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Summary

Petri nets, a convenient formal tool for modelling the dynamic behaviour of asynchronous structures, have
been used for both designing digital hardware [1,2,3] and specifying/verifying parallel bus interface
protocols [4]. Since the latter are supposed to be implemented in digital hardware controllers, it seems
topical to establish a strict semantical relationship between these two applications of Petri nets, thus
aiming at a unified theoretical framework that will enable a mechanical translation of Petri net protocol
specifications into logical circuits for protocol controllers. A characteristic feature of bus interface
controllers is that they represent a class of hardware modules whose behaviour is essentially reactive, as
opposed to another class of hardware which can be called transformational. In this dichotomy we follow
the ideas outlined in [5]. Therefore, in the design of such objects as bus controllers, the use of Petri nets as
a specification language for reactive circuit behaviour is laudable, provided that the design process
effectively separates the reactive parts of the controller from its purely transformational parts, whose
paradigmatics is much more adequate to the techni used in combinatorial function modelling rather
than o event-oriented notations.

|

This paper tackles the problem of filling the above-mentioned semantical gap by:

- studying the underlying semantics of Petri net specifications of reactive hardware behaviour and parallel
bus protocols;

- analysing the control flow semantics of Petri net specifications defined in terms of the so-called signal
graphs, which are a signal-labelled version of marked graphs (a subclass of Petri nets that is capable to
represent partially ordered actions of the underlying asynchronous structure);

- demonstrating the example of deriving a self-timed implementation [6] of controller circuits from a Petri
net specification of the VME-bus data transfer protocol.

The major theoretical results of the paper are aimed to be a methodology for analysis of signal graph
specifications that could then be, in a rather straightforward way, tailored to an automated design process.
-

1 In 1990/91 with: Department of Computer Studies, Polytechnic of Wales, Pontypridd,
Mid Glamorgan CF37 IDL, U.K.

2 [n 1991 with: Swedish Institute of Technology, 8 Apollogatan, Helsinki 00100, Finland




1 Petri Nets and Parallel Bus Protocol Specification
1.1 Transactons, Cycles, Actions

In order to show how Petri nets can be put into work for the modelling of the lower layers of an
asynchronous bus protocol, we follow the notation and meaning of the layered model of bus protocols
used in [4]. This model suggests that each layer produces a sequence of requests to the lower layer, thus
being the user of the latter. The layers which are typical for many asynchronous busses (a synchronous
bus, where actions are ordered with respect to some clocking mechanism, can in fact be treated as a special
case of asynchronous bus with the clock signals just being viewed as independently generated signals) are:
transaction, cycle and action layers.

The transaction layer usually involves cycles of the following types: arbitration, addressing, data ransfer
and interrupt handling. Each of these types uses its own set of bus lines, thus forming its own domain of
discrete variables, or signals, that are subject to changes, in their values, in order (o represent particular
messages between the interacting modules on the bus. For example, the data transfer cycle may utilize
such lines as Data lines, Command line(s), Synchronization lines and Data Transfer Error line(s). In
addition to the bus signal domain, each type of cycle implies the existence of its own operational structure
domain which supports the implementation of the protocol cycle inside the bus controller. For the above
data transfer example, the inside operational part includes such units as data transceivers, error and
command decoders, internal registers for storing the various components of the data path.

At the cycle layer, a particular cycle is carried out. A data transfer cycle typically involves transferring a
single data item between a pair of modules. The module which initiates the cycle is often called the master
and the module executing the master's command is the slave. We emphasize here on the fact that our
interest is focused on asynchronous bus protocols, for which the cycle layer uses the request-
acknowledgement pairs of synchronization signals, and no explicit timing or clock signals are present.

Each cycle consists of a sequence of actions which are performed on the variables belonging to the cycle
domain. In asynchronous busses such actions are temporally ordered by causal relationships. Practically,
an action is a transition of a finite-state signal associated with a single bus line, a set of functionally
grouped bus lines or some auxiliary internal status variables.

1.2 From Timing Diagrams to Petri Nets

The most common way of describing protocols at the cycle layer is using timing diagrams where the
falling and rising edges of waveforms stand for the corresponding protocol actions performed on the cycle
domain variables. These diagrams are often a starting point for the process of digital interface circuit
design. Unfortunately, such diagrams cannot be efficiently used in specifying hardware modules which
exhibit concurrent behaviour. Therefore we suggest that the protocol actions, as well as the internal
actions of the bus controller, such as strobing a data item from the data lines into a register, sending a
request [0 the target device eic., need to be associated with transitions of a Petri net built for a given
protocol cycle. Topologically, for the data transfer cyCles, this net consists of the three parts: master
subnet, slave subnet and bus subnet (see Section 6.1).

There are two main reasons why Petri nets can be successfully used in specifying both protocols and the
corresponding logic controller behaviours. First, they provide a clear formal way of protocol verification
due to their natural purpose of defining concurrent and causally ordered activities. Second, they enable the
designer to use some formal techniques for circuit implementation of protocols.

The problems related to the verification of bus protocols by extended Petri nets have been discussed in [4].

Thus, here, our major attention is focused on the problem of designing a self-timed logical
implementation for the bus controller from a given Petri net specification.
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The initial specification of the bus controller can be obtained from the protocol specification in the
following way (for practical "visualization" the reader may refer to Sections 6.1 and 6.2, skipping, at this
point, all intermediate material). First, we need to single out a topological part of the whole protocol
which is associated with the behaviour of the module we are designing a controller for. Second, we define a
top level structural description of the controller, which includes specification of the signal domain at the
link with the target device, the opposite side of the bus interface, and at the link with the top-level-
decomposed data-path units, like data ransceivers and address/mode decoders, which build up the internal
operational (and, hence, transformational) hardware of the module. Third, we redefine the behaviour of the
controller with respect to the above structurization and its actions on the newly introduced variables. For
example, if the bus controller is an adaptor between the bus and a local memory device, we combine the
controller's actions of the bus cycle sequencing with its actions on the internal link with the memory unit,
and, perhaps, with some additional buffering registers, so as to achieve that the projection of this
combination onto the bus cycle variables is compatible with the original cycle specification (i.e., it
preserves the original causal ordering).

An important issue, at the latter stage, is finding an efficient decomposition of the controller structure
where the reactive part of the controller is explicitly singled out, so that the above combination of
signalling specifications is performed on the signals from and to this reactive unit. Although some of
these signals may be physically different from the top-level controller interface connections, they can
represent such border connections internally, by being just a result of their combinatorial transformations.
These transformations of course require introducing some circuit units in the controller's structure. From
the "reactive viewpoint", such units can be modelled just as additional delays that are treated either in a
strict delay-insensitive way (the units are provided with a double-rail information encoding facilities plus
necessary completion indicators or they may consist only of simple logical gates operating in delay-
insensitive external conditions [6]) or in the so-called pseudo-delay-insensitive way (considering each of
them as a particular scaled delay element to compensate the skew of their output values with respect (o the
concurrent control flow(s) coming directly into the reactive unit).

Although the authors of [4] refer to [7] as a possible way Lo construct a circuit from an initial Petri net
description, we claim that the direct use of the method given in [7] in the bus controiler design application
would yield the circuit solutions which are rather slow and area-inefficient. They introduce an extra level of
control flow in the controller structure and, hence, produce an overly structured design, which may
seriously suppress all positive margins of the asynchronous design style.

In order to discuss specific problems related to the implementation of Petri nets in logical circuits for bus
controllers, we should analyze the semantics of Petri negs labelled with the actions associated with the
changes of values of finite-state components. In the sequel, we shall use term "component”, as a substitute
for "variable", "signal” etc., which will imply both the interface bus signals, auxiliary iniernal signals and
some finite-state objects of the internal operational part of the controller,

2 Signal Perri Nets and Their Semantics
2.1 Signal Petri Nets

We introduce the notion of signal Petri nets through the commonly used definition of an ordinary Petri

net.
.

A (marked) Perri net (PN) is a quadruple 4 = <P .T.F M®> where P and T are finite non-empty sets of
places and transitions, respectively, F ¢PXT U TXP is the (low relation between places and transitions,
and M°:P ->N(N is the set of non-negative integers) is the initial marking function.

(e8]




We assume usual graphical representation of a PN and its firing rule definition. Also, wherever it may be
of notatonal convenience, we use an alternative representation of a marking - as a multiset of places
containing a corresponding number of tokens.

The behavioural semantics of a PN can be represented in the two major ways. The interleaving semantics
is defined by the set of execution (firing) sequences obtained from the reachability graph, or marking

diagram, built starting from M°. The partial order, or causal, semantics can be defined on the set of
occurrence nets, each of which corresponds to a single-run PN execution, with partially ordered events
standing for the PN transition firings.

The interleaving semantics captures the sequential simulation of concurrent events, while the causal
semantics captures concurrency in its natural form, as mutually independent actions, thus giving an
explicit form of causality.

It has been shown elsewhere 8] that the partial order semantics is more powerful than the interleaving one
for the general class of processes, and their descriptive power is equal only for the class of so-called
distributive (also called siable, conservatve or AND-confluent) processes [9].

A signal Petri net (SPN) is a PN whose transitions are labelled, through an appropriate labelling function,
by the actions pertained to the changes of states of the discrete components of an asynchronous structure
(generally speaking, some actions may however not change the state of a component, for example, the
action of reading a value from the component),

Thus, let X = (x 1% ,....xn] be a set of such components. Each component X has a finite non-empty set
of states that it may assume during operation, S(xi) = [x‘..f. x£.2, z‘..!c‘.}. For example, in logical
circuits, where the components are binary variables, we have S(x‘.) = (0,4 }. Let, for each x; in X, be given

a local operational semantics, the so-called behavioural cliche of the component defined, say, in the form
of a transition graph on the set of vertices standing for elements S(x‘.). In such a graph, the set of arcs

defines some finite set of allowed actions changing the component states. Denote the whole set of such
actions as DX. For a logical circuit, DX = Uf [+xi. -xl.] where +x‘. denotes the transition of X from 0 to

1, and X the transition from / to 0. An alternative graphical representation can also be defined for the
component behavioural cliches, describing them as SPNs with local behavioural semantics.

Thus, formally, an SPN is a wriple H* = <H DX f> where H is a PN <P,T,F,M’>, DX is the set of
allowed actions on the discrete components in X, and £:T->DX is the labelling function.

An example of an SPN is shown in Fig.1,a where the transitions ¢/ through (6 are labelled with the
actions on binary variables x/ x2 x3.

Since an SPN is the interpretation of a PN, it has the same "unatiributed” semantics, called N-semantics,
as the underlying PN, i.e. it generates both a set of execution sequences and a set of partial orders.
Furthermore, we may also study a signal-attributed version of the N-semantics, called S-semantics, where
the events are assigned to the particular changes of the values of discrete structure components.

If we take the interleaving N-semantics of an SPN in terms of the marking reachability graph for the
underlying PN, we can also'speak about such corresponding S-semantics where the markings of the PN
stand for the global states of components in X, Such semantics can be apparently represented as a directed
graph, called the state diagram, whose vertices are labelled by the elements of Cartesian product
S(xI)KS(xZ)X...xS(x"). and arcs are labelled by the transitions of the form dxi € DX. Although our

intuition suggests that an SPN marking is in direct correspondence with a state of the discrete structure
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(see Fig.1,b and c), the isomorphism between N-semantics and S-semantics does not generally hold.
Indeed, it is not the case that for any SPN, even safe and persistent, we can build a state diagram of the
corresponding structure behaviour and, moreover, that such a state diagram, if built, would be complete
and consistent for deriving logical functions of the structure implementation.

2.2 Semantic Compatibility

In order (o establish consisiency of the S-semantics for an SPN, we have 1o check compaubility between
the global partial order defined by this SPN's S-semantics and the local behavioural cliches of constituent
components. This should guarantee that even live and safe global specification is realizable for a given set
of components. We generally distinguish two forms of compatibility, weak and strong.

The weak form is quite similar to a weak form of liveness, when a process defining the order between
actions performed on the components is accomplishable, - the process goal state is said to be reachable if
there exists at least one allowed execution sequence, in terms of the interleaving semantics, such that it is
compatible with the allowed sequences of each componeat's cliche.

As an illustration of the weak compatibility we consider an example, inspired by [10], in which a
component called the Register assumes certain local semantics of the Read and Write operations while the
global SPN specification defines some schedule, or procedure, of register utilization. The register can store
any value from a finite set X(Reg) = (XI .zz,...,xn). The allowed set of actions is DX(Reg) = Ui [w.ir.i)
where w.i and r.i stand for the "write value x; into the register” and "read value x; from the register”

actions.

We assume the register to have the following operational cliche defined in terms of the regular expression

TAET) Ko2ir ) L) )

where ";", "I" and "*" have their usual meaning of concatenation, selection and iteration operators,
respectively. This cliche implies that the register value may be read as many Limes as needed, zero times
inclusive, only if this value has been previously written into the register (but not overwritten by some
new value). The SPN specification of the above cliche, for & = 3, is presented in Fig.2.a.

Two potential global schedules are defined by the concurrent SPN specifications shown in Fig.2,b and c.
In order to check whether these two schedules are weakly compatible with the register cliche we can refer
to trace theory [11], in which an attractive synchronization operator between two trace structures may be
effectively used for the purpose of such checking.

If X = <aX tX> is a trace structure where aX is a finite alphabet of actions and tX is a set of traces, sirings

*
of symbols in aX, i.e. (X € (aX) , then the synchronization of two trace structures X and Y is the trace
structure defined by

X&Y=<aXUa¥, (i1t € (aXUaY)‘::faX € IX,taY € 1Y)>
where (/A stands for the projection of trace ¢ on alphabet A.

Let S1 and $2 denote the trice structures generated by the schedules in Fig.2,b and c, respectively. Since
we are interested in checking the fact that a schedule is fully executed, we include in 51 and 52 only those
sequences of actions on the register that begin in the initial marking, Py and end in the goal marking, pg.

The trace structure R stands for the register and contains all prefix-closed traces satisfying the register's
cliche.
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It is obvious in this example that

S1&R=<aSl,® > and
S2& R=<a8S2, (wlrlw2r2wl3ril>,

from which we conclude that the first schedule is not, while the second is, weakly compatible with the
register behaviour. We should point out, again, that the above analysis has been done in terms of the
interleaving semantics of trace structures,

The strong form of compatibility, called compliance, requires that the global semantics must be strictly
compatible with each component cliche,so that the projection of the global behaviour on the set of the
component's state changes (or, generally, actions) is identical to the local cliche, in terms of causal
semantics, i.e. using explicit sequentiality and concurrency relations. For example, in the above example
with the register, since the latter is a sequential object, the global behaviour will be compliant if and only
if it ensures that all the actions on this component are linearily ordered, and such a sequences of actions is
weakly compatible, through the above synchronization operator, with the register cliche.

An important issue about the analysis of semantics of PN specifications is that, due to its more compact
and intrinsic representation of concurrency, the partial order semantics is more convenient than the
interleaving one. In addition, the class of PNs used for specifying protocols and controllers on the cycle
layer involves PNs that are free from choices and represent a purely sequential-concurrent paradigm, which
is semantically adequate to the relations depicted within the partial order semantics of PNs. This issue
allows us to restrict ourselves with a subclass of Petri nets called marked graphs and present the following
semantic analysis on the model for which we can take advantage of using, in practical applications, rather
easy, i.e. polynomially hard, analysis procedures.

3 ) Signal Graphs and Their Semantics

A marked graph PN can be represented as a directed (monochromatic) graph whose vertices correspond to
PN transitions and arcs to PN places. Therefore, it can be called a marked graph (MG) [12]. Bearing in
mind such a correspondence, the firing rule for MGs is the same as for PNs. The liveness and safeness
conditons for MG were studied in [12].

An interesting property of a live-safe MG whose simple cycles contain exactly one token each is that such
an MG has a unique equivalence class of all its live-safe markings. Therefore, the behaviour of this MG is
fully determined by its structure. Such a class of MGs is called simple MGs.

Similar to SPNs we consider the concept of a signal graph (SG), which is a triple GE= <G DX f> where

G= <V,E,M0> is a MG graph with set of vertices V, set of arcs E € V X V and initial marking MD:V ->
(0.1,... }; DX is the set of allowed changes of states of variables in X (here, we restrict ourselves only
with those specifications where the actions on finite-state components always change the state of the
components); F:V -> DX is a labelling function. We also accept that the underlying MG is live-safe and
simple. It can easily be proved that such an MG, with respect lo its initial marking, presents a partial
order on the set of its vertices. Hence, the analysis of the partial order S-semantics of SPNs can be
effectively reduced to the analysis of semantics of live-safe SGs.

To find a more fine relationship between N- and S-semantics of SGs we need a more careful study of the
labelling function f. For the sake of clarity and due to the application deuails, it is sufficient to restrict
ourselves with discrete components that have only linearily ordered local cliches.




Thus for an SG we introduce the concept of a compliant labelling function.

A labelling function f is called compliant for an SG G* = <G .DX f> iff for each component the
component state changes are linearily ordered and this ordering is compatible with the behavioural cliche of
the component.

If X consists only of binary variables, then a compliant labelling guarantees that for each reachable
marking and each variable x there is at most one enabled vertex labelled with the change of e and for

each sequence of variable transitions, between any two changes of the same sign dx‘. there exists exactly
one change of the opposite sign, ’\dx‘..

An SG with a compliant labelling is called coherent.

Statement 1
A signal graph generates a consistent S-semantics iff it is coherent.

An important consequence of the above statement is that it also provides a condition for the correct
implementation of a discrete structure. We distinguish two possible ways (in some sense, design
semantics) for such an implementation which we call the explicit control view (ECV) and implicit control
view (ICV).

The ECV makes use of the coherent SG (this can also be generalized for SPNs) specification as a model
that can be directly translated into the circuit of a central control mechanism (if our target structure is a bus
controller, this would be the bus controller controller), which conducts the behaviour of components in X
by activating a corresponding state change, for example, through a request-acknowledge handshake in the
component logic.

For a physical circuit realization of ECV-strategy, one may use one of the two major principles of PN
circuit modelling (13]:

(i) modelling the places, i.e. associating a flip-flop cell with each PN's place and using the intercell
signals, which model the labelled transitions, as signals for the above-mentioned request-
acknowledgement links with the target structure's components; or

(ii) modelling the transitions, i.e. associating each transition of the PN with a special logical element
in the so-called event-signalling control circuit (see also [14]).

Both of these two methods involve the design of an explicit control circuit which isomorphically models
the PN's "token game" semantics, by changing the values of its actuator gates or flip-flops in accordance
with movement of tokens through the PN, and has the same topological structure as the PN (or SG).

The ICV of an SG specification regards the SG as a behavioural scenario of directly interacting
components that change their states by computing, at their inputs, their own transition functions, guards,
without any additional control level. Using this strategy would result in a better design in terms of speed
and area on the chip.
.

The results of [15] demonstrate that, within certain operation condition assumptions, there is a possibility
to derive self-timed circuits in the ECV-strategy even from non-coherent specifications, using the so-called
auto-correct implementation principle.




Checking the coherence of an SG, which opens the way for the ICV-swrategy of circuil design, is done
through the computation of the relations of precedence and concurrency, denoted respectively as => and |l
and built on set DX. The intuitive meaning of the => and |l relations is as follows:

dx; => ‘i"j means that there exists a simple cycle in the SG such that dx; precedes dxj- on this cycle with

respect to the position of a token on the cycle (recall that every simple cycle in an SG contains exactly
one token); this relation guarantees that dx; and dx; cannot be enabled concurrently;

dx; Il dxj means that there is no simple cycle on which dx; and dx; reside, so there is a possibility for
them 1o be enabled concurrently.

One should also observe that Il is the negation of another relation,<=>, that is simply a reflexive closure
of =>, i.e. <=> = (=> U <=), which of course means "there is a simple cycle on which dx; and dxj-
reside”. It is imponant to note that neither of these relations is transitive: although we may have dx; =>
dxj =>dxp, itis possible that dx; Il dx; because dx; and dx; can be ordered in one cycle, while dx; and dx
in another.

Since, from the algorithmic viewpoint, the definition of => through the concept of cycles may lead to
inefficiency in computations, the formalisation of these relations stipulates using a slightly different
approach. We define a concept of an operation history, called unfolding, which is an infinite and acyclic
graph generated by the original SG. The unfolding is similar to the occurrence net for a PN. Each
occurrence of a veriex dx‘. in the SG yields a unique vertex in the unfolding, having the same label dxl.
augmented with a unique index of occurrcnce.ctxl.(k). A set of Vertices with index k in the unfolding,

together with the corresponding arcs, is called the k-th period of unfolding.

1t can be shown that, for practical analysis purposes, the unfolding can be floored to its first two periods,
and the => and |l relations can be computed on such a finite representation pattern (a characteristic image,
or a fixed-point, of the whole partial order history): namely, dx; => d.rj iff dx; (1) -> dxj( 1) and dxjfl) ->
dx;(2), where -> means the fact of existence of a simple path ina two-period graph between corresponding
occurrence vertices. Based on the properties of unfolding, one can easily prove the following property.

Property 1.

If any four transitions ¢; I3, (3, and ty , in a live-safe and simple SG, sausfy the following precedence
relationship:

(I => rz => 13 => t4 <=11'
then there exists a simple cycle where these transitions are ordered, with respect to the initial position of a
token, exactly in the order of their subsripts.

The complexity of this computation is O(n3) where n is the number of vertices in the SG. Similar
observations for a model called change charts in [16] were made in [17].

Since the ICV implementation of a discrete structure of a bus controller is more attractive, the further
analysis of the S-semantics of a coherent SG is necessary.
.

4 The ICV Design Strategy and SG Specification Completeness
Although a coherent SG generates the consistent S-semantics, this may be insufficient for designing a

circuit within the ICV-strategy. The problem is that a coherent SG may generate a state diagram which has
the so-called multiple states, states labelled with equal a-tuples of component states. The state diagram in
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this case is called contradictory. Informally, the contradiction, which exhibits itself as a form of
indeterminism, implies that the system is under-specified in the ICV terms, and some components are
"hidden" from the designer’s knowledge. For example, for the case of using SGs in specifying an interface
signalling protocol, these components may be interpreted as a control flow memory, intemnal for the
controller, which is needed for the final implementation stage but has been unnecessary for the protocol
specification purposes. Hence, in the ICV terms this effect is seen as incompleteness of the initial
specification, and a certain number of additional variables need to be introduced into the systems, thereby
ensuring that all global states in the state diagram are unique. For that we define the notion of a normal
SG.

An SG is called normal iff it is coherent and for each allowed sequence of vertex firings it has no proper
subset of components X' ¢ X which may proceed through their full cycles of changes of their values while
the other, in X \ X', remain unchanged.

It can be shown that the state diagram of a normal SG is non-contradictory and distributive. The
distributivity is defined within a lattice-theoretical characterisation of S-semantics [16].

A more interesting and practically efficient way of characterization of SG normalicy can be achieved
through a causal approach. We consider an operational relation between components, which is called the
coupledness relation!, originally proposed in [19] and later used in¥(20].

Again, for clarity, we assume the following, however not so crucual, restrictions. First, we consider the
case of binary discrete structure, i.e. S(xi) = (0,1}, and dx‘. and "dx‘. denoting the two mutually opposite
state changes of £ Second, we consider only such SGs for which the labelling function f is a direct one-

to-one mapping of V into DX, i.e. each transition of a particular dxl. labels only one vertex in the SG.
Let a coherent SG be given, Then variables x and xj are called:

- directly strongly coupled, (x'.x JJ,(xj,x[} € dsc, iff there exists the following precedence combination
dx‘ => d_‘[} => "dx{ =5 f‘dx} <= dII. "
with respect to a given initial marking (recall Property 1);

- strongly coupled, (xix ) € sc, iff (x!.zj) € dsc where * stands for the transitive closure;

- weakly 1-coupled of rank r, r>=0, (xi.xj.) € wel(r), iff there exists the following precedence combination
dz‘. => dxj = -“d_x‘. = dxk <=dx;,
with respect Lo a given initial marking, and (xj,xk) € link1(r) where

sc,ifr=0
link1() = 3
(link1(r-1} U wel(r-1)) ,ifr>0

*
1 We have recently become aware of the work of P. Vanbekbergen et. al. (see, for example,
[18]), who, to our great surprise, use a very similar technique based on the lock relation
between variables and interleaving relation between transitions. Their interleaving
condition helped us to correct our previous coupledness hierarchy introducing the case
of 2-coupledness.




- 1-coupled, (xl. ,xj.) € cpl iff (x‘.‘xj) g lintl(cmax]ﬂl (the maximum rank, G of the weak 1-
coupledness is determined by the following termination condition wel(r +0=f);

- weakly 2-coupled of rank r, r>=0, (x‘.,xj) € we(r) ,

iff there exists the following precedence combination
dxi = dxj = dxi =5 dxk <=dx;,

with respect to a given initial marking,
and (xj,tk),(x‘.,t[) € link2(r) where

cpl,ifr=0
link2(r) = (

(ink2(r-1) U we2(r-1%) . if r>0

- 2-coupled (or, simply, coupled), (x[.xj) € ¢p, iff (x‘.,xj) € link;[rma ﬁﬂl (the maximum rank, e of
the weak 2-coupledness is determined by the following termination condition wsg([m 2+1 )=

The coupled relation partitions the set of variables X into disjoint classes of coupledness, which help us
claiming the following.

Statement 2
A coherent signal graph is normal iff all its components belong to the single coupledness class.
An example of a normal SG is shown in Fig.3. It illustrates all of the above coupledness paradigms.

Using the primary relation, precedence ( =>), we can check normalicy for an SG with polynomial
complexity.

At its worst case, the checking procedure, which involves construction of coupledness classes, may require
checking the precedence conditions at all the levels of coupledness hierarchy:

first, checking the dsc condition and adding new members to the sc classes, which involves searching
through pairs of variables (and, thus, has time complexity of O(nz)):

second, checking the wcl(r) condition and adding new members to the cpl classes, which involves
searching through triples of variables and moving up the rank value (thus, requiring o(n% steps);

third, checking the we2(r) condition and adding new members to the cp classes, which involves looking
through combinations of four variables and moving up‘wrank value (O(ns) steps).

(Note that in the second and third stages we have L n.)

Hence, the worst case cost of normalicy check, based on the preconstructed precedence relation, is O(ns).

The main advantage of the relation-based technique for analysing the specification completeness is that it
does not need 10 work with the exponentially hard (with respect o ) interleaving semantics of a global
state diagram.




dsc = {(x1,x2),(x2,x3),(x5,x6),(x6,x7)}

sc-classes: {x1,x2,x3}, {x4), (x5,x6,x7)
wel(l) = ((x1,x4))

cl-classes: [x1,x2,x3,x4}, {x5,x6,x7)
we2(1) = [(x4,x6))

cp-classes: (x1,x2,x3,x4,x5,x6,x7}

Figure 3. Example of a normal signal graph



It is also interesting to compare the above coupledness relation hierarchy technique with the method of
analysis of signal-transition graphs from [3], which are similar to our SGs. In order to deal with the
problem of contradiction in a state diagram, the author of [3] inwroduces the so-called persistency (which
should not however be confused with the persistency property used for PNs) constraint on the relations of
S-semantics between SG vertices. In terms of the above coupledness relations, this constraint allows o
use only such SGs in which all the components are strongly coupled. In some cases, this constraint over-
bridles the concurrency paradigm potentially admissible in the behaviour, which may consequently slow
down the final implementation’s operation.

5 Delay-Insensitive Implementation

The process of deriving a logical circuit implementation for a binary signal graph specification, using the
ICV strategy, starts through checking the normalicy condition and, if needed, introducing auxiliary
variables into the structure. The corresponding vertices labelled with the changes of states of these
variables must be inserted into the SG, thereby:

@] providing necessary operational coupling between the confponents
belonging to separate coupledness classes, and

(i) preserving the original causal semantics between the components.

Then, in order to derive logical equations for the components which are either output signals or internal
memory elements, we convert our specification into the state diagram format, from which, by an
appropriate Boolean function minimization algorithm, we obtain the corresponding guard functions for the
implementation.

Of course, if the number of components is large enough, the construction of a global state diagram is
rather unpleasant. To deal with complexity, we suggest using the concept of projection of an SG on some
set of relevant variables. This is quite similar o what is called net contraction in (3]. With the help of this
concept, for each implemented variable, we build the minimal normal SG projection including only the
direct predecessors of the ransitions of this variable (as well as the remaining transitions associated with
the variables involved in such predecessors). Taking the target variable of this projection as the output
component we make the minimization procedure and obtain the corresponding logical guard function (or
two functions, one for the 0-1 transition (the §, set, function) and the other for the 1-0 wansition (the R,
reset, function) in the form

X = f{E Fgee®y)
(or in the form x; = S‘. +x; Ri where Sl, and Ri are independent of x‘.).

It is easy to prove that the set of SG projections covering the causal semantics of the original SG, under
the application of the synchronization operator, yields the interleaving semantics which is equivalent 1o
the semantics of the original SG. This gives necessary justification to using the implementation technique
based on the projections of an SG.

.
Provided that the derived logical guard function of the component is implemented on a single physical
element, we obtain a delay-insensitive self-timed circuit whose behaviour strictly satisfies to what has
been defined by the original SG specification. The delay-insensitivity is however restricted only with
respect o the delays that can be attached to the outputs of these elements. This includes the element's own
delays and the delays in wires prior to their possible forking. In many cases "after-fork" delays are also
wolerated by the self-timed discipline, but, for example, in cases of using self-dependent, flip-flop, elements




the local feedback connections are always assumed to be delayless. The VLSI implementation of wire-
delay-sensitive parts should follow the isochronic region layout principle [21].

6 Designing a Self-Timed VME-bus Data Transfer Controller

In this section we demonstrate a real application example for the above technique. In our design of a VME-
bus SLAVE-INTERRUPTER controller chip, we used this technique for specifying and deriving the
implementation of a reactive part of the controller. Such a part, called SYNCLOGIC, forms a
synchronization skeleton of the controller and provides, as ils primary goal, the necessary causal
coordination of both the actions performed on the bus control lines and the sequencing organized at the
internal links of the module, between the controller chip and the logic of the target SLAVE-
INTERRUPTER operation mode device (such devices are quite often used in various instrumentation
applications). SPNs and SGs were used for specifying the address broadcast cycles, data read/write cycles
and interrupt cycles, as well as for defining the behaviour of SYNCLOGIC.

During the design process, a number of alternative SG stlutions gave rise. The pursuit for a good
semantical tradeoff between largest possible parallelism in the dynamic behaviour of the signal sequencing
and minimum circuit complexity plus higher circuit structuredness resulted in the SG specifications
which, initially, were not normal, in the above formal sense. The insertion of auxiliary variables allowed
us to proceed to the final implementation step, using the ICV strategy.

It is important to point out the following. Because the methodology of using PNs in designing hardware
logic is attributable, at its major extent, to the “reactive parts” of the circuit design, our discussion here
eliminates any details related to the adjacent “transformational cosmetics”, which would of course be
necessary for the integrity of the design description, from the wholistic approach. Rather, we suggest that
the reader having a large experience in bus standards and logic design support and/or more interested in
concrete aspects of our circuit design would refer to [22] for these details, but, here, would pay more
attention to the methodology of designing reactive hardware (conceptually, close to the general ideas of
(51), which play crucial role in such design objects as interface controllers. This will of course stipulate
some relaxations of the various transformational details of the chip functioning.

6.1 VME-bus Slave Module Specification

In the present discussion, for the sake of clarity, we restrict ourselves with looking only into the SLAVE
part of the above-mentioned controller chip design.

The operation of the SLAVE module involves participation in the two basic types of cycles: addressing
and data transfer cycles [23]. The top view upon the functional module with the VME-bus SLAVE
capabilities is shown in Fig. 4. The standard meaning of the bus lines involved is as follows:

ADDRESSING LINES: A01-A31, AMO-AMS, DSO, DS1, LWORD;
DATA LINES: D00-D31;
CONTROL LINES: AS, DSO, DS1, DTACK, BERR, WRITE.

The two data strobes, DS0 and DS, serve a dual function:

(1) the levels of these strobes®are used to select which byte(s) are accessed,

(2) the edges of these strobes are also used as synchronization signals which coordinate the ransfer of the
data between MASTER and SLAVE.

Signals A01-A31, LWORD are used for addressing the data and specifying which byte locations within the
4-byte group are accessed during the data transfer cycle.
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Signals AM0-AMS (address modifier) are used 1o indicate which address bit groups are valid within the 32-
bit address during the addressing cycle.

Signal WRITE is used to command which of the two data transfer directions between MASTER and
SLAVE is needed, the read (WRITE = 0) and write (WRITE=1) operations.

Signal DTACK (data transfer acknowledge) is used by SLAVE to indicate that the data has been
successfully received on a write cycle, or placed on the bus on a read cycle.

Signal BERR (bus error) is used by SLAVE (o indicate to the MASTER that the data transfer (read or
write) was unsuccessful.

The original protocol specifications taken from [23] are defined by timing diagrams. An example of such a
diagram, defining the data transfer sequencing during the read operation, is presented in Fig.5,a. In this
diagram a special notation is used for data suwobes, DSO and DS1, which do not always make their
transition simultaneously. Therefore, DSA represents the first data strobe to make its transition (whether
that is DSO or DS1). The reason why signals DTACK and BERR "share” the same waveform is that they
operale in alternative cases (either DTACK or BERR). x

Following the technique described in [4], we represent the same protocol by Petri net, as shown in
Fig.5,b. A special notation is used here for depicting the bus line signals which are modelled by the places
with corresponding names. Note that the inhibitor arcs are used in this notation for describing the
condition produced after the resetting of a signal on a bus line. The transversal lines on arcs leading from
the "bus line" places are used for better readability of the model and their relationship with usual PN
notation is shown in Fig.5,c. Also, as in [4], we use a special notation for "transformational” elements
corresponding to the signals serving as information signals, either parailel bus signals, e.g. A01-A31, or
command signals, e.g. WRITE, which are either decoded and/or strobed. This notation, called Data
Lransitions, uses input and output data places that can be marked with data tokens and the control place
marked with an ordinary, "control”, token. Briefly (for more detailed treatment, see [4]), data transitions
fire under the presence of a token in the control place and the firing process involves copying the data
token from the input data place into the output data place. Such a behaviour is similar to a gate in the data
path.

6.2 Structural Decomposition of SLAVE Controller

After defining the behavioural specification of the SLAVE module at the VME-bus link we proceed to the
structurization of the controller,first, through establishing the interfacing between the controller and the
target slave device, and, second, through separating a reactive part of the controller from the two
transformational units, the data transceiver module (TR) and address decoder (DC), as shown in Fig.6.

The meaning of the signals created as a result of such structurization is as follows:

LDS - local data strobe, LDTACK - local data transfer acknowledge, LBERR - local error indication,
SL_SEL - target slave device selection, DEN - data transceiver enabling, VAL_AD - valid address, LDBO-
LDB3 - data byte number code. The meaning of the remaining signals, LD00-LD31, LAQ1-LA31 and
LAMO-LAMS is obvious.

Subsequent refinement of the controller's reactive substructure allows to single out two more levels of
decomposition yielding several more transformational circuit layers. The first decomposition, shown in
Fig.7, gives two transformational units, DS_ER_CHECK and SLAVE_SELECT, and one reactive unit,
SYNCHRO. .

DS_ER_CHECK is the circuit producing the double-rail error condition signal, ER and NER, and the
combined data strobe signal DSI, corresponding to the DSA signal in Fig.5.

SLAVE_SELECT is the circuit producing the target device selection signal which combines the effect of
AS and VAL_AD, as a result of detection of the valid address, with the possibility of pipelining the
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current addressing cycle with the completion of the previous data transfer cycle (the latter is provided by
the use of DTACK and BERR pair).

The main task of SYNCHRO is the coordination of the signalling at the links with the bus (through
condition/command signals ER, NER, WRITE, and synchronization signals DSI, DTACK and BERR),
with the target device (through synchronization signals LDS, LDTACK and LBERR), with transceiver
unit TR (through signal DEN) and the coordination of the action internal for the controller, strobing the
error conditions by means of signal ERS.

The second decomposition step refines the SYNCHRO unit as shown in Fig.8. This gives us a reactive
kernel of the controller, the SYNCLOGIC unit, surrounded by several transformational units:

READ_FF and WRITE_FF, the flip-flops producing the unitary synchronization signais DSR and DSW,
for the read and write cycles respectively;

CON, the single-rail-to-double-rail code converter for the WRITE signal;

the OR gate merging the mutually exclusive LDTACK and LBERR signals into the single LACK (local
acknowledgement) signal;

ACK_FF and BERR_FF, the pair of output flip-flops producing the DTACK and BERR signals as results
of combining the error conditions from the device with error conditions manifested by ER and NER
values; and

the OR gate producing the ERS signal to the DS_ER_CHECK unit.

6.3 Behavioural Specification of SYNCLOGIC

Starting at this point, we convert the top level specification of the type shown in Fig.5,b into an SPN (or
SG) specification of the bus side link of the SYNCLOGIC. In doing so, we preserve the original ordering
between transitions bearing in mind that we may substitute DSI for DSA because DSI is just a result of
delayed transformation of DSO and DS 1. Similarly, we substitute ACK for DTACK (BERR). In the same
way we build the specification for the Larget device link involving the handshake signals LDS and LACK.
These two partial views upon the controller, during the data read operation, are shown by SGs in Fig.9,a
and b.(For further readability, data strobe signal DEN is denoted by D.) In order to distinguish which of the
signals are the inputs to the controller and which are the outputs generated by the controller components,
we use boxes and circles for depicting their respective vertices in the SGs. The inclusion of the vertex
labelled by +D into the signalling of Fig.9,b respects the order of strobing the data from the device into
the transceivers after the device's acknowledgement with +LACK.

The semantically consistent, with respect to the read operation meaning, coordination of signalling at both
links can only be achieved if we include also the ordering between DSI and LDS transitions shown in
Fig.9.c.

As the overall specificationsof SYNCLOGIC, during the read operation, must be compliant with all the
above three partial signalling orders, it can be obtained as a result of synchronization operation (this
operation is associative [11]) on them, which is presented by the SG in Fig. 9,d.

Now, for more convenient implementation, we can make a transformation of this specification to a more
compact form. It is based on the so-called handshake compression principle, often used in the self-timed
design discipline [13].
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The handshake compression principle.

From the viewpoint of a self-timed circuit any request-acknowledgement pair of variables can be
represented by a single (output) variable produced by the circuit. The synthesis of the circuit is thus
performed on a reduced number of variables. After obtaining the logical functions for these components,
one can return back (o the original handshake pairs by simple breaking the output wires of the compressed
components and thus forming the necessary pair. Two important conditions should however be ensured
when this principle is applied. The first is that the transitions of the request signal, in such a pair, may be
direct predecessors only for their acknowledging counterpart and for none of the other signals. The second
is that depending on the inital value of request-acknowledgement variables, one should sometimes insert
an invertor into the above-mentioned break before connecting the incoming request to the newly produced
input.

The result of applying the above principle is shown in Fig.10,a where variable B (from "bus") stands for
the (ACK,DSI) pair and L (from "local") for the (LDS,LACK) pair. This SG has very clear and easily
understandable interpretation of its own: the initial marking corresponds to the situation when the
controller is ready for receiving the activation from the bus (-B). After this, controller activates its link
with the target device, and when the data is produced by the device (+L), it can be strobed into the
transceivers (+D). This leads to sending an acknowledgement to the master and waiting a reset of his
strobe (+B), after which the two processes may go concurrently: the reset of the local link (-L), and the
reset of the data in the transceivers followed by the reset of the acknowledgement and the "invitation" of
the bus link for another data transfer cycle.

The signal graph shown in Fig.10,b is obtained in the same way for the write operation cycle.

6.4 Implementation of SYNCLOGIC

‘We illustrate the process of using the formal technique introduced in Sections 3,4 and 5 for the SG shown
in Fig.10,a.

First, the result of checking this graph shows its coherence - all the transitions associated with each
component have a compliant labelling. But the SG is not normal - we have two coupledness classes (L)
and (D,B} (note that D ds¢ B). Second, to have necessary coupling, we introduce an auxiliary variable, Sr’
as shown in Fig.11, which gives us the desired relations: (Sr,B) dsc¢ and (Sr'L) dsc. Due to transitivity,

all four variables are now in the same coupledness class. Third, using the method of component
projections, we derive the logical circuit implementation of the given SG as shown in Fig.11 for the Sr
component. The final read control circuit is shown in Fig.12. The original handshake pairs are restored
here, providing the insertion of an invertor at the DSI input. This circuit is delay-insensitive with respect
to the delays of all logical elements and all wire delays except for the wires marked with "#".

In the same manner, we could derive the implementation for the write cycle specification. Then both
implementations could be combined by using special merging logic for the shared variables, B, L and D.
Unfortunately, the introduction of extra circuitry, the merging gates, leads to slowing down the operation
of the controller. This had been the main reason for us to choose a slighty different implementation way
in real chip design. We made a combination of the read and write operations before we proceeded to the
logical functions for components. We used the SPN shown in Fig.13, which is the choice-based
composition of SG specifications shown in Fig.10 (for the purposes of better physical implementation we
have slightly restricted parallelism, by introducing the order between transitions -D and -L) augmented
with separate bus link signals, Br and BW (see DSR and DSW in Fig.8), and two separate coupling

variables Sr and Sw. These augmentations guarantee that the S-semantics of the PN in Fig.13 is
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consistent and complete, which is demonstrated by the global state diagram shown in Fig.14. The final
version of SYNCLOGIC was obtained from this diagram.

7 Conclusion

We presented a formal technique for designing reactive hardware, which is based on signal-labelled Petri
nets and their important subclass, signal graphs. The technique has been effectively tested on such an
instructive example as asynchronous parallel bus controllers whose behaviour has both the concurrency
and reactiveness paradigms. In combination with the basic ideas of reactive system development
methodology originated in the work by Pnueli and Harel [5] and a stepwise (transformational+reactive)
decomposition/refinement process, this technique can be very useful for VLSI design community.

Subsequent theoretical efforts could be directed towards studying the ways of more graceful composition
technique for the usually separately specified bus protocol cycles (a set of timing diagrams defined on the
shared signalling domain). One of the efficient compositional methods could likely be obtained by using
some simple forms of high-level Petri nets [24], where the individual tokens might represent the various
cycle modes of bus protocols thereby modelling different reactive skeletons on the same signal transition
domain. An example of such a Petri net, for the above read and write cycles in SYNCLOGIC is shown in
Fig.15. Within this framework, it is desirable to obtain some clear control flow characterisation similar to
the ECV/ICYV strategies described in the present paper.
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