

13th International Conference Dependable Systems, Services and Technologies Greece, Athens, October 13-15, 2023

Tsetlin Machines: Stepping Towards Energy-efficient, Explainable and Dependable Al

Prof. Alex Yakovlev

Network architecture:

Features:

- Number of weights to fit: $X \times HL_1 \times ... \times HL_k \times Y$
- Arithmetic (+,-,/,*) • Operations:
- Operands:

Float numbers

• Learning algorithm: Back propagation

Artificial DNN: Major limitations (recap)

 \circ Black box

 $\rangle\rangle\rangle$

Lack of explainability $\rangle\rangle\rangle$

Vulnerability

\odot Too many hyperparameters

DNN can have anywhere from a few to a few hundred hyperparameters

• Hardware/energy demanding

ChatGPT-3 training: **1.287 GWh** ChatGPT-3 inference: **936 MWh**

Not suitable for on-chip/ at-the-edge learning

Tsetlin Machine: Logic-based AI (2018)

• Chrysippus

a Greek Stoic philosopher (c. 279 - c. 206 BC)

• Prof. Mikhail Tsetlin

a Soviet mathematician and physicist who worked on cybernetics (22/09/1924 – 30/05/1966)

• Prof. Ole-Christoffer Granmo

a Norwegian computer scientist, director at the Centre for Artificial Intelligence Research (CAIR) at the University of Agder (born 26/08/1974)

Tsetlin Machine: Features and Benefits

- Accuracy:
- Performance:
- Energy consumption:
- Operations:
- Operands:
- Hardware resources:
- Explainability:
- Highly parallel:

Nearly hardware (1 learning step \approx 1 clock cycle)

10 TOPs/J, operating at 33MHz

- Logic(AND, NOT), Sum, Voting
- Boolean, Integer
- $2X \times C \times Y$ TAs
- Yes
- : Yes

and the second se		1-1-1-1-		
		1 5		
and a second			- li	
		AV C	A	
A REAL PROPERTY OF		AV · A		
	Manna S	P . 2 -	1	
-			AP .	
• •		1.	12 .	
yright © 2020 Jie Lei			1.	

≡	kaggle	Q search
+	Create	FEDESORIANO - 1Y AGO - 744 VIEWS
Ø	Home	
Φ	Competitions	The Convolutional Tsetlin Machine
	Datasets	[0.99342]
\diamond	Code	Python · QMNIST - The Extended MNIST Dataset (120k images), Digit Recognizer
	Discussions	
ର୍ତ୍ତ	Courses	Notebook Data Logs Comments (4)
\sim	More	
		Competition NotebookRunPublic ScoreDigit Recognizer6085.1s0.99342

Model	2D N-XOR	MNIST	K-MNIST	F-MNIST
4-Nearest Neighbour [5, 41]	61.62	97.14	91.56	85.40
SVM [5]	94.63	98.57	92.82	89.7
Random Forest [22]	70.73	97.3	-	81.6
Gradient Boosting Classifier [41]	87.15	96.9	-	88.0
Simple CNN [5, 22]	91.05	99.06	95.12	90.7
BinaryConnect [6]	-	98.99	-	-
FPGA-accelerated BNN [20]	-	98.70	-	-
Logistic Circuit (binary) [22]	-	97.4	-	87.6
Logistic Circuit (real-valued) [22]	-	99.4	-	91.3
PreActResNet-18 [5]	-	99.56	97.82	92.00
ResNet18 + VGG Ensemble [5]	-	99.60	98.90	-
TM	99.12	98.57	92.03	90.09
CTM (Mean)	99.99 ± 0.0	99.33 ± 0.0	96.08 ± 0.01	91.18 ± 0.01
CTM (95 %ile)	100.0	99.38	96.25	91.39
CTM (Peak)	100.0	99.40	96.31	91.50

Medical research ECG classification Patient allergies detection in electronic health records

$\circ~$ IoT and embedded systems

- Intrusions and anomaly detection
- Drones activity classification

\circ Cybersecurity

- Detection of network attacks
- Spam detection
- Fake news detection

At-the-edge inference

penicillium enicillinpenicillin penicilinpenicillin penicillinpenicillinpenicillin penicillinpenicillinpenicillin penicillinpenicilinpenicilling penicillinpenicillinpenicilling penicillinpenicillinpenicillin penicillinpenicillinpenicillin penicillin penicillinpenicillin penicillin penicillinpenicillin penicillin penicillinpenicillin penicillin penicillinpenicillin penicillin penicillinpenicillin penicillin penicillin

Low power He is reacting to Penicillin.. She reacts against Apocillin.. Ibux gives reactions.. Associated with vocabulary «reactions»

• • •

Tsetlin Machine: Architecture

• Tsetlin Automaton (TA):

Reinforcement: (i) Reward ---> (ii) Penalty--->

• TM Architecture:

strong

exclude

• Clause Compute Logic:

Tsetlin Machine: Inference

Tsetlin Machine: Inference Example (XOR)

Tsetlin Machine: Training and Feedback

TM: Natural Explainability (example)

• Task¹:

Determining whether a patient is allergic to drugs or not based on EHRs

Dataset:

20000 clinical notes belonging to patients who were admitted to the hospital for orthopedic surgical procedures performed between January 1, 2014 and December 31, 2015. Based on the annotated allergy information, each of the patient cases was manually assigned either the category Allergy or the category No Allergy.

• TM:

• Features: 38 876

- Clauses per class: 500
- \circ TA states: 100
- \circ s-value: 3.0
- Voting margin, T: 25
- Epochs: 2

• Accuracy: 79.1%

• Output (Proposition logic clauses)

"Ventoline" and "performance ability" AND "work pressure" AND "triggered by effort" AND "grass'

Clauses

"urticaria"

"Penicillin allergy"

"Cortisone" AND

"subcutaneous" AND

"antibodies" AND "allergic" AND "circulatory"

"grass" AND "asthmatic" AND "short of breath" AND "itchy skin" AND "symptom picture" AND "Cetirizin" AND "hyperventilating" AND

Tsetlin Machine: Hyperparameters

DNN vs TM

Architectural		Hyperparameter optimization models
 Number of hidden layers 		
 Number of neurons in each layer Drop-outs layers Neuron's activation function 	\circ Number of clauses per class, C	$\uparrow C \Rightarrow \uparrow Accuracy$
 	 Number of TA states, 2N=2ⁿ 	<i>n</i> =68 (good enough)
Algorithmic		
 Optimisation algorithm Learning rate Loss function Regularization Model Major issue optimization Model Major issue optimization 	 Voting Margin, <i>T</i> Probability of reward/penalty, <i>s</i> 	$T(C) \approx \sqrt{\frac{C}{2}} \begin{array}{l} \text{Jagiellonian compromise for} \\ \text{qualified majority in the Penrose's} \\ \text{square root voting system} \end{array}$ $s(C) = k1 \cdot \ln(k2 \cdot C) < T(C) \\ \sim \text{Relationship between the crowd density} \\ \text{and its velocity (crowd dynamics)} \end{array}$
 Data an, val, test) Nun of training epochs Batch size 	 Number of training epochs, <i>E</i> 	$ ^{\uparrow E \Rightarrow \uparrow Accuracy,} $ no overfitting

Tsetlin Machine: Demo

1 0 n n OD 0 0 0 2 Handwritten Digits Recognition 3 < < (MNIST dataset) < <</pre> 5555 5 5 Б .5 55 5 5 .5 55 G 0

Clauses voting FOR the certain class:

Clauses voting AGAINST the certain class:

Learned digit patterns

Epoch: 0

TM Dependability: TAs natural fault mitigation

2-input XOR example

X ₀	X ₁	Υ	Υ'
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

TA's **stuck-at fault** mitigation implementation

Fault in TA1: stuck-at 1 at bit 0

Mitigating faults by natural redundancy

More clauses allow for higher accuracy (with even fewer no of learning steps)

More TA states allow for more accuracy (with higher no of learning steps)

6 8 10 12 No of states ample Yakovlev et al.: IOLTS2020; IBM Neuroscience 2021

Summary

- Tsetlin Machine (TM) is a new logic-based machine learning algorithm
- TM originates from the study of animals' ability to learn and simulates collective behaviour of learning automata
- TM provides a higher level of intelligence abstraction compared to ANN

 an ensemble of Tsetlin automata ('rat brains'), each making a discrete decision
- TM uses stochastic reinforcement to update learning automata states; its convergence and reproducibility has been proven mathematically
- TM has only 4 hyperparameters to turn which optimum can be found using explainable mathematical models
- TMs provides competitive accuracy and supports natural explainability
- TM can be natively converted to computer hardware with great productivity and energy-efficiency

13th International Conference Dependable Systems, Services and Technologies Greece, Athens, October 13-15, 2023

Thank you for your attention

Prof Alex Yakovlev µSystems

