R:= RootSystem( "A",7); U:=QuantizedUEA(R); g:= GeneratorsOfAlgebra( U ); PositiveRoots(R); PositiveRootsInConvexOrder(R); ########## generators of U ############### f1:=g[1]; f2:=g[3]; f3:=g[6]; f4:=g[10]; f5:=g[15]; f6:=g[21]; f7:=g[28]; e1:=g[43]; e2:=g[45]; e3:=g[48]; e4:=g[52]; e5:=g[57]; e6:=g[63]; e7:= g[70]; k1:=g[29]; k2:=g[31]; k3:=g[33]; k4:=g[35]; k5:=g[37]; k6:=g[39]; k7:=g[41]; k1m:=g[30]; k2m:=g[32]; k3m:=g[34]; k4m:=g[36]; k5m:=g[38]; k6m:=g[40]; k7m:=g[42]; ######## Inverse of Lusztig automorphisms ################## tau:=AntiAutomorphismTau( U ); T1:=AutomorphismTalpha(U,1); T2:=AutomorphismTalpha(U,2); T3:=AutomorphismTalpha(U,3); T4:=AutomorphismTalpha(U,4); T5:=AutomorphismTalpha(U,5); T6:=AutomorphismTalpha(U,6); T7:=AutomorphismTalpha(U,7); T1m:= tau*T1*tau; T2m:= tau*T2*tau; T3m:= tau*T3*tau; T4m:= tau*T4*tau; T5m:= tau*T5*tau; T6m:= tau*T6*tau; T7m:= tau*T7*tau; ########## generators of B ############### b1:=f1; b2:=f2-k2m*Image(T1*T3,e2); b3:=f3; b4:=f4-k4m*Image(T5*T3,e4); b5:=f5; b6:=f6-k6m*Image(T7*T5,e6); b7:=f7; ########## q-numbers #################### 2q:=_q+_q^-1; ########## q-commutator ################# qcom2:=function(a,b) return a*b-_q*b*a; end; qcom3:=function(a,b,c) return qcom2(a,b)*c - _q * c *qcom2(a,b); end; ######### relations in B as a function ######### rel1:=function(a,b) return a^2*b - (_q + _q^-1)*a*b*a + b*a^2 ; end; ################ non-homogeneous relation ######################## relEven1:=function(a,b,eb,ebpm,kbm,kb) return a^2*b - (_q + _q^-1)*a*b*a + b*a^2+_q^-1*(_q-_q^-1)^2*b*eb*ebpm+_q^-2*kbm*ebpm+ kb*ebpm; end; ################ lower order term of relEven1 ##################### lotEven1:=function(b,eb,ebpm,kbm,kb) return _q^-1*(_q-_q^-1)^2*b*eb*ebpm+_q^-2*kbm*ebpm+ kb*ebpm; end; ############################################################ ########## confirming the relations of Proposition 5.2 ##### ########## It suffices to check the relations not ##### ########## involving b6, b7, e6, e7, etc. ##### ############################################################ ######### Vanishing commutators (using symmetry) ########### ############################################################ b2 * b4 - b4 * b2; ######### other q-Serre type relations ########################## rel1(b1,b2); rel1(b3,b2); rel1(b2,b1)+ lotEven1(b1,e1,e3,k1m,k1); rel1(b2,b3)+ lotEven1(b3,e3,e1,k3m,k3); ############################################################# ################ T4m T3m T5m T4m (-k4m T3 T5(e4)) ########### ################ verifying (5.4) ########### ############################################################# Image(T4m*T3m*T5m*T4m, -k4m*Image(T3*T5,e4)) - ((_q-_q^-1)^2 * qcom3(f4,f5,f3) * e3*e5 - _q^2*(_q-_q^-1) * qcom2(f4,f5)*k3*e5 - _q^2*(_q-_q^-1) * qcom2(f4,f3)*k5*e3 + _q^4 *f4*k3*k5); ############################################################# ################# tau1^- Braid group action ##################### ############################################################# t1mb1:= b3;; t1mb2:= _q^3 * b2 *k1 * k3 + _q^-1*(_q-_q^-1)^2 *qcom3(b2,b1,b3)*e1*e3 - _q*(_q-_q^-1)*(qcom2(b2,b3)*k1*e3 + qcom2(b2,b1)*k3*e1);; t1mb3:= b1;; t1mb4:= qcom3(b2,b3,b4);; #### factor q^{-1/2} missing !! #### t1mb5:= b5;; t1mb6:= b6;; t1mb7:= b7;; ################# tau2^- Braid group action ######################### t2mb1:= b1;; t2mb2:= qcom3(b4,b3,b2);; #### factor q^{-1/2} missing !! #### t2mb3:= b5;; t2mb4:= _q^3 * b4 *k3 * k5 + _q^-1*(_q-_q^-1)^2 *qcom3(b4,b3,b5)*e3*e5 - _q*(_q-_q^-1)*(qcom2(b4,b5)*k3*e5 + qcom2(b4,b3)*k5*e3) ;; t2mb5:= b3;; t2mb6:= qcom3(b4,b5,b6);; #### factor q^{-1/2} missing !! #### t2mb7:= b7;; ################# tau3^- Braid group action ######################### t3mb1:= b1;; t3mb2:= b2;; t3mb3:= b3;; t3mb4:= qcom3(b6,b5,b4);; #### factor q^{-1/2} missing !! #### t3mb5:= b7;; t3mb6:= _q^3 * b6 *k5 * k7 + _q^-1*(_q-_q^-1)^2 *qcom3(b6,b5,b7)*e5*e7 - _q*(_q-_q^-1)*(qcom2(b6,b7)*k5*e7 + qcom2(b6,b5)*k7*e5) ;; t3mb7:= b5;; ################################################################################### #### The elment t2mb4 is obtained by evaluating Image(T4m*T3m*T5m*T6m,b4) and ### #### replacing F by B in the leading terms -- moreover we rescale with factor q ### ################################################################################### ############################################################### ## Observe that t2mb2 = b4*Image(T3m,b2)-_q*Image(T3m,b2)*b4. ## Also, t1mb4 coincides with Image(T2m*T1m*T3m*T2m,b4) up to terms with nontrivial ## U^+ component. (And we need to rescale!) ############################################################### ##################################################################### #### We now show that t1m, t2m, t3m are algebra homomorphisms. ##### #### It suffices to show that t2m is an algebra homomorphism. ##### #### It is clear that the restriction of t2m to the subalgebra ##### #### generated by all ei, fi, ki, and kim for odd i is an ##### #### homomorphism. It hence suffices to check that the relations##### #### given in Proposition 5.2 are preserved under t2m. ##### #### This is done in the following. ##### ##################################################################### ######### ki commutators for odd i ################################## k1 * t2mb2 - _q * t2mb2 * k1; k3 * t2mb2 - t2mb2 * k3; k5 * t2mb2 - _q * t2mb2 * k5; k7 * t2mb2 - t2mb2 * k7; k1 * t2mb4 - t2mb4 * k1; k3 * t2mb4 - _q * t2mb4 * k3; k5 * t2mb4 - _q * t2mb4 * k5; k7 * t2mb4 - t2mb4 * k7; k1 * t2mb6 - t2mb6 * k1; k3 * t2mb6 - _q * t2mb6 * k3; k5 * t2mb6 - t2mb6 * k5; k7 * t2mb6 - _q * t2mb6 * k7; ######### ei commutators for odd i ################################ e1 * t2mb2 - t2mb2 * e1; e3 * t2mb2 - t2mb2 * e3; e5 * t2mb2 - t2mb2 * e5; e7 * t2mb2 - t2mb2 * e7; e1 * t2mb4 - t2mb4 * e1; e3 * t2mb4 - t2mb4 * e3; e5 * t2mb4 - t2mb4 * e5; e7 * t2mb4 - t2mb4 * e7; e1 * t2mb6 - t2mb6 * e1; e3 * t2mb6 - t2mb6 * e3; e5 * t2mb6 - t2mb6 * e5; e7 * t2mb6 - t2mb6 * e7; ######### Vanishing commutators ############################ t2mb2 * t2mb4 - t2mb4 * t2mb2; t2mb2 * t2mb6 - t2mb6 * t2mb2; t2mb4 * t2mb6 - t2mb6 * t2mb4; ######### other q-Serre type relations ########################## rel1(t2mb1,t2mb2); rel1(t2mb3,t2mb2); t2mb5*t2mb2 - t2mb2* t2mb5; t2mb7*t2mb2 - t2mb2* t2mb7; rel1(t2mb2,t2mb1)+ _q* lotEven1(t2mb1,e1,e5,k1m,k1); rel1(t2mb2,t2mb3)+ _q* lotEven1(t2mb3,e5,e1,k5m,k5); rel1(t2mb3,t2mb4); rel1(t2mb5,t2mb4); rel1(t2mb4,t2mb3) + lotEven1(t2mb3,e5,e3,k5m,k5); rel1(t2mb4,t2mb5) + lotEven1(t2mb5,e3,e5,k3m,k3); t2mb1*t2mb4 - t2mb4* t2mb1; t2mb7*t2mb4 - t2mb4* t2mb7; ################################################################# ###################################mmm####################################### #### To show that t1m, t2m, and t3m are algebra automorphisms we need to #### #### give their inverses. The inverses were obtained by trial and error. #### #### Again, it suffices to check everything for t2, the inverse of t2m. #### ############################################################################# ######## t1, the inverse of t1m ######################### t1b1:=b3;; t1b2:= _q^-3*b2*k1m*k3m +_q^-1*(_q-_q^-1)^2*qcom2(b3,qcom2(b1,b2))*e1*e3 - _q^-2*(_q-_q^-1)*(qcom2(b3,b2)*k1m*e3 + qcom2(b1,b2)*k3m*e1);; t1b3:= b1;; t1b4:= qcom3(b4,b3,b2);; #### factor q^{-1/2} missing !! #### t1b5:= b5;; t1b6:= b6;; t1b7:= b7;; ######## t2, the inverse of t2m ########################## t2b1:=b1;; t2b2:= qcom3(b2,b3,b4);; #### factor q^{-1/2} missing !! #### t2b3:=b5;; t2b4:= _q^-3*b4*k3m*k5m +_q^-1*(_q-_q^-1)^2*qcom2(b5,qcom2(b3,b4))*e3*e5 - _q^-2*(_q-_q^-1)*(qcom2(b5,b4)*k3m*e5 + qcom2(b3,b4)*k5m*e3);; t2b5:= b3;; t2b6:= qcom3(b6,b5,b4);; #### factor q^{-1/2} missing !! #### t2b7:= b7;; ######## t3, the inverse of t3m ########################## t3b1:=b1;; t3b2:=b2;; t3b3:=b3;; t3b4:= qcom3(b4,b5,b6);; #### factor q^{-1/2} missing !! #### t3b5:=b7;; t3b6:= _q^-3*b6*k5m*k7m +_q^-1*(_q-_q^-1)^2*qcom2(b7,qcom2(b5,b6))*e5*e7 - _q^-2*(_q-_q^-1)*(qcom2(b7,b6)*k5m*e7 + qcom2(b5,b6)*k7m*e5);; t3b7:= b5;; ######### t2 is an algebra homomorphism ############################ ######### ki commutators for odd i ################################# k1 * t2b2 - _q * t2b2 * k1; k3 * t2b2 - t2b2 * k3; k5 * t2b2 - _q * t2b2 * k5; k7 * t2b2 - t2b2 * k7; k1 * t2b4 - t2b4 * k1; k3 * t2b4 - _q * t2b4 * k3; k5 * t2b4 - _q * t2b4 * k5; k7 * t2b4 - t2b4 * k7; k1 * t2b6 - t2b6 * k1; k3 * t2b6 - _q * t2b6 * k3; k5 * t2b6 - t2b6 * k5; k7 * t2b6 - _q * t2b6 * k7; ######### ei commutators for odd i ################################# e1 * t2b2 - t2b2 * e1; e3 * t2b2 - t2b2 * e3; e5 * t2b2 - t2b2 * e5; e7 * t2b2 - t2b2 * e7; e1 * t2b4 - t2b4 * e1; e3 * t2b4 - t2b4 * e3; e5 * t2b4 - t2b4 * e5; e7 * t2b4 - t2b4 * e7; e1 * t2b6 - t2b6 * e1; e3 * t2b6 - t2b6 * e3; e5 * t2b6 - t2b6 * e5; e7 * t2b6 - t2b6 * e7; ######### Vanishing commutators ############################ t2b2 * t2b4 - t2b4 * t2b2; t2b2 * t2b6 - t2b6 * t2b2; t2b4 * t2b6 - t2b6 * t2b4; ######### other q-Serre type relations ########################## rel1(t2b1,t2b2); rel1(t2b3,t2b2); t2b5*t2b2 - t2b2* t2b5; t2b7*t2b2 - t2b2* t2b7; rel1(t2b2,t2b1)+ _q* lotEven1(t2b1,e1,e5,k1m,k1); rel1(t2b2,t2b3)+ _q* lotEven1(t2b3,e5,e1,k5m,k5); rel1(t2b3,t2b4); rel1(t2b5,t2b4); rel1(t2b4,t2b3) + lotEven1(t2b3,e5,e3,k5m,k5); rel1(t2b4,t2b5) + lotEven1(t2b5,e3,e5,k3m,k3); t2b1*t2b4 - t2b4* t2b1; t2b7*t2b4 - t2b4* t2b7; ################################################################ #### We now check that t2 is indeed the inverse of t2m. ######## ################################################################ ###### t2 t2m = id ######## t2b1-b1; _q^-1*qcom3(t2b4,t2b3,t2b2)-b2; t2b5-b3; _q^3 * t2b4 *k3 * k5 + _q^-1*(_q-_q^-1)^2 *qcom3(t2b4,t2b3,t2b5)*e3*e5 -_q*(_q-_q^-1)*(qcom2(t2b4,t2b5)*k5*e3+qcom2(t2b4,t2b3)*k3*e5)-b4 ; t2b3 - b5; _q^-1* qcom3(t2b4,t2b5,t2b6) -b6; t2b7-b7; ###### t2m t2 = id ######### t2mb1-b1; _q^-1*qcom3(t2mb2,t2mb3,t2mb4) - b2; t2mb5 - b3; _q^-3*t2mb4*k3m*k5m+_q^-1*(_q-_q^-1)^2*qcom2(t2mb5,qcom2(t2mb3,t2mb4))*e3*e5 -_q^-2*(_q-_q^-1)*(qcom2(t2mb5,t2mb4)*k5m*e3+qcom2(t2mb3,t2mb4)*k3m*e5)-b4; t2mb3-b5; _q^-1*qcom3(t2mb6,t2mb5,t2mb4)-b6; t2mb7-b7; ################################################################# ##################### Towards braid relations ################### ############################################################################## ###### In the following we verify the braid relation t2 t1 t2 = t1 t2 t1. #### ###### The relation t2 t3 t2 = t3 t2 t3 then holds for symmetry reasons. #### ###### Furthermore, we verify that t1 t3 = t3 t1. As we already know that #### ###### the ti are algebra homomorphisms it suffices to check these #### ###### relations on the generators bi and on the elements ej, fj, and kj. #### ###### The braid relation t2 t1 t2(ej) = t1 t2 t1(ej), for odd j, is #### ###### checked by hand, and similarly for fj, kj, and kjm. Hence we only #### ###### need to check t2 t1 t2(bi) = t1 t2 t1(bi) for all even i. #### ###### Similarly, we only need to check that t1 t3(bi)=t3 t1(bi) for #### ###### even i. #### ###### We use the notation t121b4 for t1 t2 t1(b4), and analogous #### ###### notation for other braid group actions on the genertors bi. #### ############################################################################## ######### Braid relation preparations ################################# t23b1:=t2b1;; t23b2:=t2b2;; t23b3:=t2b3;; t23b4:= qcom3(t2b4,t2b5,t2b6);; #### factor q^{-1} missing !! #### t23b5:=t2b7;; t23b6:=_q^-3*t2b6*k3m*k7m +_q^-1*(_q-_q^-1)^2*qcom2(t2b7,qcom2(t2b5,t2b6))*e3*e7 - _q^-2*(_q-_q^-1)*(qcom2(t2b7,t2b6)*k3m*e7 + qcom2(t2b5,t2b6)*k7m*e3);; t23b7:= t2b5;; ############ t32b1:=t3b1;; t32b2:= qcom3(t3b2,t3b3,t3b4);; #### factor q^{-1} missing !! #### t32b3:=t3b5;; t32b4:=_q^-3*t3b4*k3m*k7m +_q^-1*(_q-_q^-1)^2*qcom2(t3b5,qcom2(t3b3,t3b4))*e3*e7 - _q^-2*(_q-_q^-1)*(qcom2(t3b5,t3b4)*k3m*e7 + qcom2(t3b3,t3b4)*k7m*e3);; t32b5:= t3b3;; t32b6:= qcom3(t3b6,t3b5,t3b4);; #### factor q^{-1} missing !! #### t32b7:= t3b7;; ############ t323b1:=t32b1;; t323b2:=t32b2;; t323b3:=t32b3;; t323b4:= qcom3(t32b4,t32b5,t32b6);; #### factor q^{-1} missing !! #### t323b5:=t32b7;; t323b6:=_q^-3*t32b6*k3m*k5m +_q^-1*(_q-_q^-1)^2*qcom2(t32b7,qcom2(t32b5,t32b6))*e3*e5 - _q^-2*(_q-_q^-1)*(qcom2(t32b7,t32b6)*k3m*e5 + qcom2(t32b5,t32b6)*k5m*e3);; t323b7:= t32b5;; ############ t232b1:=t23b1;; t232b2:= qcom3(t23b2,t23b3,t23b4);; #### factor q^{-1} missing !! #### t232b3:=t23b5;; t232b4:=_q^-3*t23b4*k5m*k7m +_q^-1*(_q-_q^-1)^2*qcom2(t23b5,qcom2(t23b3,t23b4))*e5*e7 - _q^-2*(_q-_q^-1)*(qcom2(t23b5,t23b4)*k5m*e7 + qcom2(t23b3,t23b4)*k7m*e5);; t232b5:= t23b3;; t232b6:= qcom3(t23b6,t23b5,t23b4);; #### factor q^{-1} missing !! #### t232b7:= t23b7;; ############ Now we check the braid relation t232 = t323 ############## t232b1 - t323b1; _q^-1 * t232b2 - t323b2; t232b3 - t323b3; t232b4 - _q^-1 * t323b4; t232b5 - t323b5; _q^-1 * t232b6 - t323b6; t232b7 - t323b7; ####################################################################### ######## More braid relations preparations ############################ t31b1:= t3b3;; t31b2:= _q^-3*t3b2*k1m*k3m +_q^-1*(_q-_q^-1)^2*qcom2(t3b3,qcom2(t3b1,t3b2))*e1*e3 - _q^-2*(_q-_q^-1)*(qcom2(t3b3,t3b2)*k1m*e3 + qcom2(t3b1,t3b2)*k3m*e1);; t31b3:= t3b1;; t31b4:= qcom3(t3b4,t3b3,t3b2);; #### factor q^{-1} missing !! #### t31b5:= t3b5;; t31b6:= t3b6;; t31b7:= t3b7;; ######## t13b1:=t1b1;; t13b2:=t1b2;; t13b3:=t1b3;; t13b4:= qcom3(t1b4,t1b5,t1b6);; #### factor q^{-1} missing !! #### t13b5:=t1b7;; t13b6:= _q^-3*t1b6*k5m*k7m +_q^-1*(_q-_q^-1)^2*qcom2(t1b7,qcom2(t1b5,t1b6))*e5*e7 - _q^-2*(_q-_q^-1)*(qcom2(t1b7,t1b6)*k5m*e7 + qcom2(t1b5,t1b6)*k7m*e5);; t13b7:= t1b5;; ######### Now we check the braid relations t13 = t31 ################## t13b1 - t31b1; t13b2 - t31b2; t13b3 - t31b3; t13b4 - t31b4; t13b5 - t31b5; t13b6 - t31b6; t13b7 - t31b7; ###################################################################### ################## Semidirect product relations ########################### #### We are checking here the relations in Section 5.2 for i=2 ######## ###################################################################### ###### Relation (5.16) ##### qcom2(t2b3,t2b4) - Image(T5m,t2b4); ###### Relation (5.17) ##### t2b6 - Image(T5m,t2b6); ######################################################## ######## :-) End :-) #####################################