(b) µ is a probability measure: µ(∅) = 0, and µ(Γ) = 1.

If, in addition, the function µ has the property that

(c) µ is left-invariant : µ(xA) = µ(A) for all x ∈ Γ and A ⊆ Γ,

then we call µ a left-invariant mean, or measure, on Γ. Likewise, we call µ
a right-invariant mean if µ(Ax) = µ(A) [10, p4] [18, §4.1].

Example 1.8. Let Γ be a discrete group, and let ν : l∞(Γ) → R be the
counting measure, defined by:

ν(A) :=

{
|A| if |A| <∞,

∞ if A is infinite,

for all subsets A ⊆ Γ. If |Γ| < ∞, we can use the counting measure to
construct the function ν ′ : l∞(Γ) → [0, 1] given by:

ν ′(A) :=
ν(A)

|Γ|
,

for all subsets A ⊆ Γ. It is not difficult to see that ν ′ defines an invariant
mean on Γ [35, p27].
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Recall that a group Γ is called a topological group when equipped with
a topology with respect to which the binary and inverse functions of the
group are continuous. A topological space X is said to be locally compact if
each point x ∈ X has an open neighbourhood Ux which itself is contained
in some compact set K. One might be forgiven for assuming, then, that a
locally compact group Γ is a topological group which is locally compact. This
is almost the case, but we permit ourselves to make one extra assumption
about Γ [8, p35] [22, §28].

We define a locally compact group to be a topological group which is both
locally compact and Hausdorff as a topological space [5, p279] [22, p112]. It
turns out that this restriction is almost negligible [8, p37].

It can be shown that all discrete groups are also locally compact. 1 If our
group Γ is locally compact (but not necessarily discrete), we can define a
mean µ on Γ in a similar way, but we will first need some new definitions.

One of the most elementary examples of a locally compact group is the real
line R. We have already found an invariant mean for B(R), the Lebesgue
measure λ, and this was derived from the function λ∗, the Lebesgue outer
measure on R. Then, in order to find a suitable mean for a general locally
compact group, we will begin in the same manner.

Definition 1.9 (Outer measure). Let X be an arbitrary set, and let
µ∗ : P(X) → [0,∞] be a function. We call µ∗ an outer measure on X if it
has the following properties:

(a) µ∗ is monotonic: if A ⊆ B ⊆ X, then µ∗(A) ≤ µ(B),

(b) µ∗ is countably-subadditive: If (An) is a sequence of subsets of X (not
necessarily disjoint), then

µ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ∗(An).

(c) µ∗(∅) = 0.

As a generalisation of Lebesgue measurability (Def 1.2), we say that a subset
E ⊆ X is µ∗-measurable if it satisfies the condition:

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec),
1To see this, observe that a singleton {x} in a discrete group Γ is open by the definition

of the discrete topology. But {x} is also finite, and hence compact. Thus {x} is a compact
set containing an open neighbourhood of x, and so Γ is locally compact at each x ∈ Γ (see
§1.3).
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for all subsets A ⊆ X. Hence a µ∗-measurable subset E ⊆ X splits each
subset A ⊆ X in such a way that the measures of the pieces of A which fall
inside and outside of E add up to the total measure of A [34, §2.1].

Definition 1.10 (Borel regular measure). Let X be a locally compact
Hausdorff space. An outer measure µ∗ whose domain is B(X) is called a
Borel outer measure on X if µ∗(K) < ∞ for all compact subsets K ⊆ X
[14, p223].

We say that a Borel outer measure µ∗ is regular if each Borel set E ∈ B(X)
satisfies the conditions:

(a) inf{µ∗(U) |E ⊆ U , and U ⊆ X is open} = µ∗(E),

(b) sup{µ∗(K) |K ⊆ E, and K is compact} = µ∗(E).

An outer measure which satisfies only one of (a) or (b) can be called outer
regular or inner regular respectively.

It can be shown that a regular outer measure becomes a regular measure
if restricted to the Borel sets, since Borel sets are formed from countable
unions and intersections [34, §3.1] [35, p158].

Clearly the Lebesgue measure λ restricted to B(R) is a Borel measure, and
we claim that λ is also regular [5, p23]. Indeed, since λ(A) ≤ λ(B) whenever
A ⊆ B ∈ B(R), we need only to show that:

(a) inf{λ(U) |E ⊆ U , and U ⊆ R is open} ≤ λ(E),

(b) sup{λ(K) |K ⊆ E, and K is compact} ≥ λ(E),

for each Borel set E ∈ B(R).

Proof. To show part (a), we first set an arbitrary ε > 0, and let λ(E) <∞
(the result automatically holds when λ(E) = ∞). Then there is an open
covering (In) of E such that

∞∑
n=1

λ(In) < λ(E) + ε.

Define U :=
⋃∞
n=1 In. Clearly U is open, and E ⊆ U . Moreover, since λ is

an outer measure, it is countably-subadditive. Hence

λ(U) ≤
∞∑
n=1

λ(In) =

∞∑
n=1

ℓ(In),

by Prop 1.3. So λ(U) < λ(E) + ε, and since we can set ε to be arbitrarily
small, this proves part (a).
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Now, to show part (b), we consider two distinct cases: where E is either
bounded or unbounded. Firstly, suppose that E is bounded, and let E ⊆
K ′ ⊆ R, where K ′ is compact (and hence Lebesgue measurable [42, chp2]).
Write F = K ′ \ E. As above, we can find an open set U containing F and
such that

λ(U) < λ(F ) + ε,

where ε > 0 is an arbitrary constant. Now K := K ′ \U is a compact subset
of E such that K ′ ⊆ K ∪ U , and hence

λ(K) ≥ λ(K ′) − λ(U).

But
λ(U) < λ(F ) + ε = λ(K ′) − λ(E) + ε,

and so λ(K) > λ(E) − ε. Since we can set ε to be arbitrarily small, this
proves part (b) when E is bounded.

For the case where E is unbounded, let (En) be an increasing sequence
of bounded (measurable) subsets of E, such that E =

⋃∞
n=1En. Then

λ(E) = limn→∞ λ(En) [14, pp37-8].

Let d be an arbitrary real number such that λ(E) > d, and choose a natural
number N such that λ(EN ) > d. Then, since EN is bounded, we can use the
arguments in the above case to generate a compact subset K ⊆ EN ⊆ E.
Since our choice of d < λ(E) was arbitrary, this proves part (b) when E is
unbounded [34, p61].

Hence the Lebesgue measure λ, when restricted to B(R), is a Borel regular
measure on R. Our more general notion of measure is therefore compatible
with the idea of length on the real line, and so we are ready to introduce
the idea of “size” in an arbitrary locally compact group. Firstly, we make
a quick digression to learn some facts about locally compact groups which
will be of continued use.

1.3 Locally Compact Groups

We turn our attention to a handful of lemmata which we will require in
order to define measure on a locally compact group.

Theorem 1.11 (Tychonoff). Let Y be an arbitrary collection of compact
spaces. Then the space X defined by

X :=
∏
Y ∈Y

Y

is compact with respect to the product topology. (Refer to [23, p234] for a
proof.)
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Lemma 1.12 (Separation). Let Γ be a locally compact group, and let
K,L ⊆ Γ be disjoint compact subsets. Then we can find disjoint open sub-
sets U, V ⊆ Γ such that K ⊆ U and L ⊆ V . The sets K and L are said to
be separated by U and V [5, p182].

Proof. Firstly, consider the case where K is the empty set. Then we can
set U = ∅ and V = Γ, and we are done. The same is true if L is empty, so
we assume neither K nor L is the empty set.

Let x ∈ K. Since Γ is Hausdorff, for each y ∈ L, we can find a pair of
disjoint open subsets Uxy , V

x
y ⊆ Γ such that x ∈ Uxy and y ∈ V x

y . Then, as
L is compact, there is a finite list of elements y1, . . . , yn such that the sets
V x
y1 , . . . , V

x
yn form an open covering of L. For each x ∈ K, we can then define

Ux :=

n⋂
i=1

Uyi , and V x :=

n⋃
i=1

Vyi ,

such that Ux ∋ x and V x ⊆ L are disjoint and open. Since K is compact,
we can find a finite list of elements x1, . . . , xm such that Ux1 , . . . , Uxm form
an open covering of K. Define the subsets

U :=

m⋃
i=1

Uxi , and V :=

m⋂
i=1

V xi .

Then U and V are disjoint and open, with K ⊆ U and L ⊆ V [5, p182].

Lemma 1.13. Let Γ be a locally compact group, let K ⊆ Γ be a closed
subset, and let U ⊆ Γ be an open subset containing K. Then we can find an
open subset V ⊆ Γ with compact closure and such that K ⊆ V ⊆ V ⊆ U [5,
p183].

Proof. Let x ∈ K. Since Γ is locally compact, there is an open neighbour-
hood Wx of x with compact closure [23, p185]. Write Vx := Wx ∩ U , such
that Vx ⊆ U , and use Lem 1.12 to find disjoint open sets Y and Z which
separate the compact sets {x} and Vx \ Vx. The closure of Vx ∩ Y is there-
fore compact and contained in Vx, and hence in U . Thus Vx ∩ Y is an open
neighbourhood of x whose closure is compact and contained in U .

Since K is compact, some finite collection of these neighbourhoods covers K.
Write V to denote the union of these sets. Then V satisfies K ⊆ V ⊆ V ⊆ U
[5, pp182-3].

Lemma 1.14. Let Γ be a locally compact group, let K ⊆ Γ be a compact
subset, and let U1, U2 ⊆ Γ be open subsets such that K ⊆ U1 ∪ U2. Then
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we can find compact subsets K1,K2 ⊆ Γ such that K1 ⊆ U1, K2 ⊆ U2, and
K = K1 ∪K2 [5, p184].

Proof. Observe that the sets K \ U1 and K \ U2 are disjoint and compact,
so we can use the Separation Lemma (Lem 1.12) to find disjoint open sets
V1 ⊇ (K\U1) and V2 ⊇ (K\U2). Now define K1 := K\V1 and K2 := K\V2.
Then K1 and K2 are compact sets such that K1 ⊆ U1, K2 ⊆ U2, and
K = K1 ∪K2 [5, p184].

Lemma 1.15. Let Γ be a topological group, let K ⊆ Γ be a compact subset,
and let U ⊆ Γ be an open subset containing K. Then we can find open
neighbourhoods VR and VL of the group identity e such that

KVR := {xv | v ∈ VR, x ∈ K} ⊆ U,

and
VLK := {vx | v ∈ VL, x ∈ K} ⊆ U.

[5, p281]

Proof. Recall that a neighbourhood base for an element x ∈ Γ is a family
W of subsets W ⊆ Γ such that:

(a) Each W ∈ W is open, and

(b) For each open neighbourhood U of x, there is some W ∈ W such that
U ⊆W [5, p280].

Let x ∈ K, and let U ⊆ Γ be an open neighbourhood of x. We claim that, for
each x, we can choose an open neighbourhood Wx of e such that xWx ⊆ U .
To see why, consider the map lx : Γ → Γ defined by lx(t) := xt, for all t ∈ Γ.
The map lx is clearly continuous, and has continuous inverse (lx)−1(t) :=
x−1t, so lx is a homeomorphism. Hence if We forms a neighbourhood base
for e, then lx[We] := {xW |W ∈ We} is a neighbourhood base for x [5, p281]
[16, §4.2].

Now, let U be an open set which contains K. Then in particular, U is an
open neighbourhood of x, and so we can find a Wx ∈ We such that xWx ⊆ U .

We further claim that, for each such set Wx, we can find an open neighbour-
hood Vx of e such that

VxVx := {ab | a, b ∈ Vx} ⊆Wx.

Indeed, since the function f : Γ × Γ → Γ defined by f(x, y) := xy is contin-
uous, the preimage

Y := {(x, y) |xy ∈Wx, and Wx ∈ U} ⊆ Γ × Γ
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forms an open neighbourhood of (e, e). Hence we can find open neighbour-
hoods V1, V2 of e such that V1 × V2 ⊆ Y , and we define Vx := V1 ∩ V2 such
that VxVx ⊆Wx.

Now, the collection {xVx}x∈K forms an open covering of K, and since K is
compact, we can find a finite sub-collection of points x1, . . . xn in K such
that

K ⊆
n⋃
i=1

xiVxi .

Define the set VR by:

VR :=

n⋂
i=1

Vxi .

Then, if x ∈ K, there is an element xi such that x ∈ xiVxi , and so

xVR ⊆ xiVxiVxi ⊆ xiWxi ⊆ U.

Since our choice of x was arbitrary, it follows that KVR ⊆ U . The construc-
tion of VL follows the same arguments [5, pp280-1].

1.4 Haar’s Theorem

A theorem of Haar (Thm 1.17) shows that every locally compact group
can be furnished with a particularly nice measure, a Haar measure, which
possesses some desirable properties:

Definition 1.16 (Haar measure). Let Γ be a locally compact group
equipped with a (non-zero) regular Borel measure µ. We call µ a left Haar
measure if it left-invariant, that is, if:

µ(xA) = µ(A),

for all x ∈ Γ and A ∈ B(Γ). Similarly, we call µ a right Haar measure if:

µ(Ax) = µ(A),

for all x ∈ Γ and A ∈ B(Γ). Observe that, by the fact that the translation
map lx : Γ → Γ defined by lx(t) := xt is a homeomorphism (see p13), xA
is a Borel subset of Γ whenever A ∈ B(Γ), for all x ∈ Γ. Likewise, Ax is a
Borel subset, and so the measures of xA and Ax are well-defined [5, p285].

Theorem 1.17 (Haar). Let Γ be a locally compact group. Then Γ can be
equipped with a left Haar measure.
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Proof. The proof we present here closely follows the structure of that in [5,
§9.2], which in turn is based on the classical proof of Weil [46]. Let Γ be a
locally compact group, let K ⊆ Γ be compact, and let V ⊆ Γ be a subset
with non-empty interior V o. Then the collection

V := {xV o |x ∈ Γ} = {xv |x ∈ Γ, v ∈ V o}

forms an open covering of K, and since K is compact, there is a finite sub-
covering V ′ ⊆ V of K. This is to say that we can find a finite list of elements
x1, . . . , xn ∈ Γ such that

V ′ = {xiV o | i = 1, . . . n} (5)

is an open covering of K. Let (K : V ) denote the smallest non-negative
integer n for which such a covering V ′ exists. Note that (K : V ) = 0 if and
only if K = ∅.

Write K to denote the collection of all compact subsets of Γ, and write U
to denote the collection of all open subsets of Γ which contain the identity
e. Let K0 ⊆ Γ be a fixed compact subset with non-empty interior: such a
set exists since Γ is locally compact. For each U ∈ U , we define a function
φU : K → R by:

φU (K) :=
(K : U)

(K0 : U)
,

for all K ∈ K. This function will be an indicator of the “size” of a compact
subset K relative to some open neighbourhood U of e.

Now, write m := (K : K0) and n := (K0 : U), for some K ∈ K and U ∈ U .
Let x1, . . . , xm and y1, . . . , yn be finite sequences in Γ such that {xiKo

0}mi=1

and {yjU}nj=1 are open coverings of K and K0 respectively. Then

K ⊆
m⋃
i=1

 n⋃
j=1

xiyjU

 ,

which is to say that (K : U) ≤ mn = (K : K0)(K0 : U). Since (K : U) ≥ 0,
it follows that φU ≥ 0, and so

0 ≤ φU (K) ≤ (K : K0), (6)

for all K ∈ K and U ∈ U .

For each K ∈ K, consider the interval [0, (K : K0)] ⊂ R. Define the space
X to be the product of all such intervals:

X :=
∏
K∈K

[0, (K : K0)],
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together with the product topology. Since each interval is compact, it follows
by Tychonoff’s Theorem (Thm 1.11) that the space X is compact [22, p11].
It follows from (6) that each function φU can be viewed as a point in X.
Then, for each V ∈ U , we define the set

C(V ) := {φU |U ∈ U and U ⊆ V }.

Write V as the intersection of a finite sequence of sets V1, . . . Vn in U . Then
φV ∈

⋂n
i=1C(Vi), and so

⋂n
i=1C(Vi) is non-empty. Hence the space of closed

sets {C(V ) |V ∈ U} satisfies the finite intersection property (see Prop A.3).

But since X is compact, it follows that the intersection of the sets in the
collection {C(V ) |V ∈ U} is non-empty, and so we are able to pick an
element φ ∈

⋂
V ∈U C(V ).

⋆ ⋆ ⋆

We show that the function φ possesses the properties of a finitely-additive
measure on K, namely:

(a) If K1 ⊆ K2, then φ(K1) ≤ φ(K2),

(b) φ(K1 ∪K2) ≤ φ(K1) + φ(K2),

(c) φ(K1 ∪K2) = φ(K1) + φ(K2) whenever K1 and K2 are disjoint,

(d) φ(K) ≥ 0 for all K ∈ K, and φ(∅) = 0.

To show part (a), first let K1 ⊆ K2 be compact subsets of Γ. Observe that
φU (K1) ≤ φU (K2) for each U ∈ U , since a covering of K2 is automatically
a covering of K1. Recall that X has the product topology, so that for each
K ∈ K and U ∈ U , the projection f 7→ f(K) from X to R is continuous [5,
p392].

Let f ∈ X, and consider the map Φ : X → R defined by Φ(f) := f(K2) −
f(K1). Clearly Φ is continuous by virtue of being the composition of contin-
uous maps, and also non-negative on each C(V ), since φU (K1) ≤ φU (K2)
for each U ∈ U . Hence Φ is non-negative at each point in each closure C(V ),
and in particular, non-negative at φ. So φ(K2)−φ(K1) ≥ 0, and this proves
part (a).

We recycle this argument to prove part (b): let K1,K2 be compact subsets
of Γ which are not necessarily disjoint. We claim that φU (K1 ∪ K2) ≤
φU (K1) + φU (K2) for each U ∈ U .

Indeed, if V1 is a covering of K1 (as in (5)) consisting of m = (K1 : U) cosets
of U , and V2 is a covering of K2 with n = (K2 : U) cosets, then V1 ∪ V2 is a
covering of K1∪K2 with m+n elements, and hence (K1∪K2 : U) ≤ m+n.

Now, in a similar manner to above, the map Ψ : X → R defined by Ψ(f) :=
f(K1) + f(K2)− f(K1 ∪K2) is continuous and non-negative on each C(V ),
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and in particular on φ. So φ(K1 ∪ K2) ≤ φ(K1) + φ(K2), and we have
proved (b).

To show part (c), we will require the fact that, for all U ∈ U ,

φU (K1 ∪K2) = φU (K1) + φU (K2), (7)

whenever K1U
−1 and K2U

−1 are disjoint. Since we have already proven one
inequality in part (b) above, we can show this by checking that

φU (K1 ∪K2) ≥ φU (K1) + φU (K2), (8)

whenever K1U
−1 and K2U

−1 are disjoint. So let n = (K1 ∪ K2 : U), and
let x1, . . . , xn be a finite sequence of elements of Γ such that {xiU}ni=1 is an
open covering of K1 ∪K2. Each set xiU intersects at most one of K1 or K2,
since otherwise K1U

−1∩K2U
−1 would be non-empty. Thus we can re-index

the xi to form two shorter finite sequences {xi}ki=1 and {xi}ni=k+1 such that

K1 ⊆
k⋃
i=1

xiU, and K2 ⊆
n⋃

i=k+1

xiU.

From this, we obtain inequality (8), and together with part (b), this proves
the equality of (7).

Now, let K1,K2 ∈ K be disjoint, and use the Separation Lemma (Lem 1.12)
to find disjoint open subsets U1 and U2 of Γ which contain K1 and K2

respectively. By Lem 1.15, there exist V1, V2 ∈ U such that K1V1 ⊆ U1 and
K2V2 ⊆ U2. Write V := V1 ∩ V2, so that K1V and K2V are disjoint. Then
for each U ∈ U such that U ⊆ V −1,

φU (K1 ∪K2) = φU (K1) + φU (K2),

by property (7). Hence the map Ψ(f) := f(K1) + f(K2)− f(K1∪K2) takes
value zero at each element of C(V −1). In particular φ ∈ C(V −1), and so
φ(K1 ∪K2) = φ(K1) + φ(K2) whenever K1 and K2 are disjoint.

Part (d) can be shown by a similar argument to those of (a) and (b), using
the simple projection f 7→ f(K) for f ∈ X, and the fact that φU ≥ 0.

⋆ ⋆ ⋆

Our candidate measure φ still does not fit all the criteria of the theorem.
We must now extend φ so it is defined on all subsets of Γ. For all open
subsets E ⊆ Γ, define the function µ∗ by:

µ∗(E) = sup{φ(K) |K ⊆ E and K ∈ K},

and as an extension of this to arbitrary subsets A ⊆ Γ, define µ∗(A) by:

µ∗(A) := inf{µ∗(E) |A ⊆ U and E is open}.
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We claim that this extended function µ∗ is an outer measure on Γ.2 It is
easy to see that µ∗(A) ≥ 0 for all A ⊆ Γ: we need only verify that µ∗ is non-
negative on K, which becomes clear once we consider again the projection
f 7→ f(K) from X to R.

Trivially µ∗(∅) = 0, since (∅ : U) = 0 for all U ∈ U . By construction, it is
also clear that µ∗(A1) ≤ µ∗(A2) whenever A1 ⊆ A2, and so it only remains
to check countable subadditivity, that is, that each sequence (Ai) of subsets
of Γ satisfies

µ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai).

Firstly, let (Ei) be a sequence of open subsets of Γ, and let K ⊆
⋃
iEi be

compact. Then (Ei) has a finite subsequence E1, . . . , Ek which covers K,
and by applying Lem 1.14 inductively, we can partition K into compact
subsets K1, . . . ,Kk such that

k⋃
i=1

Ki = K, and Ki ⊆ Ei,

for each 1 ≤ i ≤ k. Then, by using property (a) of φ inductively, and from
the definition of µ∗, it follows that

φ(K) ≤
k∑
i=1

φ(Ki)

≤
k∑
i=1

µ∗(Ei)

≤
∞∑
i=1

µ∗(Ei).

Then

µ∗

( ∞⋃
i=1

Ei

)
= sup

{
φ(K)

∣∣∣∣K ⊆
∞⋃
i=1

Ei and K ∈ K

}
≤

∞∑
i=1

µ∗(Ei),

and so µ∗ is countably-subadditive on the collection of open subsets of Γ.
Now, let (An) be a sequence of arbitrary subsets of Γ, and assume that∑∞

i=nAi < ∞ (if the sum totalled infinity, the result would trivially hold).
Let ε > 0 be an arbitrary constant, and for each n ∈ N, pick an open set Un

2Recall from Def 1.9 that an outer measure µ∗ takes non-negative values, is monotonic,
countably-subadditive, and has null empty set, that is, µ∗(∅) = 0.
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containing An and such that µ∗(Un) ≤ µ∗(An) + ε
2n . Then

µ∗

( ∞⋃
n=1

An

)
≤ µ∗

( ∞⋃
n=1

En

)

≤
∞∑
n=1

µ∗(En)

≤
∞∑
n=1

µ∗(An) + ε

∞∑
n=1

1

2n

=
∞∑
n=1

µ∗(An) +
ε

2
.

Since we can set ε to be arbitrarily small, it follows that µ∗ is countably-
subadditive on the collection of all subsets of Γ, and so µ∗ is an outer
measure on Γ.

⋆ ⋆ ⋆

We now need to prove that each open subset of Γ is µ∗-measurable. Using
observation (1) of Carathéodory’s criterion, this entails checking that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec),

for all subsets A ⊆ Γ and open subsets E ⊆ Γ. We may assume that
µ∗(A) < ∞, since if µ∗(A) were infinite, then the result would trivially
hold. Let ε > 0 be an arbitrary constant, and pick an open subset F ⊆ Γ
containing A and such that µ∗(F ) ≤ µ∗(A) + ε

3 . Pick a compact subset
K ⊆ F ∩ E such that

φ(K) > µ∗(F ∩ E) − ε

3
, (9)

and pick a compact subset L ⊆ F ∩Kc such that

φ(L) > µ∗(F ∩Kc) − ε

3
.

Then K and L are disjoint, and by the fact that K ⊆ E, it follows that
F ∩ Ec ⊆ F ∩Kc. Hence

φ(L) > µ∗(F ∩Kc) − ε

3
≥ µ∗(F ∩ Ec) − ε

3
. (10)
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Thus, by combining (9), (10), and property (c) of φ, it follows that

µ∗(A ∩ E) + µ∗(A ∩ Ec) − 2ε

3
≤ µ∗(F ∩ E) + µ∗(F ∩ Ec) − 2ε

3
< φ(K) + φ(L)

= φ(K ∪ L)

≤ φ(F )

≤ µ∗(F )

≤ µ∗(A) +
ε

3
,

and so
µ∗(A ∩ E) + µ∗(A ∩ Ec) < µ∗(A) + ε.

Since we can set ε to be arbitrarily small, it follows that U is µ∗-measurable,
and so B(Γ) is contained in the σ-algebra generated by all µ∗-measurable
sets. Then, by the same method as in Prop 1.3, we can restrict µ∗ to B(Γ)
so that it becomes a full measure µ.

We now check that µ is regular on B(Γ). Let K ∈ K and let E ⊆ Γ be
an open subset containing K. Then φ(K) ≤ µ(E), and by the definition of
µ∗(K), it follows that

φ(K) ≤ µ(K). (11)

Furthermore, we can use Lem 1.13 to find an open subset V ⊆ Γ with
compact closure, such that K ⊆ V ⊆ V ⊆ U . Then

µ(K) ≤ µ(V ) ≤ φ(V ),

and hence µ(K) < ∞ for all K ∈ K. Clearly µ is outer regular by the
infimum definition of µ∗, and is inner regular by the supremum condition
together with (11). Hence µ is a Borel regular measure.

It remains to check that µ is non-zero and translation-invariant. Observe
that φU (K0) = 1 for each U ∈ U , and the projection from X → R which
maps f 7→ f(K0) is constant on each C(U). In particular, φ(K0) = 1, and
so µ(K0) ≥ 1.

Finally, let K ∈ K, let U ∈ U , and let x1, . . . , xn be a finite list of elements
of Γ such that

K ⊆
n⋃
i=1

xiU.

Then

yK ⊆
n⋃
i=1

yxiU,

for some fixed element y ∈ Γ, and so (K : U) = (gK : U) for each U ∈ U .
Hence φU (K) = φU (yK) for each U ∈ U . Consider the map Θ : X → R
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defined by Θ(f) := f(K) − f(yK) for f ∈ X and K ∈ K. As above (see
p16), we can show that this map is continuous and zero on each C(U), and
hence that µ(K) = µ(yK).

So µ is a non-zero regular Borel measure which is left-invariant, and therefore
is a left Haar measure on Γ [17, §7].

Examples 1.18.

1. The Lebesgue measure λ on the additive group R, when restricted to
the Borel algebra B(R), is both a left and right Haar measure.

2. Write R× to denote the multiplicative group of positive real numbers,
and define the function µ : B(R×) → R by:

µ(A) :=

∫
A

dx

x
,

for all subsets A ∈ B(R×). Then µ is a left Haar measure [37].

3. The counting measure ν on a discrete group Γ is clearly both a left
and right Haar measure.

Given a locally compact group Γ, there may not necessarily be a canonical
choice of Haar measure with which to endow it. It turns out, however, that
this decision is unimportant, as any two Haar measures on Γ differ only by
a constant – hence Haar measure is, in a sense, unique.

Definition 1.19 (Compact support). Let X be a locally compact Haus-
dorff space, and let f : X → R be a map. Recall that the support of f is
defined as the set

supp(f) := {x ∈ X | f(x) ̸= 0}.

We say that f has compact support if supp(f) is compact as a subset of X.
We write K0(X) to denote the set of all continuous functions f : X → R
with compact support [23, p225].

Lemma 1.20 (Left and right uniform continuity). Let Γ be a locally
compact group, let f ∈ K0(Γ), and let ε > 0 be an arbitrary constant. Then
there exists an open neighbourhood WL of the identity e in Γ such that
|f(x) − f(y)| < ε whenever y ∈ xWL, for all x ∈ Γ. This is to say that f is
left uniformly continuous.

Likewise, there exists an open neighbourhood WR of e such that |f(x) −
f(y)| < ε whenever y ∈ WRx, for all x ∈ Γ. This is to say that f is right
uniformly continuous [5, p282].
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Proof. Let f ∈ K0(Γ), and write K := supp(f). Since f is continuous, for
each x ∈ K we can find an open neighbourhood Ux of the identity e such
that |f(x) − f(y)| < ε

2 whenever y ∈ xUx (as in the proof of Lem 1.15).
Then, again by Lem 1.15, we can find an open neighbourhood Vx of e such
that VxVx ⊆ Ux. The collection {xVx}x∈K forms an open covering of K, and
since K is compact, there is a finite sub-collection of points x1, . . . , xn in K
such that

K ⊆
n⋃
i=1

xiVxi .

Define the set V by:

V :=
n⋂
i=1

Vxi ,

and then define W := V ∩ V −1, such that W is a symmetric open neigh-
bourhood of e.

Let y ∈ xW , and suppose firstly that x, y /∈ K. Then |f(x) − f(y)| = 0,
and the result immediately follows. Assume, then, that x ∈ K. Then there
exists some natural number k with 1 ≤ k ≤ n such that x ∈ xkVxk , and
hence that x ∈ xkUxk . But also

y ∈ xW ⊆ xkVxkVxk ⊆ xkUxk ,

and so

|f(x) − f(y)| ≤ |f(x) − f(xk)| + |f(xk) − f(y)| < ε

2
+
ε

2
= ε.

Hence f is continuous in the case where x ∈ K, and it remains to consider
the case where y ∈ K. Since y ∈ xW , we can write y = xw for some w ∈W ,
and hence x = yw−1. But W is symmetric, so w−1 ∈W , and hence x ∈ yW .
We can therefore use the same argument as above, interchanging x and y,
to show that f is again continuous. Taking WL := W , we have therefore
shown that f is left uniformly continuous.

We can use an almost identical argument to show that f is also right uni-
formly continuous [5, p282].

Lemma 1.21. Let Γ be a locally compact group equipped with a Haar mea-
sure µ, and let f ∈ K0(Γ). Then the functionals L,R ∈ (K(Γ))∗ defined
by:

L(f)(x) :=

∫
Γ
f(tx) dµ(t), and R(f)(x) :=

∫
Γ
f(xt) dµ(t)

are continuous [5, p282].
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Proof. Let x0 ∈ Γ, and use Lem 1.13 to find an open neighbourhood V of
x0 with compact closure. Write K := supp(g), and note that since K is
compact, it follows by Tychonoff’s Theorem (Thm 1.11) that the set

K × V
−1

:=
{

(x, v)
∣∣∣x ∈ K and v−1 ∈ V

}
is compact. Define the function p(x, v) := xv for all x ∈ K and v ∈ V

−1
,

and observe that p is continuous. Hence

KV
−1

:=
{
xv
∣∣∣x ∈ K and v ∈ V

−1
}

= p
[
K × V

−1
]
,

and so KV
−1 ⊆ Γ is a compact subset. Now, let ε > 0 be an arbitrary

constant. Since KV
−1

, it follows that µ(KV
−1

) <∞, and so we can find a
constant δ > 0 such that

δµ
(
KV

−1
)
< ε.

Since g ∈ K0, it is left uniformly continuous by Lem 1.20. We can therefore
find an open neighbourhood W of the identity e such that |g(x)− g(y)| < δ
whenever y ∈ xW , for all x ∈ Γ. Then for each x ∈ (V ∩ x0W ) and each
t ∈ Γ, we have that tx ∈ tx0W . It follows that

|L(f)(x) − L(f)(x0)| ≤
∣∣∣∣∫

Γ
f(tx) dµ(t) −

∫
Γ
f(tx0) dµ(t)

∣∣∣∣
≤
∫
Γ
|f(tx) − f(tx0)| dµ(t)

≤ δµ
(
KV

−1
)
< ε,

since the continuous map which takes t 7→ f(tx) vanishes whenever t /∈
KV

−1
. Since we can set ε to be arbitrarily small, and our choice of x0 ∈ Γ

was also arbitrary, this proves that L(f)(x) is continuous. The proof that
R(f)(x) is continuous follows an almost identical argument [5, p282].

Theorem 1.22 (Haar-von Neumann). Let Γ be a locally compact group,
and let µ and µ′ be left Haar measures on Γ. Then there exists a positive
constant k such that µ′ = kµ [5, p290] [25, p65].

Proof. Firstly, we show that each non-empty open subset U ⊆ Γ has non-
zero Haar measure. Since µ is not identically zero, we can find some subset
of Γ with non-zero measure, and hence by the inner regularity of µ, we
can find a compact set K with µ(K) > 0. Let U ⊆ Γ be a non-empty
open subset, such that {xU}x∈Γ is an open covering of K. Then, since K
is compact, there is a finite sequence of elements x1, . . . xn of Γ such that
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{xiU}ni=1 covers K. Since

µ(K) ≤
n∑
i=1

µ(xiU),

it follows by the fact that µ is translation-invariant that

µ(K) ≤ µ(U) + · · · + µ(U)︸ ︷︷ ︸
n times

= nµ(U),

and hence that µ(U) > 0.

Fix a non-negative function g ∈ K0(Γ) which is not the zero function. Then
there exists a positive constant ε > 0 and a non-empty open set U such that
g ≥ ε1U , where 1U is the indicator function of U .3 By the above, it then
follows that

∫
Γ g dµ′ ≥ εµ′(U) > 0.

Let f ∈ K0(Γ) be an arbitrary function, and define the map h : Γ × Γ → R
by:

h(x, y) :=
f(x)g(yx)∫

Γ g(tx) dµ′(t)
,

for all x, y, t ∈ Γ. By the above, the denominator is non-zero, and so the
ratio is defined everywhere.

We claim that h belongs to K0(Γ × Γ). Indeed, h is certainly compactly
supported since f and g are, so it is sufficient to show that h is continuous.
We know that f and g are continuous, and by Lem 1.21, the denominator

L(g)(x) :=

∫
Γ
g(tx) dµ′(t)

is also continuous; hence h ∈ K0(Γ × Γ). Now, it follows from a version of
Fubini’s Theorem (Prop A.2) that∫

Γ

∫
Γ
h(x, y) dµ(x) dµ′(y) =

∫
Γ

∫
Γ
h(x, y) dµ′(y) dµ(x). (12)

3Recall that the indicator function 1A : Γ → {0, 1} of a subset A ⊆ Γ is defined by:

1A(x) :=

{
1 if x ∈ A,

0 otherwise,

for all x ∈ Γ.
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Hence, by the translation-invariance of µ, it follows that∫
Γ

∫
Γ
h(x, y) dµ′(y) dµ(x) =

∫
Γ

∫
Γ
h(x, y) dµ(x) dµ′(y)

=

∫
Γ

∫
Γ
h(y−1x, y) dµ(x) dµ′(y)

=

∫
Γ

∫
Γ
h(y−1x, y) dµ′(y) dµ(x)

=

∫
Γ

∫
Γ
h(y−1, xy) dµ′(y) dµ(x).

Now, substituting in our function h, we have that∫
Γ
f(x) dµ(x) =

∫
Γ
f(x)

∫
Γ g(yx) dµ′(y)∫
Γ g(tx) dµ′(t)

dµ(x)

=

∫
Γ

∫
Γ
h(x, y) dµ′(y) dµ(x)

=

∫
Γ

∫
Γ
h(y−1, xy) dµ′(y) dµ(x)

=

∫
Γ

∫
Γ

f(y−1)g(x)∫
Γ g(ty−1) dt

dµ′(y) dµ(x)

=

∫
Γ
g(x) dµ(x)

∫
Γ

f(y−1)∫
Γ g(ty−1) dµ′(t)

dµ′(y).

Hence
∫
Γ f(x) dµ(x) = C

∫
Γ g(x) dµ(x), where C is a constant which depends

on f and g, but is independent of µ. Therefore we can write∫
Γ
f dµ′ = k

∫
Γ
f dµ,

where

k :=

∫
Γ g dµ′∫
Γ g dµ

,

and from this it follows that µ′ = kµ [5, pp290-1].

Corollary (Theorem 1.6). The Lebesgue measure λ is the unique complete
translation-invariant measure on B(R) such that λ[0, 1] = 1 [31, p623].

Proof. The Lebesgue measure λ : B(R) → R can clearly be seen to be a
Haar measure, and as such, is unique up to multiplication by a constant.
By normalising the measure of the interval [0, 1], we certify the uniqueness
of λ.
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Definition 1.23 (Left and right translate). Let Γ be a group, and let A
be an arbitrary set. Let f : Γ ×A→ A be a continuous function, and write
f(x, a) = x · a, for all x ∈ Γ and a ∈ A. We say that f is a group action of
Γ on A if it has the following properties:

(a) e · a = a, where e ∈ Γ is the identity, and a ∈ A is arbitrary, and

(b) (xy) · a = x · (y · a), for all x, y ∈ Γ and a ∈ A [23, p199].

For each a ∈ A, we define the Γ-orbit of a to be the set Γa := {x ·a |x ∈ Γ}.

We write AΓ to denote the set of functions on Γ whose values lie in A. Fix
an element x ∈ Γ, and let f ∈ AΓ. We define the following actions of the
group Γ on AΓ:

1. The left translate of f by x is the function xf ∈ AΓ defined by xf(s) :=
f(x−1s), for all s ∈ Γ.

2. The right translate of f by x is the function fx ∈ AΓ defined by
fx(s) := f(sx−1), for all s ∈ Γ.

Notice that the identity e ∈ Γ has the property that ef(s) = fe(s) = f(s),
for all s ∈ Γ. Furthermore, if x, y ∈ Γ, then

xyf(s) = f((xy)−1s) = f(y−1x−1s) = yf(x−1s) = x(yf(s)),

and
fxy(s) = f(s(xy)−1) = f(sy−1x−1) = fx(sy−1) = (fx)y(s),

for all s ∈ Γ. Hence each of the above functions does indeed define a group
action of Γ on AΓ. We will also make use of the following function:

3. Given a function f ∈ AΓ, we define the “symmetric” function f̌ ∈ AΓ

by f̌(s) := f(s−1), for all s ∈ Γ [25, p64].

Proposition 1.24. Let Γ be a locally compact group, and let µ be a regular
Borel measure on Γ. Then µ is a left (resp. right) Haar measure on Γ if
and only if µ̌ is a right (resp. left) Haar measure on Γ [5, p293].

Proof. Firstly, we claim that µ̌ is a Borel regular measure on Γ. Indeed, a
subset U ⊆ Γ is open if and only if U−1 ⊆ Γ is open. Write S to denote the
collection of subsets S ⊆ Γ such that S−1 ∈ B(Γ). Then the sets in S are
open and in one-to-one correspondence with the sets in B(Γ). Therefore S
is a σ-algebra which contains all Borel subsets of Γ. Hence a subset A ⊆ Γ
is a Borel set if and only if A−1 ⊆ Γ is a Borel set.

Since the map which sends x 7→ x−1, for x ∈ Γ, is continuous, it follows that
a subset K ⊆ Γ is compact if and only if K−1 is compact. Hence µ̌ is finite
on compact sets, and so is a Borel measure.
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By the outer regularity of µ, it follows that

µ̌(A) = sup{µ(K) |K−1 ⊆ A, and K ⊆ Γ is compact}.

But we have seen that K−1 is compact if and only if K is compact, and
K−1 ⊆ A−1 if and only if K ⊆ A, so

µ̌(A) = sup{µ̌(K) |K ⊆ A, and K ⊆ Γ is compact},

which is to say that µ̌ is inner regular. We can use a similar argument to
show that µ̌ is outer regular, and so µ̌ is a Borel regular measure.

Now, let µ be left-invariant. Then µ̌ is right-invariant, since (Ax)−1 =
x−1A−1, and so

µ̌(Ax) = µ(x−1A−1) = µ(a−1) = µ̌(A).

Similarly, if µ is right-invariant, it follows that

µ̌(xA) = µ(A−1x−1) = µ(A−1) = µ̌(A),

which is to say that µ̌ is left-invariant [5, p293] [25, p64].

1.5 Invariant Means on Locally Compact Groups

Definition 1.25 (Measurable functions). Let (X,ΣX) and (Y,ΣY ) be
measurable spaces, that is, sets X and Y equipped with σ-algebras ΣX and
ΣY respectively [5, p8]. A function f : X → Y is said to be measurable if,
for each set A in ΣY , the preimage f−1(A) belongs to ΣX .

Now we endow the space X with a measure µ, and let f : X → R be a
measurable function. We say that f is bounded if there exists some constant
C ∈ R such that |f(x)| < C for all x ∈ X.

We call a function g : X → R essentially bounded if it is almost equal to a
bounded function f , that is, if

µ({x ∈ X | g(x) ̸= f(x)}) = 0.

We write L∞(X) to denote the space of all such essentially bounded mea-
surable functions, and write L∞(X) for the quotient space L∞(X)/∼, where
the relation ∼ identifies functions which are almost equal [34, p4].

We define the norm ∥g∥∞ of a function g ∈ L∞(X) as the essential supre-
mum of g, that is, the infimum of all C ∈ R such that

µ ({x ∈ X | |g(x)| > C}) = 0.

[33, p318]
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Definition 1.26 (Means on locally compact groups). Let Γ be a locally
compact group, and let m : L∞(Γ) → R be a bounded linear functional. We
call m a left-invariant mean if it has the following properties:

(a) m(f) ≥ 0 whenever f ≥ 0,

(b) m(1Γ) = 1, where 1Γ is the indicator function of Γ,

(c) m(xf) = m(f), for all x ∈ Γ and f ∈ L∞(Γ).

A locally compact group Γ is said to be amenable if it admits a left-invariant
mean.
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Examples 1.27.

1. Let Γ be a discrete group, and suppose that Γ is amenable with in-
variant mean m : L∞(Γ) → R. Define the function µ : P(Γ) → R by
µ(A) := m(1A), for all A ⊆ Γ.

Observe that, if A,B ⊆ Γ are disjoint subsets, then

µ(A ∪B) = m(1A∪B)

= m(1A) +m(1B) (since m is linear)

= µ(A) + µ(B),

which is to say that µ is finitely-additive. Furthermore, since m(1Γ) =
1, it follows that µ(Γ) = 1, and from the linearity of m it follows that
µ(∅) = 0. Finally, for each x ∈ Γ and A ⊆ Γ:

µ(xA) = m(1xA)

= m(x1A)

= m(1A) = µ(A),

and so µ is left-invariant. Hence µ is a left-invariant measure in the
sense of Def 1.7. Conversely, if Γ has a left-invariant measure µ, then
we may consider L∞(Γ) as a measure space with respect to µ. We
can then construct a mean in the sense of Def 1.26, and so these two
definitions of amenability are equivalent [10, p4].

2. Let Γ be a finite group. Then we can equip Γ with the discrete topology
and the counting measure ν. Hence Γ is amenable by Ex 1.8.

3. The additive group of integers Z is amenable. To show this, let ε > 0
be an arbitrary constant, and write Mε to denote the set of means
µ : P(Z) → [0, 1] such that

|µ(A) − µ(1 +A)| < ε, (13)

for all subsets A ⊆ Z, and where 1 + A := {1 + a | a ∈ A}. Pick a
natural number N such that N < 2

ε . Then, for each ε > 0, define the
function µε : P(Z) → R by:

µε(A) :=
|{i ∈ A, | 1 ≤ i ≤ N}|

N
,

for all A ⊆ Z. Then |µε(A) − µε(1 +A)| ≤ 2
N < ε, and so µε ∈ Mε;

in particular, each Mε is non-empty. It is not difficult to verify that
each Mε is closed, and that if ε1, . . . , εn is a finite sequence of positive
numbers, then

n⋂
i=1

Mεi = Mmin{εi}.
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Hence the space {Mε | ε > 0} of closed subsets of [0, 1]P(Γ) has the finite
intersection property (Prop A.3), and so is compact. By Tychonoff’s
Theorem (Thm 1.11), the set [0, 1]P(Z) is compact, and since {Mε | ε >
0} ⊆ [0, 1]P(Z), there exists a mean µ̂ in the intersection

⋂
ε>0Mε which

satisfies (13).

Since we can set ε to be arbitrarily small, this shows that µ̂ is left-
invariant with respect to 1. But 1 is a generator of Z as an additive
group, which is to say that each k ∈ Z can be formed by an arbitrary
sum of 1 and −1 (see Def 2.1). Hence µ̂ is left-invariant with respect
to Z, and so is a left-invariant mean. Thus Z is amenable [10, p6].

4. Let Γ be a compact group (that is, a group which is compact and Haus-
dorff as a metric space) equipped with left Haar measure µ. Define
the linear functional m : L∞(Γ) → R by:

m(f) :=
1

µ(Γ)

∫
Γ
f dµ,

which is well-defined since 0 < µ(Γ) <∞. This can clearly be seen to
be an invariant mean on Γ.

Lemma 1.28. Let (Γn) be a sequence of discrete amenable groups. Then
the disjoint union Γ := ⨿n∈NΓn is also amenable [10, p6].

Proof. Firstly, since each group Γn is amenable, we may find a left-invariant
mean µn : Γn → [0, 1] for each n ∈ N. Then, for each n ∈ N, define the
closed set

Mn := {µ |µ is a mean on Γ, and µ(xA) = µ(A) for all x ∈ Γn, A ⊆ Γ}.

Define the measure µ̂n : P(Γ) → [0, 1] by µ̂n(A) := µn(A ∩ Γn), such that
µ̂n ∈Mn for each n; in particular, note that each Mn is non-empty. Observe
that, if Γi,Γj ⊆ Γk, then Mk ⊆Mi ∩Mj , and that, by Tychonoff’s Theorem
(Thm 1.11), the set [0, 1]P(Z) is compact.

Hence the space {Mn |n ∈ N} of closed subsets of [0, 1]P(Γ) has the finite
intersection property (Prop A.3), and so we can find a mean µ̂ ∈

⋂
n∈NMn.

Thus µ̂(xA) = µ̂(A) for all x ∈ Γ and A ⊆ Γ, and so Γ is amenable [10,
p6].

Lemma 1.29. Let Γ be a discrete group, and let N ⊴ Γ be a normal subgroup
such that N and G/N are both amenable. Then Γ is amenable [10, p6].

In particular, the direct product of a finite number of amenable groups is
amenable.
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Proof. Suppose that N ⊴ Γ and Γ/N are amenable with left-invariant
means µ1 and µ2 respectively. For each subset A ⊆ Γ, define the function
fA : Γ → R by:

fA(x) := µ1(N ∩ x−1A).

Note that, since µ1(xN) = µ1(N) for all x ∈ Γ, we may define fA on Γ/N .
Now, define the map µ : P(Γ) → [0, 1] by µ(A) :=

∫
Γ fA dµ2. Clearly

µ(∅) = 0 and µ(Γ) = 1 by the fact that µ1 and µ2 are means. Furthermore,
if A,B ⊆ Γ are disjoint subsets, then

µ(A ∪B) =

∫
Γ
fA∪B(x) dµ2(x)

=

∫
Γ
µ1
(
N ∩ x−1(A ∪B)

)
dµ2(x)

=

∫
Γ
µ1
((
N ∩ x−1A

)
∪
(
N ∩ x−1B

))
dµ2(x)

=

∫
Γ
µ1
(
N ∩ x−1A

)
+ µ1

(
N ∩ x−1B

)
dµ2(x)

=

∫
Γ
fA(x) + fB(x) dµ2(x) = µ(A) + µ(B),

which is to say that µ is finitely-additive. Finally, note that

µ(xA) =

∫
Γ
fxA(x) dµ2(x)

=

∫
Γ
µ1(N ∩ x−1xA) dµ2(x)

=

∫
Γ
x(fA)(x) dµ2(x)

=

∫
Γ
fA(x) dµ2(x) = µ(A),

since µ2 is left-invariant. Hence µ is a left-invariant mean on Γ, and Γ is
amenable [10, p6].

As an immediate consequence, if Γ and ∆ are amenable groups, then Γ×∆
is amenable, since Γ ∼= (Γ × ∆)/∆. Hence, by induction, the direct product
of finitely-many amenable groups is amenable.

Theorem 1.30. Every discrete Abelian group Γ is amenable [10, p6].

Proof. Firstly, we consider the case where Γ is a finitely-generated Abelian
group, that is, where each x ∈ Γ can be produced by the combination
(under the group action) of a finite number of elements (see Def 2.1). By
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the Fundamental Theorem of Finitely-Generated Abelian Groups [24, p24],
Γ can be decomposed as a direct sum of the form:

Γ = Zn ⊕ Zp1 ⊕ · · · ⊕ Zpm ,

where each pi is a power of a prime number. Hence Γ = Zn ⊕ Γ′, where
Γ′ is a finite group. By Ex 1.27(2), Γ′ is amenable, and by Ex 1.27(3) and
Lem 1.29, Zn is amenable. Hence by Lem 1.29 again, it follows that Γ is
amenable.

Since every Abelian group can be written as the direct union of its finitely-
generated subgroups, it follows from Lem 1.28 that every discrete Abelian
group is amenable [10, p6].

Examples 1.31.

1. Consider the additive group of real numbers R with the discrete topol-
ogy – not the usual topology. Since R is Abelian, it is also amenable by
the above theorem. Thus, there exists a finitely-additive translation-
invariant measure µ which is defined on all subsets of R, and not just
the Borel sets. Note that this measure µ will have to be different to
the Lebesgue measure λ.

2. Similarly, recall that the special orthogonal group SO2(R) can be de-
fined as the multiplicative subgroup of R2 consisting of all elements
which lie on the unit circle:

SO2(R) := {(x, y) ∈ R2 |x2 + y2 = 1}.

Observe that SO2(R) is Abelian. Then we can equip SO2(R) with the
discrete topology, such that SO2(R) is amenable.
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2 Følner Sequences

Amenable groups can be characterised more combinatorially by way of
Følner sequences, collections of sets which remain “almost fixed” when acted
upon by elements of the group. The motivation for this comes from the mea-
sures µε constructed in the proof of the amenability of Z (Ex 1.27(3)), which
is “almost invariant,” that is, invariant to within an arbitrarily small ε > 0.
We then showed that the “limit” of these measures was indeed invariant.

It turns out that the existence of a Følner sequence guarantees that the
group is amenable in the same way, and this geometric viewpoint will shed
light on some fresh examples of amenable groups. Firstly, we will spend
some time reviewing a few core concepts from geometric group theory.

2.1 Quasi-Isometries

Definition 2.1 (Word metric). Let Γ be an arbitrary group, and let S ⊆ Γ
be a subset. Define the sets S−1 := {x−1 |x ∈ S}, and S± := S ∪ S−1. We
define a word w := x1x2 · · ·xn in S± to be the product (under the group
operation) of a finite string of elements of S±.

A word is said to be reduced if it contains no strings of the form xx−1, and
two words are said to be equivalent if they are the same up to addition or
removal of such strings. We define the length of a word w := x1 · · ·xn to be
the natural number n, and sometimes denote this by |w|.

We say that Γ is generated by S if each element of Γ can be expressed
as a word consisting of elements of S±. The elements of S are called the
generators of Γ. We say that Γ is finitely-generated if it can be generated
by a finite set.

Since every element x ∈ Γ can be expressed as a word consisting of elements
of S, we can define a function dS : Γ × Γ → R by the length of the shortest
word representing the element x−1y, for all x, y ∈ Γ. The function dS
is easily verified to be a metric, and is often called the word metric with
respect to S [3, p139].

Example 2.2. The free group on S, denoted FS can be viewed as the set
of all reduced words in the “alphabet” of S: each reduced word defines a
distinct element of FS . If S has n elements, we can call FS the free group
on n generators, and denote this by Fn [1, pp70-5].

Definition 2.3 (Cayley graph). Let Γ be a group generated by a finite
subset S ⊆ Γ. The Cayley graph of Γ with respect to S, denoted Cay(Γ;S),
is a connected metric graph constructed as follows:
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1. Assign to each element x of Γ a vertex, such that the vertices of
Cay(Γ;S) are in one-to-one correspondence with Γ.

2. Draw an edge s of length one between x and xs for each x ∈ Γ and
s ∈ S±.

Notice that, if the identity e is not contained in the generating set S, then the
Cayley graph contains no loops. Furthermore, since the set S± is symmetric,
the edges of Cay(Γ;S) need not be directed. For brevity, we will assume that
all finite generating sets S are symmetric and do not contain the identity,
unless otherwise stated. [3, p8] [28].

Observe that the word metric dS on a group Γ is closely related to the
Cayley graph; any two distinct vertices x, y ∈ Cay(Γ;S) are adjacent (i.e.
connected by an edge) if and only if dS(x, y) = 1. Indeed, if an element
x−1y ∈ Γ can be expressed as a word of length n in S, then the vertices
x, y ∈ Cay(Γ;S) can be joined by a path of length n.

Conversely, if x, y ∈ Cay(Γ;S) are joined by a path of length n, then we can
find a word of length n to express x−1y ∈ Γ. Hence the word metric finds
the length of a geodesic, or shortest path from x to y in Cay(Γ;S) [15].

Since the generating set S is presumed to be finite, the Cayley graph is
locally finite, and hence defines a proper geodesic space, that is, one in
which all closed and bounded subsets are compact [6, p84] [36, pp11-2].

The structure of a finitely-generated group Γ as a metric space in the form
of a Cayley graph clearly depends on the choice of generating set. We would
like to study the geometry of such groups independently of the generating
set, and this becomes easier to do once we “zoom out” and consider the
large-scale structure.

Definition 2.4 (Quasi-isometry). Let X and Y be proper metric spaces,
and let f : X → Y be a function between them. We say that f is a quasi-
isometry if there exist constants A ≥ 1 and B,C ≥ 0 such that:

(a) For any two elements x, x′ ∈ X:

1

A
· dX(x, x′) −B ≤ dY (f(x), f(x′)) ≤ A · dX(x, x′) +B,

(b) For each y ∈ Y , we can find an x ∈ X such that dY (f(x), y) ≤ C.

If f satisfies (a) alone, then we call f a quasi-isometric embedding.

If there exists a quasi-isometry f : X → Y , then we say the spaces X and
Y are quasi-isometric.
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If we need to be more precise, and specify the constants A and B, we can
say that the map f is an (A,B)-quasi-isometric embedding or an (A,B)-
quasi-isometry [3, p138] [6, p85].

Examples 2.5.

1. A metric space X is quasi-isometric to a one-point space if and only
if it is bounded, that is, if and only if there exists a constant R ≥ 0
such that d(x, y) ≤ R for all x, y ∈ X.

2. More generally, if A ⊆ X is a subset, then the inclusion A ↪→ X is a
quasi-isometry if and only if A is quasi-dense in X, that is, if and only
if we can find a constant C > 0 such that each point x ∈ X lies in the
C-neighbourhood of some point of A.

The natural inclusion Z ↪→ R, for example, is a quasi-isometry, since
each point of R is within 1

2 of a point of Z [3, p139].

Proposition 2.6.

Let Γ be a group with finite generating sets S and S′. Then Cay(G;S) is
quasi-isometric to Cay(G;S′) [3, p139-40].

Proof. We consider the identity map i : (Γ, dS) → (Γ, dS′), and define the
value

α := max{dS′(e, s) | s ∈ S±}.

Observe that, since S is finite, α is finite. Let x, y ∈ Γ, and write n :=
dS(x, y), such that x−1y = s1 · · · sn for some s1, . . . , sn ∈ S. Since the word
metric is left-invariant, it follows that

dS′(x, y) = dS′(x, gs1 · · · sn)

≤ dS′(x, xs1) + dS′(xs1, xs1s2) + · · · + dS′(xs1 · · · sn−1, xs1 · · · sn)

= dS′(e, s1) + · · · + dS′(e, sn)

≤ αn = αdS(x, y).

By a similar argument, we can show that dS(x, y) ≤ βdS′(x, y) for some
constant β > 0, and hence that i is a quasi-isometry. Now consider the
composition

Cay(Γ;S)
φ−−→ (Γ, dS)

i−−→ (Γ, dS′)
ψ−−→ Cay(Γ;S′),

where φ maps a point a ∈ Cay(Γ;S) to some element x ∈ Γ such that
dS(a, x) ≤ 1

2 , and ψ is the inclusion. Clearly φ and ψ are quasi-isometries,
and it is easy to verify that the composition of quasi-isometries is a quasi-
isometry. Hence Cay(G;S) is quasi-isometric to Cay(G;S′) [36, p18].
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Henceforth we will refer to “the” Cayley graph of a group, and this is well-
defined up to quasi-isometry.

2.2 The Følner Criterion

Definition 2.7 (Følner criterion for discrete groups). We define the
symmetric difference of two sets A and B by A△ B := (A \ B) ∪ (B \ A),
that is, the set of points in precisely one of A or B.

Let Γ be a discrete group. Then Γ is said to satisfy the Følner criterion if,
for each finite subset A ⊆ Γ and each ε > 0, there exists a finite non-empty
subset F ⊆ Γ such that

|aF △ F |
|F |

≤ ε,

for all a ∈ A. If Γ is countable, we define a Følner sequence to be a sequence
(Fn) of finite non-empty subsets of Γ such that⋃

n∈N
Fn = Γ, and lim

n→∞

|xFn △ Fn|
|Fn|

= 0,

for all x ∈ Γ. The sets Fn are often called Følner sets [10, p8]. In fact,
possessing a Følner sequence is equivalent to satisfying the Følner criterion:

Proposition 2.8. A discrete group Γ contains a Følner sequence if and only
if it satisfies the Følner criterion.

Proof. Firstly, suppose that Γ satisfies the Følner criterion, and let A1 ⊆
A2 ⊆ · · · be an ascending chain of finite subsets of Γ such that Γ =

⋃
n∈NAn.

Define ε := 1
n for each n ∈ N. Then for each n, there exists a finite non-

empty subset Fn ⊆ Γ such that

|aFn △ Fn|
|Fn|

≤ 1

n
,

for all a ∈ An. But each x ∈ Γ is contained in some An, and so is contained
in all Am with m ≥ n. It follows that

lim
n→∞

|xFn △ Fn|
|Fn|

= 0.

Conversely, suppose that Γ contains a Følner sequence (Fn). Then for each
ε > 0 we can find a natural number N such that

|xFn △ Fn|
|Fn|

< ε,

for all n ≥ N and x ∈ Γ. Hence Γ satisfies the Følner criterion [9] [10,
p9].
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Følner sequences in a discrete group Γ are naturally related to the Cayley
graph of Γ with respect to some finite generating set S.

Let F be a finite subset of the vertices of Cay(Γ;S). We define the boundary
of F , denoted by ∂F , to be the set of vertices in F c which are adjacent to
some vertex in F . It is not difficult to see that |xF △ F | ≤ |∂F |, since we
discard all edges which do not have endpoints in precisely one of xF or F
[4].

The Følner criterion can then be reformulated for Cayley graphs by saying
that for each ε > 0, there exists a finite non-empty subset F of the vertices
of Cay(Γ;S) such that

|∂F |
|F |

< ε.

[13, p11]

We will shortly show that a group satisfies the Følner criterion if and only if
it admits a left-invariant mean, and hence that the Følner criterion gives an
equivalent characterisation of amenability. In order to do this, we recall some
fundamental structures from from functional analysis, and an important
consequence of the Hahn-Banach Theorem (Thm A.4).

Definition 2.9 (Topological vector space). Let V be a vector space over
the field R. We call V a topological vector space if it is equipped with a vector
topology, that is, a topology τ such that:

(a) Each singleton in V is closed, and

(b) The operations of addition and scalar multiplication on V are contin-
uous with respect to τ [33, p7].

It is not difficult to show that these two conditions together imply that each
topological vector space is also a Hausdorff space [33, p10].

Theorem 2.10 (Hahn–Banach Separation). Let V be a topological vec-
tor space over the field R, and let A,B ⊆ V be non-empty subsets which are
convex and disjoint. If A is open, then there exists a continuous linear map
f : V → R and a constant t ∈ R such that

f(a) < t ≤ f(b),

for all a ∈ A and b ∈ B. (For a proof, we direct the reader to [33, p59].)

In order to show that Z is amenable in Ex 1.27(3), we defined the space
Mε of finitely-additive probability measures which remain “almost fixed”
under left translation. In fact, this space is fairly standard, and has diverse
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applications including in the proof of the following theorem, so we formalise
its definition here.

Definition 2.11. Let Γ be a locally compact Hausdorff space. A mean
µ : P(X) → [0, 1] is said to be almost invariant if there exists a constant
ε > 0 such that:

|µ(A) − µ(xA)| < ε,

for all subsets A ⊆ X, and x ∈ X. If we need to specify the constant ε,
we can say that µ is ε-almost-invariant, and we write Mε to denote the
set of all such means. We write MB

ε to denote the set of means which are
ε-almost-invariant under left translation by elements from a given subset
B ⊆ X.

Notice that each of these sets is closed.

Theorem 2.12 (Følner). Let Γ be a finitely-generated discrete group. Then
Γ satisfies the Følner criterion if and only if it is amenable [10, p9].

Proof. The first direction of the proof follows the arguments used in Ex
1.27(3). Firstly, suppose that Γ satisfies the Følner criterion. Let B ⊆ Γ
be a subset, let ε > 0 be an arbitrary constant, and consider the set MB

ε .
Since each MB

ε is a closed subset of the compact set [0, 1]P(Γ), each MB
ε is

also compact.

Now, define the function µB : P(Γ) → [0, 1] by:

µB(A) :=
|A ∩ FB|
|FB|

,

where FB is a Følner set, that is:

|bFB △ FB|
|FB|

< ε,

for all b ∈ B. Then

|µB(A) − µB(bA)| =
||A ∩ FB| − |bA ∩ FB||

|FB|
≤ |bFB △ FB|

|FB|
< ε,

since (A∩FB) ⊆ (FB ∪ bFB) and (bA∩FB) ⊆ (FB ∪ bFB). Hence µB ∈MB
ε ,

and in particular, each MB
ε is non-empty. Observe that if B1, . . . , Bm is

a finite sequence of subsets, and ε1, . . . , εn is a finite sequence of positive
numbers, then

m⋂
i=1

MBi
ε = M (

⋃
Bi)

ε ,
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for fixed ε > 0, and
n⋂
j=1

MB
εj = MB

min{εj},

for a fixed subset B ⊆ Γ. Hence the space {MB
ε | ε > 0, and B ⊆ Γ} of

closed subsets of [0, 1]P(Γ) has the finite intersection property (Prop A.3),
and so is compact. Since [0, 1]P(Γ) is compact by Tychonoff’s Theorem (Thm
1.11), there exists an almost invariant mean µ̂ such that

µ̂ ∈
⋂
B⊆Γ
ε>0

MB
ε =

⋂
ε>0

MΓ
ε .

Since we can set ε to be arbitrarily small, this shows that µ̂ is a left-invariant
mean on Γ, and so Γ is amenable [10, p9].

⋆ ⋆ ⋆

The proof of the converse which we present here is due to [26]. Suppose
that Γ is amenable with mean µ, and consider the space l1(Γ) of absolutely
convergent series in Γ, that is,

l1(Γ) :=

{
f : Γ → R

∣∣∣∣ ∑
x∈Γ

|f(x)| <∞

}
.

Equip l1(Γ) with the norm ∥f∥1 :=
∑

x∈Γ |f(x)|, and define the space

Φ :=
{
f ∈ l1(Γ) | f ≥ 0, f is finitely-supported, and ∥f∥1 = 1

}
.

We claim that, for each subset A ⊆ Γ and each constant ε > 0, we can find
a function f ∈ Φ such that ∥f − af∥1 < ε for all a ∈ A. Suppose, for a
contradiction, that this is not true. Then we can find A ⊆ Γ and ε > 0 such
that sup{∥f − af∥1 | a ∈ A} ≥ ε for all f ∈ Φ. Hence the subset

B := {f − af | f ∈ Φ, and a ∈ A} ⊆ l1(Γ)

is convex and bounded away from zero by ε. We can therefore apply the
Hahn-Banach Separation Theorem (Thm 2.10) on an open ε-neighbourhood
of zero and B to find a linear functional T ∈ l1(Γ)∗ and a constant t > ε > 0
such that T (f − af) ≥ t for all f ∈ Φ and a ∈ A.

Now, let g, h ∈ Γ∗ be arbitrary maps, and define a partial inner product on
Γ∗ by:

⟨g, h⟩ :=
∑
x∈Γ

g(x)h(x),

whenever this sum is finite. We will also define the convolution operation
∗ : Γ∗ × Γ∗ → Γ∗ by:

(g ∗ h)(x) :=
∑
y∈Γ

g(y−1x)h(x),
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for all x ∈ Γ. Recall the space l∞(Γ) of bounded sequences f : Γ → R. It
can be shown (in [19, p121], for example) that l1(Γ)∗ ∼= l∞(Γ). Indeed, we
can define an isometric isomorphism Θ : l∞(Γ) → l1(Γ)∗ by:

Θ(h)(g) := ⟨g, h⟩,

for all g ∈ l1(Γ) and h ∈ l∞(Γ). It follows that for each functional U ∈
l1(Γ)∗, there exists a unique function h ∈ l∞(Γ) with

⟨g, h⟩ =
∑
x∈Γ

g(x)h(x),

for all g ∈ l1(Γ). For each a ∈ Γ, consider the Kronecker delta function,
δa : Γ → R, defined by:

δa(x) :=

{
1 if x = a,

0 if x ̸= a,

for all x ∈ Γ. Clearly δa ∈ l1(Γ), and so f − δa ∗ f ∈ l1(Γ). Therefore there
exists a function ma ∈ l∞(Γ) such that∑

a∈A
⟨f − δa ∗ f,ma⟩ =

∑
a∈A

∑
x∈Γ

(f − δa ∗ f)(x)ma(x) ≥ t,

for all f ∈ Φ. Taking f := δy for y ∈ Γ, we see that∑
a∈A

⟨δy − δa ∗ δy,ma⟩ =
∑
a∈A

∑
x∈Γ

δy(x)ma(x) − δy(a
−1x)ma(x)

=
∑
a∈A

ma(y) −ma(ay) ≥ t.

Then, applying the mean µ, we obtain µ(ma(y) − ma(ay) ≥ t > 0 for all
y ∈ Γ, which contradicts the left invariance of µ. Hence, for each subset
A ⊆ Γ, we can find a function f ∈ Φ such that ∥f − af∥1 < ε for all a ∈ A.

Now, fix a non-empty subset A ⊆ Γ, and some constant ε > 0. By the
above, we can find a function f ∈ Φ such that ∥f − af∥1 < ε

|A| for all a ∈ A.
Then, since f is finitely-supported, we can use the layer-cake representation
(see [21, p26]) to write

f =

n∑
i=1

ci1Fi ,

for some chain F1 ⊃ · · · ⊃ Fn of non-empty finite subsets of Γ, and some
constants ci > 0. Observe also that

∥f∥1 =
n∑
i=1

ci|Fi| = 1,
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since f ∈ Φ. But we can also see that |f(x) − af(x)| ≥ ci whenever x ∈
(aFi △ Fi), and so

n∑
i=1

ci|aFi △ Fi| ≤ ∥f − af∥1 <
ε

|A|

n∑
i=1

ci|Fi|,

for each a ∈ A. Then∑
a∈A

n∑
i=1

ci|aFi △ Fi| < ε
n∑
i=1

ci|Fi|,

and we can use a pigeonhole argument to show that there exists some i such
that ∑

a∈A
|aFi △ Fi| < ε|Fi|.

Since our choice of finite subset A ⊆ Γ was arbitrary, this shows that Γ
satisfies the Følner criterion [40].

Examples 2.13.

1. If Γ is a finite group, then we may define a trivial Følner sequence by
Fn := Γ for all n ∈ N. This affirms the amenability of finite groups.

2. Consider the additive group Z, and define a sequence (Fn) of finite
subsets of Z by Fn := {i ∈ Z | − n ≤ i ≤ n}. Then

x+ Fn = {i ∈ Z |x− n ≤ i ≤ x+ n},

for each x ∈ Z. Hence

lim
n→∞

|(x+ Fn) △ Fn|
|Fn|

= lim
n→∞

2x

2n+ 1
= 0,

which affirms that Z is amenable. Informally, this is because the
boundary of a finite subset of Z is “small” compared to the size of
the set [30, p5].

Now we are equipped to give the standard example of a finitely-generated
group which is not amenable: the free group on two generators, F2. The
Cayley graph for F2 with respect to the generating set S := {a±1, b±1} is a
regular tree of valency four, where each vertex x is adjacent to the vertices
xa, xb, xa−1, and xb−1. Intuitively, the boundary of any finite subset of F2

will grow exponentially, and thus F2 will not admit a Følner sequence.

As an illustration of this, for each natural number n and x0 ∈ F2, define the
set B(x0, n) ⊆ Cay(F2;S) by:

B(x0, n) := {x ∈ Cay(F2;S) | dS(x, x0) ≤ n},
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Figure 1: The Cayley graph of F2.

where dS is the word metric on F2 with respect to S. Then the collection
{B(x0, n)}n∈N forms an increasing chain of balls centred at x0, and we can
see from Figure 1 that |B(x0, 0)| = 1, and

|B(x0, n)| = 4

(
n−1∑
i=0

3i

)
+ 1,

for each integer n ≥ 1. Furthermore, we see that |∂B(x0, 0)| = 4, and

|∂B(x0, n)| = 4

(
n∑
i=0

3i −
n−1∑
i=0

3i

)
= 4 (3n) ,

for each integer n ≥ 1. Hence

lim
n→∞

|∂B(x0, n)|
|B(x0, n)|

= lim
n→∞

4 (3n)

4 (3n−1)
= 3,

and so the sequence {B(x0, n)}n∈N is not a Følner sequence [4]. In order
to demonstrate that F2 is not amenable, however, we must show that no
finite subset can be a Følner set. To do this, we use a simple edge-counting
argument.

Proposition 2.14. The free group on two generators, F2, is not amenable
[13, p11].
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Proof. Let F ⊂ F2 be a finite subset, and consider its corresponding sub-
graph of Cay(F2;S), that is, the graph XF such that:

(a) XF has vertices corresponding to elements of F , and

(b) XF has an edge joining x and xs for each x ∈ F and s ∈ {a±1, b±1}.

Firstly, suppose that XF is connected. Write V and E to denote the total
number of vertices and edges, respectively, in XF . Write vi to denote the
number of vertices of XF of degree i, for i = 1, . . . , 4. Then, since Cay(F2;S)
is a tree, it follows that E = V − 1, and by a handshaking argument, that

E =
v1 + 2v2 + 3v3 + 4v4

2
.

Hence

v1 + v2 + v3 + v4 − 1 =
v1 + 2v2 + 3v3 + 4v4

2
,

and it follows that

|F | = V =
3v1 + 2v2 + v3 − 2

2
.

Notice that the size of the boundary of F can be calculated by considering
the number of edges which “leave” F , that is,

|∂F | = 3v1 + 2v2 + v3,

and so it follows that

|∂F |
|F |

= 2

(
3v1 + 2v2 + v3

3v1 + 2v2 + v3 − 2

)
> 2.

Hence F is not a Følner set.

Now, suppose that F is not connected, and write F = F1 ∪ · · · ∪ Fn such
that XF1 , . . . , XFn are the mutually disjoint connected components of XF .
Then at most n − 1 vertices of Cay(F;S) can appear in the boundaries of
more than one of the sets Fi, and so

|∂F |
|F |

≥ |∂F1| + · · · + |∂Fn| − (n− 1)

|F |

>
2|F1| + · · · + 2|Fn| − n

|F |

=
2|F | − n

|F |
= 2 − n

|F |
.

But |F | = |F1| + · · · + |Fn| ≥ n, so

|∂F |
|F |

> 1,

and F fails the Følner criterion. Since F ⊂ F2 was an arbitrary finite subset,
this proves that F2 is not amenable [27].
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Definition 2.15 (Følner criterion for locally compact groups). Let Γ
be a locally compact group equipped with Haar measure µ. Then Γ satisfies
the Følner criterion if, for each compact subset K ⊆ Γ and each ε > 0,
there exists a Borel set F ∈ B(Γ) with 0 < µ(F ) <∞ such that

µ(xF △ F )

µ(F )
< ε,

for all x ∈ K.

Recall that a topological space X is said to be second-countable if we can
find some countable collection W := {Wi | i ∈ N} such that:

(a) Each Wi ∈ W is open, and

(b) For each open subset U ⊆ X, we can find some finite sub-collection
Wi1 , . . . ,Wik of W such that U = Wi1 ∪ · · · ∪Wik [5, pp390-1].

If Γ is second-countable, we define a Følner sequence to be a sequence (Fn)
of compact subsets of Γ with 0 < µ(Fn) <∞ for each n ∈ N, and such that⋃

n∈N
Fn = Γ, and lim

n→∞

µ(xFn △ Fn)

µ(Fn)
= 0,

for all x ∈ Γ [9] [10, p8].

Example 2.16. If Γ is a compact group, then it has non-zero, finite measure.
Hence we can trivially define the Følner set F := Γ, and so Γ is amenable.

2.3 Growth

In the discussion before Prop 2.14 on p41, we made use of balls of increasing
radius centred around a vertex x0 in the Cayley graph of a finitely-generated
group Γ. This illustrated an argument for the (non-)existence of a Følner
sequence in Γ, and in fact the amenability of a group is closely related to
the rate of growth of such balls.

Definition 2.17 (Growth rate). Let Γ be a group generated by a finite
subset S ⊆ Γ, let x0 ∈ Γ, and let n be a non-negative integer. Then the ball
of radius n centred at x0 is the set BS(x0, n) ⊆ Cay(Γ;S) defined by:

BS(x0, n) := {x ∈ Cay(Γ;S) | dS(x, x0) ≤ n},

where dS is the word metric on Γ with respect to S. We define the growth
function, γSΓ of Γ with respect to S to be the number of elements in Γ which
can be expressed as a word of length at most n, that is,

γSΓ (n) := |BS(e, n)|,
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where e ∈ Γ is the identity element. We will usually omit the subscript if
there is no risk of ambiguity.

Given two increasing functions γ1, γ2 : Z≥0 → R≥0, we say that γ1 dominates
γ2 whenever there exist constants A,C > 0 such that

Aγ1(Cn) ≥ γ2(n),

for all n ∈ N. We write γ1 ≽ γ2 to denote this. We write γ1 ∼ γ2 if γ1 ≽ γ2
and γ2 ≽ γ1. Clearly ∼ is reflexive, and it follows from the fact that the
functions are increasing that ∼ is symmetric and transitive. Hence ∼ is an
equivalence relation.

In fact, γS ∼ γS
′

for any two finite generating sets S and S′. To see this,
define the value

α := max{dS′(e, s) | s ∈ S±},
and observe that, since S is finite, α is finite. Then for each x ∈ Γ, it follows
that dS(e, x) ≤ αn whenever dS′(e, x) ≤ n. Hence γS

′ ≤ γS(αn). By a
similar argument, we can show that γS ≤ γS

′
(βn) for some β > 0, and by

writing C := max{α, β}, the claim follows.

We then define the unique growth rate of Γ to be the equivalence class of
growth functions. We denote this by γ, as we needn’t specify a generating
set. [6, pp171-2]

Definition 2.18 (Polynomial to exponential growth). Let Γ be a
finitely-generated group. Then its growth rate γ can be described in one
of three ways.

1. If γ(n) ∼ nα for some α > 0, then γ is said to be a polynomial growth
rate. The infimum of such constants α is called the order of growth.

2. If γ(n) ≽ en, then it is said to be an exponential growth rate.

3. If γ is neither polynomial nor exponential, then it is said to be an
intermediate growth rate [29, p114].

Proposition 2.19. Let Γ1 and Γ2 be groups generated by finite subsets S1 ⊆
Γ1 and S2 ⊆ Γ2 respectively, and suppose that the metric spaces (Γ1, dS1)
and (Γ2, dS2) are quasi-isometric. Then Γ1 and Γ2 have the same growth
rate.

Proof. Write γ1 and γ2 to denote the growth rates of Γ1 and Γ2 respectively,
and let f : Γ1 → Γ2 be a quasi-isometric map. Then we can find constants
A ≥ 1 and B ≥ 0 such that

1

A
· dS1(x, x′) −B ≤ dS2(f(x), f(x′)) ≤ A · dS1(x, x′) +B,
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for all x, x′ ∈ Γ1. Write e1 and e2 to denote the identity elements in Γ1 and
Γ2 respectively, and define D := dS2(f(e), e′).

Let α ∈ R≥0. Write B1
α to denote the ball with radius α centred at e1 with

respect to S1, and B2
α for that centred at e2 with respect to S2. Then for

each n ∈ N and each x ∈ B1
n ⊆ Γ1, we have f(x) ∈ B2

An+B+D ⊆ Γ2.

Certainly dS1(x, x′) ≤ AB whenever f(x) = f(x′), for all x, x′ ∈ Γ1, and so
|f−1(y)| ≤ γ1(AB) for each y ∈ Γ2. Hence there exists an N ∈ N such that

γ2(2An) ≥ γ2(An+B +D) =
∣∣B2

An+B+D

∣∣ ,
whenever n ≥ N . But

∣∣B2
An+B+D

∣∣ ≥ ∣∣f [B1
n

]∣∣ ≥ ∣∣B1
n

∣∣∣∣B1
AB

∣∣ =
γ1(n)

γ1(AB)
,

and so γ2 ≽ γ1. It can be shown that γ1 ≽ γ2 by an almost identical
argument, and hence that γ1 ∼ γ2 [43, p39].

Not all functions f : Z≥0 → R≥0 fit into one of the above categories, but we
will show that the growth function of a finitely-generated group is always
precisely one of these types.

Lemma 2.20 (Fekete). Let (an) be a sequence of non-negative numbers
which is subadditive, that is, such that am+n ≤ am + an for all m,n ∈ N.
Then the sequence

(
an
n

)
converges, and

lim
n→∞

an
n

= inf

{
an
n

∣∣∣∣n ∈ N
}
.

Proof. Let b be a positive integer, and note that each n ∈ N can be expressed
in the form n = bq + r, for some integers q, r ≥ 0, with r < b. Then, by the
subadditivity of (an), it follows that

an
n

≤ abq + ar
bq + r

≤ abq + ar
bq

,

for each n ∈ N. But ar
bq → 0 as n→ ∞, and so

lim sup
n→∞

an
n

≤ ab
b
.

Clearly
an
n

≥ inf

{
ab
b

∣∣∣∣ b ≥ 1

}
,

for all n ∈ N, and so the result follows.
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Propositions 2.21.

1. Let Γ be a finitely-generated group with growth rate γ. If γ is such that

lim
n→∞

log γ(n)

log n
= ∞,

then γ is super-polynomial, that is, γ dominates all polynomial func-
tions.

2. Similarly, if

lim
n→∞

log γ(n)

n
= 0, or, equivalently, lim

n→∞
γ(n)

1
n ≤ 1,

then γ is sub-exponential, that is, γ is dominated by all exponential
functions.

Proof.

1. Firstly, if p(n) is a polynomial, then

lim
n→∞

log p(n)

log n
<∞,

and so γ dominates p.

2. If we define an exponential function f(n) := eCn for some C > 0, then

lim
n→∞

log eCn

n
= C > 0,

and

lim
n→∞

(
eCn

) 1
n = eC > 1,

and so γ is dominated by f .

Theorem 2.22. Let Γ be a finitely-generated group with growth rate γ. Then
the limit

lim
n→∞

log γ(n)

n

exists and is finite. If Γ has exponential growth, then this limit is positive.
If Γ has sub-exponential growth, then this limit is zero [11].

Proof. Firstly, observe that the growth function γ is sub-multiplicative, that
is, γ(m+ n) ≤ γ(m)γ(n), for all m,n ∈ N. Then

log(γ(m+ n)) ≤ log(γ(m)γ(n)) = log(γ(m)) + log(γ(n)),
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and so we can apply Fekete’s Lemma (Lem 2.20) on the function log γ. If
the limit is some positive constant C, then we can see that γ(n) ∼ eCn, and
so Γ has exponential growth rate. If the limit is zero, then we can see that
γ is dominated by all exponential functions, and so Γ has sub-exponential
growth rate.

Example 2.23.

1. Every finite group trivially has polynomial growth of degree zero.

2. The lattice Zk as an additive group has polynomial growth of degree k.
To see this, consider the generating set S := {v1, . . . , vk} of standard
basis vectors for Rk. Then each ball BS(e, n) consists of precisely those
words of the form ei11 · · · eikk , for some ij ∈ Z such that

k∑
j=1

|ij | ≤ n.

Then it is clear that |BS(e, n)| ≤ nk, and so γZk(n) ≤ nk. On the other
hand, consider the additive group Z generated by the set {1,−1}. It
is easy to verify that the growth rate for Z is given by γZ(n) = 2n+ 1.
It follows then that

γZk(kn) = |B(e, kn)| ≥ (γZ(n))k = (2n+ 1)k,

and so γZk is bounded below by a polynomial of degree k. Hence Zk
has polynomial growth of degree k.

3. The free group on two generators, F2, has exponential growth. As
discussed on p42, each time we increase the radius of B(e, n) by one,
we add 4(3n) distinct words to the set. Hence γF2(n) ∼ 3n, and F2 has
exponential growth rate.

Now we present an extremely powerful condition for the amenability of a
finitely-generated group.

Theorem 2.24. Let Γ be a finitely-generated group with sub-exponential
growth. Then Γ is amenable.

Proof. Firstly, write Bn to denote the ball of radius n centred at the identity
e with respect to a finite generating set S. Since Γ is assumed to have sub-
exponential growth rate γ, we know from Prop 2.21(2) that

lim
n→∞

|Bn|
1
n = lim

n→∞
γ(n)

1
n = C ≤ 1.
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Figure 2: A binary tree T with non-symmetric generating set S := {L,R}.

Let ε > 0 be an arbitrary constant. We claim that there exists some N ∈ N
such that

|Bn+1|
|Bn|

< 1 +
ε

2
,

whenever n ≥ N . Indeed, assume for a contradiction that we can find
a constant ε > 0 such that |Bn+1| ≥ (1 + ε

2) |Bn|, for all n ∈ N. Then
|Bn+1| ≥ (1 + ε

2)n|B1|, and so

lim
n→∞

γ(n)
1
n = lim

n→∞
|Bn|

1
n ≥ 1 +

ε

2
,

which contradicts the fact that γ is a sub-exponential growth rate. So, we
can find some N ∈ N such that

|sBn △Bn|
|Bn|

≤ 2 (|Bn+1| − |Bn|)
|Bn|

< 2
(

1 +
ε

2
− 1
)

= ε,

for all n ≥ N , and all s ∈ S. Since each x ∈ Γ is a word in S, the sequence
(Bn) forms a Følner sequence, and so Γ is amenable [10, p10] [18, pp32-
3].

Examples 2.25.

1. The Grigorchuk group G was designed in 1980 [12] as an example of a
group with intermediate growth. It is a group of automorphisms of a
rooted binary tree T (Figure 2), generated by four specific automor-
phisms a, b, c, d : G → G. We can consider T as a finitely-generated
group generated by the (non-symmetric) set S := {L,R}. Hence we
can define the automorphisms according to where they send elements
of S:

� a(L) := R, a(R) := L, a(Lx) := Rx, and a(Rx) := Lx,

� b(L) := L, b(R) := R, b(Lx) := La(x), and b(Rx) := Rc(x),

� c(L) := L, c(R) := R, c(Lx) := La(x), and c(Rx) := Rd(x),

� d(L) := L, d(R) := R, d(Lx) := Lx, and d(Rx) := Rb(x),
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for all x ∈ S. It can be shown that G has intermediate growth, and
as such is amenable by Thm 2.24 [6, chpVIII].

2. Recall that the discrete Heisenberg group H is defined to be the group
of 3 × 3 matrices of the form:

H :=


1 a c

0 1 b
0 0 1

 ∣∣∣∣∣ a, b, c ∈ Z

 ,

with the group operation defined as matrix multiplication. Since ma-
trix multiplication is not commutative, the group H is not Abelian,
and so we cannot use Thm 1.30 to show that H is amenable. It can
be shown, however, that H has polynomial growth of order 4, and so
H is amenable by Thm 2.24 [15, pp7-8].
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3 The Banach–Tarski Paradox

The work of Hausdorff and Banach in the 1920s has inspired mathematicians
from many fields, including analysts like Giuseppe Vitali, and applied math-
ematicians like John von Neumann [44]. Von Neumann’s idea of amenability
has its roots in the Banach–Tarski Paradox, a surprising and unintuitive re-
sult which arises in Rn when n ≥ 3. According to the paradox, one may
duplicate and alter the size of balls by slicing them into a finite number of
sections and reassembling the pieces; a common visualisation is to imagine
a pea being chopped up and rearranged into a ball the size of the Sun.

Conditions for the paradox are closely tied to the study of amenability,
growth, and the existence of a paradoxical decomposition. In fact, we shall
see in this chapter that a group Γ is amenable if and only if it is not paradox-
ical, thus giving us yet another characterisation of amenability [45, ppxiii-
xv,157].

3.1 Paradoxical Decomposition

Definition 3.1 (Equidecomposition). Let Γ be a group which acts on
a set X, and let A,B ⊆ X be subsets. We say that A and B are Γ-
equidecomposable if there exist subsets A1, . . . , An, B1 . . . , Bn ⊆ Γ and ele-
ments x1, . . . , xn ∈ Γ such that:

(a) A = A1 ∪ · · · ∪An and B = B1 ∪ · · · ∪Bn,

(b) Ai ∩Aj = ∅ and Bi ∩Bj = ∅, for all i ̸= j,

(c) xi(Ai) = Bi for all 1 ≤ i ≤ n.

We write A ∼Γ B whenever A and B are Γ-equidecomposable, but we
usually omit the subscript when there is no risk of ambiguity. If we wish
to stress the value n, we say that A and B are Γ-equidecomposable using n
pieces, and we sometimes write A ∼n B to convey this.

If A ∼ C, for some subset C ⊆ B, then we write A ≼ B [45, pp23-4].

It is not difficult to show that being Γ-equidecomposable is an equivalence
relation. Certainly ∼ is symmetric and reflexive, and to show that it is
transitive, suppose that A,B,C ⊆ Γ are subsets such that A ∼m B and
B ∼n C. Then we can find subsets Ai, B

1
i , B

2
j , Cj ⊆ Γ and elements xi, yj ∈

Γ such that:

(a) A =
⋃m
i=1Ai, B =

⋃m
i=1B

1
i =

⋃n
j=1B

2
j , and C =

⋃n
j=1Cj ,

(b) The Ai are mutually disjoint, as are the B1
i , etc.,

(c) xi(Ai) = B1
i , and yj(B

2
j ) = Cj for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Then the sets Bij := B1
i ∩ B2

j for 1 ≤ i ≤ m and 1 ≤ j ≤ n partition B,

and we can define Aij := x−1
i (Bij) such that the Aij partition A. Write

xij := xi|Aij , and yij := yj |Bij . Then the sets Cij := yijxij(Aij) partition C,
and so A ∼mn C [10, p1].

Theorem 3.2 (Banach–Schröder–Bernstein). Let Γ be a group which
acts on a set X, and let A,B ⊆ X be subsets. If A ≼ B and B ≼ A, then
A ∼ B [45, p25].

Proof. Firstly, since A ≼ B and B ≼ A, we can find bijections f : A → B′

and g : A′ → B for some subsets A′ ⊆ A and B′ ⊆ B. Define C0 := A \ A′,
and Cn+1 := g−1f(Cn) for each n ∈ N. Write

C :=
∞⋃
n=1

Cn.

Let a ∈ A \ C. Then for each n we have that a /∈ Cn, and hence that
g(a) /∈ f(Cn). Therefore g(A \C) ⊆ B \ f(C). Conversely, let b ∈ B \ f(C).
Then for each n we have that b /∈ f(Cn), and hence that g−1(b) /∈ Cn. So
g(A\C) = B\f(C), and A\C ∼ B\f(C) by our choice of g. But C ∼ f(C)
by our choice of f , and it is easy to check that

((A \ C) ∪ C) ∼ ((B \ f(C)) ∪ f(C)),

from which it follows that A ∼ B [45, p25].

Definition 3.3 (Paradoxical decomposition). Let Γ be a group which
acts on a set X, and let E ⊆ X be a subset. We say that E is Γ-
paradoxical (or simply paradoxical) if there exist pairwise disjoint subsets
A1, . . . , Am, B1, . . . Bn ⊆ E and elements x1, . . . , xm, y1, . . . yn ∈ Γ such that:

m⋃
i=1

xi(Ai) =
n⋃
j=1

yj(Bj) = E.

We call a group action f of Γ on X paradoxical if X is paradoxical. We
therefore permit ourselves to call a group Γ paradoxical if the action of Γ on
itself (by the group operation) is paradoxical [45, p4].

Corollary 3.4 (to Theorem 3.2). Let Γ be a group which acts on a set
X, and let E ⊆ X be a subset. Then E is Γ-paradoxical if and only if there
exists a proper subset A ⊂ E such that A ∼ E ∼ (E \A) [45, p25].

Proof. Firstly, suppose that E is Γ-paradoxical, such that we can find dis-
joint subsets A,B ⊂ E with A ∼ E ∼ B. Then, since B ⊆ (E \A), it follows
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that E ≼ (E \A). But we also know that (E \A) ⊂ E, and so (E \A) ≼ E.
Hence (E \A) ∼ E.

The converse is immediate [10, p2].

Example 3.5 (Hilbert’s Grand Hotel). Let M be the group of all bi-
jective functions f : Z → Z. Then the set of natural numbers N is an
M -paradoxical subset of Z.

To see why, consider the decomposition N := A ∪ B, where A is the set of
even natural numbers, and B the odd natural numbers. Define the function
g : A → N by g(n) := n

2 , and note that, since Z \ A and Z \ N are both
countable, we may extend g to a bijective function g′ ∈ M . Then g′A = N,
and by a similar method we can find a function h′ ∈M such that h′B = N.
Hence N is M -paradoxical [7, p730].

Proposition 3.6. Let Γ be a paradoxical group which acts freely on a set
X.4 Then X is Γ-paradoxical [45, p11].

Proof. Since Γ is paradoxical, we can use Corl 3.4 to find proper disjoint
subsets A,B ⊂ Γ such that A∪B = Γ and A ∼ Γ ∼ B. Then, by definition,
we can write

A =
m⋃
i=1

Ai, and B =
n⋃
j=1

Bj ,

for some pairwise disjoint subsets A1. . . . , Am, B1, . . . , Bn ⊂ Γ, such that

m⋃
i=1

xi(Ai) =
n⋃
j=1

yj(Bj) = Γ,

for some x1, . . . , xm, y1, . . . , yn ∈ Γ. Then, by the Axiom of Choice, we can
construct a set M by selecting precisely one element from each Γ-orbit of
X. Then {sM | s ∈ Γ} partitions X, since the group action is free and hence
does not fix any (non-trivial) points in X.

Now, write A∗
i := {aM | a ∈ Ai}, and B∗

j := {bM | b ∈ Bj}, and define

A∗ :=
m⋃
i=1

A∗
i , and B∗ :=

n⋃
j=1

B∗
j .

Then A∗, B∗ ⊂ X are proper disjoint subsets such that A∗ ∪ B∗ = X and
A∗ ∼ X ∼ B∗. Hence, using Corl 3.4, this shows that X is Γ-paradoxical
[45, p11].

4Recall that a group action f : Γ×X → X is said to be free if no element of Γ (except
the identity e) fixes a point in X.
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Proposition 3.7. The free group on two generators, F2, is paradoxical.
Hence if F2 acts freely on a set X, then X is F2-paradoxical [45, p5].

Proof. Suppose that S := {a, b} is a generating set for F2, and write W (x)
to denote the set of reduced words in S± which begin (on the left) with x.
Then

F2 = {e} ∪W (a) ∪W (a−1) ∪W (b) ∪W (b−1),

and
(W (a) ∪ aW (a−1)) = F2 = (W (b) ∪ bW (b−1)).

Writing A := (W (a) ∪W (a−1)) and B := (W (b) ∪W (b−1)), we see that
A ∪B = F2, and A ∼ F2 ∼ B, and so F2 is paradoxical.

It follows from Prop 3.6 that a set X is F2-paradoxical whenever F2 acts
freely on X [45, p5].

Proposition 3.8 (Hausdorff). The group of rotations about the origin in
R3, denoted by SO3(R), contains F2 as a subgroup [45, p15].

Proof. Consider the elements p, q ∈ SO3(R) which represent the anticlock-
wise rotations through an angle of arccos(13) around the z-axis and x-axis,
respectively. We can write p and q explicitly as:

p±1 :=

 1
3 ∓2

√
2

3 0

±2
√
2

3
1
3 0

0 0 1

 , and q±1 :=

1 0 0

0 1
3 ∓2

√
2

3

0 ±2
√
2

3
1
3

 . (14)

We claim that the set S := {p, q} generates F2. In order to do this, let w
be a non-trivial reduced word in S±, and assume for a contradiction that
w represents the identity in SO3(R). Without loss of generality, we may
conjugate w by p, and hence assume that w ends (on the right) with p±1.

We will show that w has to be of the form

w

1
0
0

 =
1

3n

 a

b
√

2
c

 ,
for some integers a, b, c with 3 ∤ b, and where n := |w|. In particular, this will
show that w(1, 0, 0)T ̸= (1, 0, 0)T , which contradicts our assumption that w
represents the identity. We proceed by induction on the length n.

Firstly, if n = 1, then w = p±1, and so

w

1
0
0

 =
1

3

 1

±2
√

2
0

 ,
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which coheres to our hypothesis. Now, suppose that w = sw′ for some
s ∈ S±, and where w′ satisfies

w′

1
0
0

 =
1

3n−1

 a′

b′
√

2
c′

 ,
for some integers a′, b′, c′ with 3 ∤ b′, and where n := |w| = |w′| + 1. By
computing sw′ for each s ∈ S±, we arrive at four results; in each case, w
satisfies

w

1
0
0

 =
1

3n

 a

b
√

2
c

 ,
for some constants a, b, c, and where n := |w|.

(i) If s = p then w = pw′, and so a = a′ − 4b′, b = 2a′ + b′, and c = 3c′.

(ii) If s = p−1 then a = a′ + 4b′, b = −2a′ + b′, and c = 3c′.

(iii) If s = q then a = 3a′, b = b′ − 2c′, and c = 4b′ + c′.

(iv) If s = q−1 then a = 3a′, b = b′ + 2c′, and c = −4b′ + c′.

Notice that in each case, a, b, c are all integers, and so it remains to show
that b is never divisible by 3. Again, four cases arise as we can write w as
p±1q±1v, q±1p±1v, p±1p±1v, or q±1q±1v, for some (possibly empty) word v.
Write

v

1
0
0

 =
1

3n−2

 a′′

b′′
√

2
c′′

 ,
for some constants a′′, b′′, c′′, and where n := |w|.

(i) If w = p±1q±1v, then

w

1
0
0

 = p±1

 1

3n−1

 3a′′

(b′′ ∓ 2c′′)
√

2
±4b′′ + c′′


= p±1

 1

3n−1

 a′

b′
√

2
c′


=

1

3n

 a′ ∓ 4b′

(±2a′ + b′)
√

2
3c′


=

1

3n

 a

b
√

2
c

 .
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Hence b = ±2a′ + b′ = ±6a′′ + b′, and since 3 ∤ b′ by assumption, it
follows that 3 ∤ b.

(ii) If w = q±1p±1v, then we carry out a similar calculation to show that
b = b′ ∓ 6c′′, and so again 3 ∤ b.

(iii) If w = p±1p±1v, then

b = ±2a′ + b′

= ±2(a′′ ∓ 4b′′) + b′

= ±2a′′ − 8b′′ + b′

= (±2a′′ + b′′) − 9b′′ = 2b′ − 9b′′,

and so 3 ∤ b.

(iv) If w = q±q±v, then we find that b = 2b′ − 9b′′, and so again 3 ∤ b.

We have shown that b cannot be divisible by 3, and hence that w(1, 0, 0)T ̸=
(1, 0, 0)T , a contradiction. Therefore w cannot represent the identity in
SO3(R), and so the subset {p, q} ⊂ SO3(R) generates a copy of the free
group F2 [45, pp15-6].

3.2 The Pea and the Sun

Theorem 3.9 (Hausdorff Paradox). There exists a countable subset D
of the sphere S2 such that S2 \D is SO3(R)-paradoxical [45, p18].

Proof. Consider F2 as a subset of SO3(R), as constructed in Prop 3.8, and
consider the action of F2 on the sphere S2. Each non-trivial element of F2

fixes precisely two points of S2, at the intersection of the axis of rotation
with the sphere. Write D to be the union of all such points, that is:

D := {P ∈ S2 |xP = x, for some x ∈ F2, with x ̸= e}.

Since F2 is countable, we know that D is countable. Furthermore, if P ∈
S2 \D, then xP ∈ S2 \D for all x ∈ F2. To see why, suppose that yP = P
for some y ∈ F2. Then P would be a fixed point of the element x−1yx ∈ F2,
and so P ∈ D, which is a contradiction.

Hence F2 acts freely on S2 \D, and since F2 embeds in SO3(R), it follows
from Prop 3.6 that S2 \D is SO3(R)-paradoxical [45, pp17-8].

Proposition 3.10. Let D be a countable subset of the sphere S2. Then S2

and S2 \D are SO3(R)-equidecomposable [45, p27].

Proof. Firstly, since D is countable and S2 is uncountable, we are able to
find a line L through the origin which does not intersect D. Let rθ ∈ SO3(R)
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denote an anticlockwise rotation through an angle θ about the line L, and
let n ∈ Z≥0. Write A to denote the set of angles θ such that rnθ (P ) ∈ D
whenever P ∈ D.

Clearly A is countable, and so we can find an angle φ which is not in A.
Then rnφ(D) and rφ(D) are disjoint for all n, and hence rmφ ∩ rnφ(D) = ∅ for
all m,n ∈ Z≥0 whenever m ̸= n. Define the union

D̄ :=
∞⋃
n=0

rnφ(D).

Then
S2 = (D̄ ∪ (S2 \ D̄)) ∼ (rφ(D̄) ∪ (S2 \ D̄)) = S2 \D,

and so S2 ∼ (S2 \D) as required [45, p27].

Corollary 3.11. The sphere S2 is SO3(R)-paradoxical.

Proof. By the Hausdorff Paradox (Thm 3.9), we know that S2 \ D is
SO3(R)-paradoxical for some countable subset D ⊂ S2. But the above Prop
3.10 tells us that S2 and (S2 \D) are SO3(R)-equidecomposable. Then, by
Corl 3.4 and the transitivity of equidecomposition (see p51), it follows that
S2 is SO3(R)-paradoxical.

Note that, as none of the results in this section have depended on the size
of the sphere involved, we can conclude that 2-spheres of any radius have
paradoxical decompositions. In fact, it can be shown that an n-sphere Sn

of any radius is SOn+1(R)-paradoxical for all n ≥ 2 (refer to [45, p53] for
details).

Theorem 3.12 (Banach–Tarski Paradox). Let E(3) denote the group of
all isometries (that is, Euclidean transformations) of R3. Then every solid
ball in R3 is E(3)-paradoxical, and R3 is E(3)-paradoxical [45, p27].

Proof. We will prove the result for the unit ball B ⊂ R3 centred at the
origin. Since E(3) contains all translations in R3, and the proof does not
rely on the radius of the ball, this will be sufficient to prove the result for
any ball in R3.

By the fact that S2 is SO3(R)-paradoxical (Corl 3.10), we can find some
pairwise disjoint subsets A1, . . . , Am, B1, . . . Bn ⊆ S2 and some rotations
x1, . . . , xm, y1, . . . yn ∈ SO3(R) such that:

m⋃
i=1

xi(Ai) =

n⋃
j=1

yj(Bj) = S2.
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Now, each subset X of S2 is in one-to-one correspondence with the subset
X ′ := {tx |x ∈ X, t ∈ (0, 1]} of B \ {0}, and so the sets

A′
i := {ta | a ∈ Ai, t ∈ (0, 1]}, and B′

j := {tb | b ∈ Bj , t ∈ (0, 1]}

form a paradoxical decomposition for B. We claim that (B \ {0}) ∼ B,
whence by Corl 3.4 it will follow that B is SO3(R)-paradoxical.

Let P := (0, 0, 12), and let L be a line through P which does not cross the
origin. Let r ∈ SO3(R) be a rotation about L of infinite order, and define
the set D̄ := {rn(0) |n ∈ Z≥0}. Then r(D̄) = (D̄ \ {0}) and, similarly to in
the proof of Prop 3.10,

B = (D̄ ∪ (B \ D̄)) ∼ (r(D̄) ∪ (B \ D̄)) = B \ {0},

and so B ∼ (B \ {0}). So B is E(3)-paradoxical, and hence SO3(R)-
paradoxical.

If instead we used the one-to-one correspondence of subsets X in S2 to the
subset X ′ := {tx |x ∈ X, t > 0} of R3 \ {0}, we would obtain a paradoxical
decomposition for R3 \ {0}. Using the same arguments as above, this would
show that R3 is also E(3)-paradoxical [45, pp27-8].

Recall that the Lebesgue measure λ of the union of a finite number of inter-
vals I := I1 ∪ · · · ∪ In in R is defined to be:

λ(I) := ℓ(I1) + · · · + ℓ(In).

It is natural to define the Lebesgue measure in Rk in a similar way. Let J
be a k-dimensional box, that is, a subset of Rk of the form

J := {(x1, . . . , xk) |xi ∈ Ii, 1 ≤ i ≤ k},

where I1, . . . , Ik are intervals in R. Then we define the Lebesgue measure of
J to be the product of the measures of the intervals:

λ(J ) := λ(I1) × · · · × λ(Ik).

We can construct the Lebesgue measurable sets in Rk using the same process
as in Chapter 1 [5, p14].

The Banach–Tarski Paradox implies that we may partition a solid ball in
such a way that, through a series of rotations, we end up with two solid
balls identical to the first. Since rotations are measure-preserving, this re-
sult sounds absurd, but when we consider what it means for a set to be
measurable, we can resolve the mystery.

Indeed, the result implies that the sets comprising the paradoxical decom-
position of a ball B ⊂ R3 cannot be measurable, and hence that there is no
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finitely-additive measure defined on every subset of R3 which gives the unit
ball non-zero measure. This in turn implies that there are sets in R3 which
are not Lebesgue measurable.

The Banach–Tarski Paradox has a stronger form, whereby any two bounded
sets with non-empty interior are equidecomposable. Hence, in addition to
duplicating balls, we can also decompose and reassemble them into balls of
arbitrary radius! This result is often referred to as the Pea-to-Sun Paradox.

Lemma 3.13. Let B0, B1, . . . , BN be a finite sequence of balls in R3 of the
same radius, such that B1, . . . , BN are pairwise disjoint. Then

N⋃
k=1

Bk ∼E(3) B0.

Proof. Clearly B0 ≼
⋃N
k=1Bk, since B0 ≼ Bi for each k. Hence by the

Banach–Schröder–Bernstein Theorem (Thm 3.2), it remains to show that⋃N
k=1Bk ≼ B0.

Firstly, since B0 is E(3)-paradoxical by the Banach–Tarski Paradox, we can
write

B0 =
m⋃
i=1

xi(Ci) =
n⋃
j=1

yj(Dj),

for some pairwise disjoint subsets C1, . . . , Cm, D1, . . . , Dn ⊂ B0 and some
x1, . . . , xm, y1, . . . , yn ∈ E(3). Then we have

B1 ∼ B =
m⋃
i=1

xi(Ci) ≼
m⋃
i=1

Ci,

and

B2 ∼ B =
n⋃
j=1

yj(Dj) ≼
n⋃
j=1

Dj .

Hence B1 ∪ B2 ≼ B0. By induction on k, we can extend this argument to
show that

⋃N
k=1Bk ≼ B0, as required [18, pp26-7].

Theorem 3.14 (Pea-to-Sun Paradox). Let A,B ⊂ R3 be bounded subsets
with non-empty interior. Then A ∼E(3) B [45, p29].

Proof. We begin by showing that any two bounded subsets A,B ⊂ R3 with
non-empty interior satisfy A ≼ B. Since A is bounded, we can find a solid
ball K such that A ⊆ K. Furthermore, since B has non-empty interior, we
can find a solid ball L such that L ⊆ B.

59



Using the Banach–Tarski Paradox (Thm 3.12), we are able to duplicate
L and translate the copies as many times as needed to cover K. Let
x1, . . . , xn ∈ E(3) be translations such that

K ⊆ x1L ∪ · · · ∪ xnL,

and let y1, . . . , yn ∈ E(3) be such that yiL ∩ yjL = ∅ whenever i ̸= j. Then
by Lem 3.13 it follows that

n⋃
i=1

yiL ≼ L,

and hence that

A ⊆ K ⊆
n⋃
i=1

xiL ≼
n⋃
i=1

yiL ≼ L ⊆ B.

Therefore A ≼ B, and we can use the same argument, interchanging A and
B, to show that B ≼ A. Hence by Thm 3.2, it follows that A ∼ B [18, p27]
[45, p29].

In the original formulation of the Banach–Tarski Paradox [2], the result
remains true in Rk for all k ≥ 3. It can also be shown that there is a similar
result in Rk for k = 1, 2, permitting decomposition into countably-many sets
[2, pp257-63] [10, p7].

In general, then, we can attest that a paradoxical group cannot be amenable,
else the measure µ of some arbitrary paradoxical subset B will be at once
µ(B) and 2µ(B). A theorem of Tarski implies the converse, thus giving us
another equivalent definition of amenability.

Theorem 3.15 (Tarski). Let Γ be a group which acts on a set X, and
let E ⊆ X be a subset. Then there exists a finitely-additive left-invariant
measure µ : P(X) → [0,∞] with µ(E) = 1 if and only if E is not Γ-
paradoxical [45, p128].

Proof. One direction of the proof is clear: if X is Γ-paradoxical with de-
composition X = A ∪B and mu is such a measure, then

1 = µ(X) = µ(A) + µ(B) = 2,

by the finite additivity and left-invariance of µ. This is clearly a contradic-
tion. For a proof of the converse, we refer the reader to [45, p128].

Corollary 3.16. A group is amenable if and only if it is not paradoxical.
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Examples 3.17.

1. Using Props 3.7 and 3.8, we can see that that the special orthogonal
group SO3(R) is paradoxical, and hence not amenable.

2. We have shown that the class of amenable groups is closed under the
operations of taking quotients, extensions, and countable unions (Prop
1.28 and Lem 1.29). It can also be shown that any closed subgroup of
an amenable group is amenable [9] [18, p33]. In particular, any group
which contains F2 as a subgroup cannot be amenable – again we cite
SO3(R) as an example.

3. Each of the special orthogonal groups SOk(R) for k ≥ 3 contain
SO3(R) as a subgroup, and hence are not amenable by (2). This
give a hint as to why the Banach–Tarski Paradox is true in Euclidean
space Rk for all k ≥ 3.

4. In Ex 1.31(2), we demonstrated that SO2(R) is amenable as a discrete
group. Hence SO2(R) cannot be paradoxical, and this gives us a hint
as to why the Banach–Tarski Paradox does not hold in R2.

3.3 Alternative Formulations

We arrive with three distinct representations of the amenability of various
groups. A locally compact group Γ is amenable if it satisfies any (and hence
all) of the following criteria:

(a) Γ admits a left-invariant mean (Def 1.26),

(b) Γ satisfies the Følner criterion (Def 2.15),

(c) Γ is not paradoxical (Def 3.3).

In fact, there are a vast number of equivalent characterisations of amenabil-
ity: [45, p157] lists a further five, and [29] posits at least nine more. One of
these is Reiter’s criterion, which we have come across already, although not
by name.

Theorem 3.18 (Reiter’s criterion). Let Γ be a discrete group, let A ⊆ Γ
be a finite subset, and let ε > 0 be an arbitrary constant. Then there exists
an almost invariant mean µ ∈ l1(Γ), that is, a mean such that

∥µ(A) − µ(xA)∥1 < ε,

if and only if Γ is amenable [18, p29].

We have already proved one direction of Reiter’s criterion during the proof
of Thm 2.12 (p39), as we found the “limit” of a sequence of almost invariant
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means to construct a fully invariant mean.

Another formulation from the viewpoint of a functional analyst makes use
of the Markov-Katukani Theorem (see [29, p113]) and the Hahn–Banach
Theorem (Thm A.4) to find fixed points in affine maps between compact
sets in Γ. If the criteria of the theorems are satisfied, then such fixed points
can be shown to exist, and can be used to construct an invariant mean on
Γ (see [33, pp140-2]).

The existence of a Haar measure on a locally compact group and the con-
struction of a paradoxical decomposition for S2 both rely on the Axiom of
Choice, the right to be able to form the Cartesian product of a collection
of non-empty sets (Thm A.5). Until the Banach–Tarski Paradox came to
light, there was little controversy surrounding the Axiom of Choice, but the
Paradox is so counter-intuitive that many mathematicians have chosen to
reject the Axiom.

It is possible to demonstrate the existence of Haar measure without employ-
ing the Axiom of Choice [22, pp112-3], but such proofs are less intuitive. It
is not, however, possible to prove the Banach–Tarski Paradox without the
Axiom, but we are able to reduce our reliance on it somewhat – again, such
proofs are less instructive [45, chp13].
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A Loose Ends

In this appendix, we detail a few technical results from measure theory and
functional analysis which the reader may find useful for understanding some
of the finer details of the proofs above, but which would interrupt the flow
of the text if included in-line.

Proposition A.1. Let (An) be a sequence of subsets of R. Then

λ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

λ∗(An).

[35, p37]

Proof. Firstly, we may assume that
∑∞

n=1 λ
∗(An) < ∞; if it were infinite

then the result would trivially hold. Let ε > 0 be an arbitrary constant, and
for each n ∈ N, let (Inm)∞m=1 be a covering of An, where Inm ⊆ R are open
intervals.

Since

λ∗(An) = inf

∞∑
m=1

ℓ(Inm),

and each Inm is an open interval, we have that

∞∑
m=1

ℓ(Inm) < λ∗(An) +
ε

2n
,

for each n. Then, as (Inm)∞n,m=1 forms an open covering of
⋃∞
n=1An, it follows

that:

λ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

( ∞∑
m=1

ℓ (Inm)

)

≤
∞∑
n=1

(
λ∗(An) +

ε

2n

)
=

∞∑
n=1

λ∗(An) + ε
∞∑
n=1

1

2n

=

∞∑
n=1

λ∗(An) + ε.

Since we can set ε to be arbitrarily small, the result follows [35, p37].

63



Proposition A.2 (Fubini). Let X and Y be locally compact Hausdorff
spaces endowed with regular Borel measures µ1 and µ2 respectively, and let
f ∈ K0(X × Y ).5 Then the maps fx : Y → X × Y and fy : X → X × Y
defined by:

fx(y) := f(x, y), and fy(x) := f(x, y)

are continuous and have compact support. Furthermore:∫
X

∫
Y
f(x, y) dµ2(y) dµ1(x) =

∫
Y

∫
X
f(x, y) dµ1(x) dµ2(y),

for all x ∈ X and y ∈ Y [5, pp144,221]. (First used in the proof of Thm
1.22, Eqn (12)).

Proof. Firstly, write K1 and K2 for the projections of supp(f) onto X and
Y respectively, and observe that K1 and K2 are compact. Define the maps
ix : Y → X × Y and iy : X → X × Y by:

ix(y) := (x, y), and iy(x) := (x, y),

for all x ∈ X and y ∈ Y . Then ix and iy are continuous, and since fx = f ◦ix
and fy = f ◦ iy, it follows that fx and fy are both continuous.

By definition, the support of a function is closed, and since supp(fx) ⊆ K2

and supp(fy) ⊆ K2, it follows that supp(fx) and supp(fy) are compact.
Hence fx ∈ K0(Y ) and fy ∈ K0(X) [5, p221].

Now, define the function IX : X → R by

IX(x) :=

∫
Y
f(x, y) dµ2(y),

for all x ∈ X and y ∈ Y . This integral exists by the fact that fx is continu-
ous. Clearly supp(IX) = K1, and we claim that IX is continuous. To show
this, let x0 ∈ X, and let ε > 0 be an arbitrary constant.

For each t ∈ K2, we may choose open sets Ut and Vt which contain x0 and
t respectively, such that |f(x, y) − f(x0, t)| < ε

2 whenever (x, y) ∈ Ut × Vt.
Hence, if x ∈ Ut and y ∈ Vt, then

|f(x, y) − f(x0, y)| ≤ |f(x, y) − f(x0, t)| + |f(x0, t) − f(x0, y)| < ε

2
+
ε

2
= ε.

Since K2 is compact, there is a finite sequence of elements t1, . . . , tn of K2

such that the neighbourhoods Vt1 , . . . , Vtn form an open covering of K2.

5Recall that we write K0(X) to denote the set of all continuous functions f : X → R
with compact support (Def 1.19).
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Write U :=
⋂n
i=1 Uti , and observe that x0 ∈ U . Then∣∣∣∣∫

Y
f(x, y) dµ2(y) −

∫
Y
f(x0, y) dµ2(y)

∣∣∣∣
≤
∫
K2

|f(x, t) − f(x0, t)| dµ2(t)

≤ εµ2(K2).

Since we can set ε to be arbitrarily small, this proves that IX is a continuous
map, and hence that IX ∈ K0(X). Similarly, it can be shown that the
function IY : Y → R defined by

IY (y) :=

∫
X
f(x, y) dµ1(x)

belongs to K0(Y ). Hence the integrals∫
X

∫
Y
f(x, y) dµ2(y) dµ1(x) and

∫
Y

∫
X
f(x, y) dµ1(x) dµ2(y)

exist for all x ∈ X and y ∈ Y , and it remains to show that they are equal. To
do this, for each s ∈ K1, use the above argument to choose a neighbourhood
Us such that |f(x, t)− f(s, t)| < ε whenever x ∈ Us and t ∈ K2. Then, since
K1 is compact, there is a finite sequence of elements s1, . . . , sn in K1 such
that the neighbourhoods Us1 , . . . , Usn form an open covering of K1. Now,
define A1 := Us1 ∩K1, and

Ai :=
(
Usi \

(
Us1 ∪ · · · ∪ Usi−1

))
∩K1,

for i = 2, . . . , n. Then the sets A1, . . . An are disjoint Borel subsets of X,
and satisfy K1 =

⋃n
i=1Ai. Notice also that Ai ⊆ Usi for each i. Let

g : X × Y → R be the function defined by:

g(x, y) :=

n∑
i=1

1Ai(x)f(si, y),

for all x ∈ X and y ∈ Y . This function approximates f on each Ai, and
with this we will show the required equality. By the above, we have that
|f(s, t) − g(s, t)| < ε for all (s, t) ∈ K1 ×K2, and since f and g both take
value zero outside of K1 ×K2, it follows that the values

α :=

∣∣∣∣∫
Y

∫
X
f(x, y) dµ1(x) dµ2(y) −

∫
Y

∫
X
g(x, y) dµ1(x) dµ2(y)

∣∣∣∣ ,
and

β :=

∣∣∣∣∫
X

∫
Y
f(x, y) dµ2(y) dµ1(xy) −

∫
X

∫
Y
g(x, y) dµ2(y) dµ1(x)

∣∣∣∣
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satisfy α, β ≤ εµ1(K1)µ2(K2). The double integrals of g, however, are equal
to each other, and so

γ :=

∣∣∣∣∫
Y

∫
X
f(x, y) dµ1(x) dµ2(y) −

∫
X

∫
Y
f(x, y) dµ2(y) dµ1(x)

∣∣∣∣
satisfies γ ≤ 2εµ1(K1)µ2(K2). Since we can set ε to be arbitrarily small,
this completes the proof [5, pp144,221].

Proposition A.3 (Finite intersection property). Let X be a topological
space, and let S be a collection of subsets of X. Recall that S has the finite
intersection property if, given a finite sub-collection {S1, . . . , Sn} of S, the
intersection

⋂n
i=1 Si is non-empty.

The space X is compact if and only if, for every collection S of closed subsets
of X which has the finite intersection property, the (potentially infinite)
intersection

⋂
S∈S S is non-empty [23, pp169-70].

Proof. Let U be a collection of open subsets of X, and write S to be the
collection of their complements. Notice that each A ∈ U is open if and only
if each S ∈ S is closed.

Suppose that X is compact, which is equivalent to saying that if no finite
sub-collection U1, . . . , Un of U forms an open covering of X, then U is not
a covering of X. But U covers X if and only if the intersection

⋂
S∈S S is

empty, and the collection U1, . . . , Un covers X if and only if the intersection⋂n
i=1 Si, where Si := U ci , is empty. This last statement is the converse of

the finite intersection property.

Backtracking, it follows that X is compact if and only if
⋂
S∈S S is non-

empty whenever S has the finite intersection property [23, pp169-70].

Theorem A.4 (Hahn–Banach). Let V be a normed vector space over the
field R. Recall that a linear map T : V → R is said to be bounded if there
exists some constant M ≥ 0 such that ∥Tv∥ ≤M∥v∥ for all v ∈ V .

Let W ⊆ V be a vector subspace, and let f : W → R be a bounded linear
map. Then there exists a bounded linear map F : V → R such that:

(a) F (w) = f(w), for all w ∈W , and

(b) ∥F∥ = ∥f∥ [33, p57].

Proof. For a proof, we refer the reader to [33, p57]. Note that an immediate
consequence of this result is the Hahn–Banach Separation Theorem (Thm
2.10), which is employed in the proof of the equivalence of the invariant
mean and Følner criteria (Thm 2.12).
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Theorem A.5 (Axiom of Choice). Let A be a collection of disjoint non-
empty sets. Then there exists a set C comprising precisely one element from
each set A ∈ A [23, p59].

Note that the Axiom of Choice is equivalent to saying that the Cartesian
product A1 × A2 × · · · of all sets Ai ∈ A is non-empty. In this article we
take the Axiom of Choice to be a fact.
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