New Electronic Design principles inspired by bio systems.
Panel discussion

Alex Yakovlev
Microsystems Group, EEE School
Newcastle University

Energy drives logic

The more you get
The more you give!
My Background

• 35 years in designing and automating the design of self-timed (aka asynchronous) systems, characterised by:
 • inherent concurrency,
 • amenable to token-based computing paradigms,
 • event-driven and causality-based processing,
 • parametric variation resilience,
 • close-loop timing error avoidance and correction,
 • power-proportionality,
 • digital and mixed-signal interfaces
My bio-inspired “experiments”

- energy-modulated and power-adaptive computing,
- significance-driven approximate computing,
- real-power (cf. real-time!) computing,
- power layering in systems architecting,
- computing with survival instincts,
- computing with central and peripheral powering and timing,
- exploiting bustiness and regularity of processing
Traditional vs energy-modulated view

- **Traditional System**
 - Power supply
 - Clock generator
 - Computational electronics
 - Activity levels determine power levels

- **Energy-Modulated System**
 - Power supply
 - Computational electronics
 - Power determines activity
 - Seamless transitions

- Diagrams illustrate the comparison between traditional and energy-modulated systems, highlighting differences in power management and activity levels.
Power-modulated multi-layer system

- Multiple layers of the system design can turn on at different power levels (analogies with living organisms’ nervous systems or underwater life, layers of different cost labour in resilient economies)
- As power goes higher new layers turn on, while the lower layers ("back up") remain active
- The more active layers the system has the more power resourceful it is
Q1: Learning lessons from Biology for EDA

a. Stochastic behavioural modelling -> Using macro-state approach as opposed to micro-state (controlled fidelity); micro- and microscopes
b. AMS verification -> Dynamic/adaptive rate and variable significance metrics (by the way, what is bio-equivalent of verification!?)
c. Circuit resilience to PV -> Self-timed (delay-insensitive) circuits
d. FB-based error correction -> Variable granularity error representation
e. Digital and analog in the few electron limit -> Noise-based computing (exploration of choices)
f. Parallelised computation -> Emulator approach using partially ordered event-driven computing on many-core fabrics
g. Evolutionary algorithms -> Apply evolution at the right abstraction level with a distinct functional qualities (e.g. IP for ultra low power)
Q2: Lessons from Bio

• Transfer to highly functional, space-limited, D&A systems with extremely low energy consumption
 • We need to switch from performance-driven (constraint) energy-efficient (cost) paradigm to energy-driven and space-limited (constraint) performance-optimised (cost) system design
 • Energy/power-proportional performance is a key; hence computing control should be from power source and allocation control
 • “Computation” should be quantified in Problem Solutions per Joule or Decisions per Joule

• Build a hybrid computer utilising interface between bio layer and electronic layer
 • These layers must be concurrent and cooperative, each with its specific role, not one subordinate (like function call) of the other
 • Analogy to multi-layered (e.g. reptilian, mammalian, neo-cortex) brain - bio responsible for sensing, recognition (instincts) activity and electronic layer for numerical, analytic and reasoning activity

• Killer applications:
 • Robotics, autonomous vehicles, remote space
 • Radiation and chemical sensors, smell sensors, psycho-sensors
 • Domains: medical, safety, security, entertainment
Q3. New tools for designing bio and bio-inspired systems

• New simulators:
 • Emulators (with touch and feel effect)
 • Play-in/play-out simulators
 • Behaviour miners
 • “Micro- and macroscopes” and accelerators

• New solvers (not hard SAT-solvers) – e.g. for verification:
 • Trend determinants
 • Approximators, Guessers

• New optimisation engines
 • “Heuristicators” (learners of simple rules from experience)
 • Decision-making Fabrics

• New test generation
 • Varying aggressiveness and Devil-advocate-based testing
 • Behaviour and structure (test-time) learning tests
Q4: Analogy between chip aging and degradation and cell aging and degradation suggest solutions to the IC lifetime variability

• When cells degrade (stress, aging) they process energy into actions more slowly, i.e. their energy-utilisation in terms of the speed of burning calories degrades.

• This is basically Age-aware aspect of energy-driven real-time

• Interesting question: Does the total or time and space profiled switching activity wear the cells?

• We need to study the mechanisms of the rate of joule-burning in aging chips; they should be related to the Vthreshold degradation etc.

• What are wear mechanisms in circuits related to their functionality profiles and behavioural patterns?
Q5: Relationship between circuit-level and system architecture

• How coupled are circuit-level approaches to overall system architecture?
 • They are sometimes strongly coupled: examples include use of asynchronous circuit designs in the architectures with variable timing-bands, decentralised control (GALS) and arbitration; wake-ups and event-driven

• It appears that for AMS systems with growing digital aspects (for mode switching, reconfiguration, monitoring and calibration) asynchronous logic design is particularly good, for example in asynchronous DC-DC converters (lower response time, smaller ripple, smaller inductors size, higher power efficiency)
Q6: Vision for bio inspired and hybrid cell-electronic

• 5/10 year vision:
 • Bio-inspired: “Compute where energy flows” will be commonplace; massively parallel computers (with a heterogeneous processing elements and event-based processing)
 • Hybrid: Bio-sensors and bio-energy generators

• 20 year vision:
 • Bio-inspired: From energy-driven to survival-driven:
 • For individual systems – design time and run-time
 • For systems as a kind, i.e. IP’s “DNA” banks
 • For design methodologies, i.e. Know-how’s “DNA” banks
 • Hybrid: e.g. Robots with massive bio-sensory abilities; Detectors of radiation, smell, psycho
 • Super-futuristic: detectors of extra-terrestrial communications!
Finally, the biggest challenge is ...

• For semiconductor systems, it is how to achieve **massive informational connectivity** of parts at all levels of hierarchy or spatial layers of powering and timing?

• I hypothesize it can only **be addressed** in hybrid cell-microelectronic systems.

• **Information (and hence, data processing) flows should be commensurate to energy flows**, only then we will be close to thermodynamic limits.