1989 International Conference on Parallel Processing

ANALYS ING SEMANTICS OF CONCURRENT HARDWARE SPEC[FICATIONS

L.Ya, Bosenbium and A,V. Yakovlev
Computing Science Department

Leningrad Electrical Engineering

fnstitute

Prof. Popov Street 5, Leningrad 197022 USSR

Abstract -- Of concern here a characteristic
issue of concurrent hardware specifications: their
behavioural correctness iz manifested by the comp-
liance between the global specification of the
arder of actions in a system and the local opera-
tionat cliches of composite modules on which these
actions are performed, with no particular regard
for any timing constraints such as clock rates,
Weak and strong forms of compliance are elicited
with greater emphasis on a stronger form, called
coherence, A relation-based framework for the
semantic snalysis of specifications defined In a
high-level parallel program notation is outlined.
It is shown by examples that the rapid prototyping
of semantic analysis functions can be achieved
through using a Preiog programming environment,

1. Introduction

Paraliel programming techniques are becoming
widely used in the design of the present~day VLS/
hardware whose internal behaviour is increasingly
concurrent - circuit subcomponents operate in a
compiiant and self-timed manner, Using such forma!
models as Petri nets {1}, CSP [2], CCS [3], path
expressions [L], trace structures and their
program notation {[S], temporal logic [6] etc. pro-
vides more or less effective media for proving
various properties of concurrent behaviour, e.q.,
liveness, boundedness, delay-insensitivity, data-
independence, composability with respect to a
given class to name but a few,

Classifying the description languages and
described processes, or circufts, according to
some structural or behavioural attributes helps us
te arrive at such classes of models that are power-
ful enocugh in their descriptive capacity and, at
the same time, practically usable from the algo-
rithmic viewpoint, It is also significant to
create mechanical inference tools using such axlo-
matic rules that define the concurrent behaviour
semantics. This is the subject of top intarest
elsewhere [7].

In this paper we use a rather conventional
syntax for specifying concurrent processes in the
self-timed logic. Processes are defined on a set
of atomic actions related with the changes of dis~
crete variable values and with checking of these
values.,

The high-fevel programming notatlon is very
suitable for both realising the concept of silicen
compilation and generally for developing an inter-
active high-level design environment.

The circuit compilation always Iincorporates
lexical, syntactic and semantic analyses as well
as the object code generation in the form of a
sequence of procedures buflding the circuit layout
which depends upon a particular CAD environment
ang given VLS| technology.

We do not refer here to the code generation
aspects, but rather pay our major attention to
the probiem of analysing the semantic correctness
of the self-timed logic behaviour specifications.

First, we present a notion of the general
form of correctness as a compliance between the
global behavioural semantics and local operatio-
nal cliches of self-timed components (e.g,, dis-
crete contrel variables) that are subjected to
same or other operations by corresponding atomic
actions orderred In the global specification.

We then illustrate this notion with an exampie of
checking the general semantic correctness for a
simple system in which an asynchronous register
is exposed to the read and write operztions by

a concurrent schedule,

Second, we formulate a motivation for &
relation=based view upon self-timed hardware
behaviour as this is the most adequate form for
defining the correctness of a system where events
are ordered In time by the causal relationships
rather than by some ciock mechanism [8]. The
notion of correctness {s reduced to such more
specific characteristics as coherence and sign-
compliance.

Third, we show how the relation-based seman-
tics can be extracted frem a high-level program-
ming notation. |t uses such relational attributes
as ''concurrent” {con), “alternative' (ait) and
sequentiai'' (seq), which are associated with
major control flow constructs from a subset of
the context-free grammar.

The Important issue about our approach to the
semantic analysis Is that [t is syntax-oriented
because the relations between atomic actions are
computed on a parsing tree, which is presumed to
be after the syntax analysis step.

Fourth, we discuss some aspects of the reia-
tional semantics verification with respect to the
coherence property. This property is related to
the requirement about conflict-free actions on
the discrete variables which may represent self-
timed components of varicus types, from simple
binary control variables to status registers and
state machines.

We end the paper with T1lustrating the suita-
bility of Prelog for the relational semantics
extraction and checking. Prolog has been effecti-
vely used for the construction of a prototype
software that realises lexical, syntax and seman-
tic analyses for hardware specifications made in
the Ossip language [9]. These steps of the silicon
compiiation process have been implemented in our
Prolog programming environment for a fairly short
time of a M.Sc, level project.

An example of practical application of the
relation-based approach has been chosen in proving
the partial correctness of the protocof specifica-
tion of the |EEE-B96,1 Futurebus standard [10].

Ii1-211

Supplied by the British Library - "The world's knowledge" www.bl.uk

1989 International Conference on Parallel Processing

in the bus acquisition logic specification, some
flaws relating to the coherence viclation have
been found and later corrected in the final draft.

2, Compliance as a general form of
behavioural correctness

We presume that a seif-timed system is a com-
position of a set of self-timed objects. Each
object is of a particular type, =.g., register,
buffer, state-machine, variable, wire, void slignal
etc. We restrict ourselves with a finite number of
object types {this restriction is however not cri-
tical) and thereby with a finite number of the
object's intrinsic operational cliches. The opera-
tionpal cliche of every nesw type of object is
defined at the time of incorporating a new compo-
nent definition into the cdesign environment.

The behaviour of the self~timed system can be
defined in terms of a high-level programming nota-
tion whose lowest operational level may be the
so~called "atomic actions' level, From both syntac-
‘tic and semantlc viewpoints atomic actions are
assumed to be the elementary operations - such as
assignments, events, checks =~ that are locally
permissible and can be performed on the objects of
the above mentioned types., For example, the binary
control variable x , having the type YBit", can
be subjected to actions +x (transition from 0 to
1) and -x (transition from 1 to 0). Due to the
seif-timed nature of the behaviour the operational
order between atomic actions must be defined by
means of causal relationships without any notlon
of a common ¢lock, which usually determines the
starting point for every action in synchronous
systems.

By the operaticnal cliche of a particular
type we mean the semantics of its local behaviour
defined on its interface with the outside system
with respect to those actions that can be performed
on the given object., For example, for the binary
control variable the local operational cliche is
a totally sequential ordering of events +x -x +X
-X ... 5 which can be floored to, say, a regular
expression in the form;

{ +x; =% 3}
where ;' and '"#" denote the concatenation and
iteration operators respectively.

We can formulate our notion of operational
correctness of & global specification of the
system's behaviour through introducing the concept
of compliance.

By the compliance we mean that if we identify
all actions of the global behavioural specifica-
tion with corresponding actions of each local ope-
rational cliche of the system object (in other
words, if we Introduce each component object inte
the system structure), then we obtain the composi-
tion which should meet certain correctness crite-
ria. For exampie, the weak form of compliance,
similar to a weak form of liveness or termination,
may require only the existence of at least one,
either infinite, as in the case of liveness, or
leading from a given initial state to some goal
state, in the case of termination, sequence which
satisfies the "accomplished"-like goal of the
global behaviour.

0n the other hand, the stronger form of
compliance may demand that the global operational

semantics extracted from the specification is
totally comptiant with the jocal compenent cliches
such that the projection of the global behaviour
on the set of actions performed on each (or some)
component(s) s identical to the local cliche(s)
of that (those) components.

The above notlon of operational compliance
between the global specification and each local
component cliche can be illustrated by the follo-
wing example inspired by [11].

Let a system consist of a register and the envi-
ronment which may include a number of concurrent
processes organised in a global schedule of
actions concerned with reading and writing the
values from and to the reglster,

The register can store any value from a
finite set X(Reg) = {x1, Xop eeey X J o The

allowed actions on such a type belong to the set

Act{Reg) =L?j{w.xl, r.x;} where w.x, is the
1<i<n .

Thwrite value X, into the register", and reX; is

the "read value x, from the register' operatlons.

We assume the 'register’ type to have the
following operational cilche, defined in terms of
a regular expression

(w.x1;(r.x1)*! w.xz;(r.xz)n!...lw.xn;(r.xn)e)*
where | stands for the semantics of aiternative.
This cliche implies that the register value may
be read as many times as needed, zero times inclu-
sive, only if this value has been previcusly
written into the register, but not overwritien
with some other value.

Let us choose two possible global scheduies
which are highly concurrent. These schedules can
be defined by regular expressions extended with
the *,!' operator, having the semantics of concur-
rent execution of its operands:

(5ch1) w.x1;{w.xz,w.xB,r.xz,(r.xs;w.xu));r.x3

(5ch2) w.x1;(w.xz,w.xyr.xz,r.x};r.x3

In order to check whether these two schedu-
les are compliant with the register cliche we
have to analyse the conditions for the strong and
weak compliances, |t is easily noticed that the
strong compliance is not held because the global
schedule does not have the mutua! exciusion mecha-
nism which could guarantee that only one value is
attempted to be read or written at a time, On the
other hand, the register must be provided with
such a mechanism as it does not allow any concur-
rent read and write operations -~ it is a totally
sequential object.

The weak complliance can be checked using
some of the existing techniques, For example, we
may refer to the trace theory [4}, In which an
attractive notion of weaving between two trace
structures may be effectively exploited for such
a check.,

Let §1, 52 and R demote processes (prefix-
closed structures of traces) generated by Sehl
and Sch? and the register's cliche, respectively,
We build S} wR and S$2 wR where w stands
for the weave operator which is defined as follows,

If X =< aX, tX » is a process where aX
is a finite alphabet of events and ,tX is a pre-
fix-closed set of traces, X € (aXj , then the
weave of two processes X and Y is the process

III-212

Supplied by the British Library - "The world's knowledge" www.bl.uk

1989 International Conference on Parallel Processing

defined by
XwY =< aX{jay, {t[té(aXUaY) st} axe X
Azharey)
where t A stands for the projection of trace t
on alphabet A,
In our example, we have
51 WwhR=c<« aS1,{E}> and

52 w R =< as2,{g,w, Xy TaXy WeX, X, WeXg

*

PO,

where £ is the empty trace? From this we may
deduce that the first schedule is non-compliant
and the second is weakly compliant to the register
specification since there exists at least one non-
empty trace in the trace set t(52 w R). This
trace accomplishes the whole required schedule,

From the above example with the register we
may notice that the weak compliance can be suffi-
cient as a form or degree of correctness only in
such cases when the local component behaviour is
powerful enough. In this example, the register
allows that concurrent reads and writes are sub-
mitted by the environment, and it is capable for
performing the mutual exclusion between them.
However, in a different situation, say, in the
case of defining a global specification of a group
of control variables, we should demand stronger
forms of compliance, one of which is further
examined using the relation-based approach.

3. Motivation of relational semantics

The main characteristic of our design objects,
self-timed discrete structures, is that they are
composed of finite state components, or variables,
whose states can be changed by causal dependencies
defined by the specification of their behaviour,

Let a self-timed control logic circuit be
represented as an interconnection of binary vari-
ables of the set Z ={z,, 2oy weey 2 } with
set of allowed variable state changesn bz = Lj

{+zl, -z } The behaviour of the cireult can' be
specified' by labelled Petri net shown in Fig.1, in
which the transitions are associated with the
changes in DZ by a corresponding partial function,
called the labelling function. This Petri net
generates the marking diagram shown in Fig.2,
which can be used for studying some properties
related to the order of transition firings.

The need for establishing the order relation-
ship between transitions follows from their seman-
tics. Such semantics, the variable state changes,
requires, first, that for every variabie all
changes of its state must be properly ordered with
respect to the initial marking of the Petri net,
In other words, there must be no reachable marking
in which any two or more transitions labelled with
the same varlable are enabled, Such a feature

- will be referred to as coherence. Coherence

guarantees that the specification is safe with
respect to its operational semantics. The concep-
tual metivation of this feature is such that none
of the pairs of parallel process paths may change
the value of the same variable. The absence of
coherence may however be interpreted in a diffe-
rent way for a group of parallel processes in
which a simultaneous change of some variable has
the ''rendez-vouz' semantics [2,4], but in this
case these concurrent changes must be labelled

ldentically. In some other cases the concurrency
between different changes of the same variable
may not be an anomaly when, for example, the com-
ponent corresponding te such a variabie has an
internal, built~in, facility which provides the
mutual exclusion, This is quite similar to the
idea of implementing critical regions in hardware
by using arbitration cireuits, In this text, we
accept the "if non-coherent then nen-safe' seman-
tic attitude, in much the same manner as from

the semi-modularity of an asynchronous circuit

we deduce that this circuit will not be suscepti~
ble to race conditions {12]. is also assumed
that for the representation of parallel activities
seeking for an action on the common object we
should have in explicit form the mechanism for
mutuat exclusion, for example, by introducing 2
special syntax construct "arblitrator,

Another important feature, necessary for the
self-timed specification to be correct, is the
sign-compliance, We say that the specification Is
sign-compliant with respect to z, if it is
coherent with respect to z, and the changes tz,
and =z, are ordered in such a way that between
any two changes of the form +z. {-z.) there must
be at least one change of the form -z, {+z,).
If the specification is sign~compliant with
respect to all variables, it is referred to as
sign~compliant specification.

For the given example we can easily see
that the Petri net specification is non-coherent
with respect to 2., and non-sign-compliant with
respect to z, and z,, This fact can be formal-
by establashed %f we lﬁtroduce the notlions of
sequential {seq) and concurrent {con) relations
on the set of Petri net transitlons. These rela-
tions can be defined by means of the marking
diagram, which contains all necessary Information
about possible transition firing sequences of the
net,

Two transitions t, and t, are said to be
in the seq-relation, deénoted ad t. seq t,, if in
all allowed firing sequences from the initial
marking t, precedes tj’ or tj precedes t;.

Two transitions t, and t, are said to be
in_the con-relation, denoted -as t,ocop t,, if
7 (ti 5eq tj) J

For the given Petri net, the triangular
table shown in Fig.3 defines the seq— and con=
relations on the set T = Treees Using
these entries one can easily check tze above pro=
perties of the specification.

This example shows how important for the
estabplishing of the introduced features is to be
able to compute the geg- and con~ relations in
the most effective way., The efficiency of finding
the solution depends on the class of described
processes, ln this example we have used a formal
technigue provided by labelled Petri nets and the
semantics of the marking diagram and firing seque-
nces. The latter is usually called the interlea-
ving semantics [13] of concurrency. in such a
semantic view, one sees two transitions t, and t,
cohcurrent if in the set of firing sequences on
can find both a seguence with t, preceding t, and
& sequence with t. preceding tgl The |nterle$V|ng
view Is proved 1o be equally powerful as the

I11-213

Supplied by the British Library - "The world's knowledge" www .bl.uk

&

3
o
g

3
il
ks
i
i

SRR

1989 International Conference on Parallel Processing

partial order semantics only for the class of the
so-called distributive processes [14]. [t is alse
true that the interleaving semantics is hot pre-
served under the splitting of atomic actions inte
subactions that may be & serious disadvantage in
some hlerarchical design disciplines [13].

In the following section we discuss the
semantic analysis procedure which does not require
constructing elther reachability graph {marking
diagram} or all possible atomic action sequerces.

4, Syntax and semantics of a behaviour

specification language

in this section we shal use only a small part

of the behavioural constructs of the Ossip hard-
ware specification notation [9], specially chosen
for our majer purposes of deajing with the relati-
onal semantics of behavioural specifications, This
semantics can be extracted from the program code
in terms of the seg, con and alt {alternative)
relations defined on the set of atomic actions,
These relations can be subsequently used In the
verification process whose major goal is to check
the properties associated with the correct repre~
sentation of self-timed circults,

A fragment of the high~level notation grammar
can be given by the following set of rules:

1) <behaviour> ::= BEHAVIOUR <composite opera=-
tor> END, -
2) <composite_operator> ::= BEGIN <sequence_of
operators> END
3} <sequence_of operators> ::= <operator>
{; <sequence_of_ operators>]
k) <operator> i:= <simple_operator> |
<composite operator>
5) <simple_operator>:i= <if_operztor> | <par_ope-
rator> | <assigmment>
6) <if_operator> ::= IF <predicate_on_ld> THEN
<operator> ELSE <operater> Fi
7) <par_operator> ii= PARBEG IN <sequence_of_com-
posite_operators> TAREND
8) <sequence_of_composite_operators> ::i=
<compos i te_operator> {;<sequence of_com-
posite operators)]
9) <assignment> :i= Id := <expression on_ld>

where |d stands for a lexical unit denoting a
variable identifier,

These rules may seem rather trivial because
they lack some other important constructis such as,
for example, loop or event handling ones. But for
the sake of ciarity we restrict ourselves to them
since the inclusion of, say, a LOOP ... POOL ope-
rator would demend the modification of operational
semantics which will be concerned with another,
different from the accepted, interpretation of
the sequence and alternative relatiaons.

With the three types of constructs, those
given by rules 2, b and 7, we associate the rela-
tional attributes defining the corresponding
relations between the lower level operators as
follows.

For the <composite operator> all subopera-
tors between BEGIN and END are in the sequence
retation, i.e., if BEGIN OP1; OP2; ... ; 0Pn ERD,
then OPi seq OPj where i #], 1< i,] <n.

For the operator of the PARBEGIN OPt1; OP2;
+ee} OPn PAREMD type all suboperators, which are
themselves composite operators, are pairwise in
the concurrent relation, i. e., 0Pi con OP] where
T # j, 1<i,ign.

For the conditicnal operator of the {F ¢ THEN
OP1 ELSE OP2 Fl| type, where { [s an atom corres-
ponding to the computation of @ predicate on ohe
or several identifiers, we have € seq OP1,

C seg OP2 and OP1 glt OP2 where alt denotes the

alternative relation between operators OP1 and 0PZ,

Note that all three relations introduced are
irreflexive, symmetric and non-transitive,

We should also agree that any assignment or
predicate will be called an atomic action, or sim-
ply an atom,

5, Anaiysis of relational semantics

The major goal of the first part of semantic
analysis process is to construct the seg, con and
21t relations between all atomic actions with
their subsequent use in proving the corr-cthess
properties. These relations can be extracted from
the parsing tree, the result of the syntax analy-
sys, which is forma]]y represented as a pair
< N, ancl » where N is a set of nodes represen-
ting the language {(grammatical) constracts and
ancl is a non-transitive, asymmetric and irrefle-
xive relation called the "the immediate {one-step)
ancestor-descendant'’ relation on the set N, i.e.
ancleN x N, It should be noted that the parsing
tree is used in a reduced form - the N set con-
tains only the nodes associated with operators
defined by the rules 2, 6 and 7,and with atoms.

For example, the fotlowing operator

IF A1 THEN A2 ELSE BEGIN A3;Ak END FI
where Al (i = 1,.4) are atoms has the reduced par-
sing tree shown in Fig.h. Non-terminai nodes nl
and n2 have the following relational attributes:

ni: seg [(n2,n3}, (n2,n4}], alt {n3,n4)
n2: seq (n5, n6)

Bearing in mind that the language constructs
are well-structured we can easily deduce that the
following "inheritance Axiom'' hoids.

Inheritance Axiom.

tet two nodes n. and n, be given such that
they have common immedlate aﬁcestcr n*, i e€ay
n® ancl n, and n* ancl n

If n. rel n, rei € Ri= {seq, con, ait}y , then
for ail the descéndants of n., i.e., for every
ntgAnc(n) = {n : n, ancn g where anc ls the
transitive and réflexive closure of E_,J: and for
all the descendants of n,, i.e., for every ni¢
Anc(nj), the relation “n! rel nj is true.

This axiom shows that the descendants inherit
the relation between their respective ancestors,
We consider here only such semantics which satisfy
the inheritance Axiom {appearing to be a peculiar
interpretation of Shakespeare's 'Montekki-Capule-
tti'" relationship),

it can be easily proved that this axiom is
true for structured programs since they preserve
the closedness of the relational semantics with
respect to the structurail decomposition or refine-
ment of eperators [13]. Furthermore, since for
every pair of immediate descendants n; and nj of

IT1I-214

Supplied by the British Library - "The world's knowledge" www .bi.uk

1989 International Conference on Parallel Processing

some node n’ the latter is attributed with one of
the three possible typas of rel € R (the local
completeness of operator semantics}, then it may
be asserted that for any pair of nodes in the re-
duced parsing tree belongs to exactly ohe of the
relations rel’ such that rei'eR' = RlJ{anc}{the
global compieteness of semantics}. The uniqueness
of the relation between any two nodes follows from
the iInheritance Axiom and from the fact that for
every node n* the elements in R , attributed to
n”, are pairwise not Tntersected,

Thus I we obtain as a result of the syntax
analysis the set N with the ancl reiation on it
where each non-terminal né N is associated with an
attribute (a list of relations rel€ R between
immediate descendants), then it is clear that the
relation between any two nodes n, and n, can be
fourd in the following way. First,we Jcheck if
these nodes are in the anc relation. This is
checked after we have found the nearest common
ancestor of a. and n., which is a quite well-known
probiem, having sevetal pessible algorithmic solu~
tions In literature. Let n* denote such an ances-
tor. Second, we check in which retation are the
immediate descendants of n®, which are at the same
time the ancestors of n, and n,, respectively,
Formalty the second step can bé expressed as
n, rel n, = n", Ry, nf o

i ®
({ni' rel n!) A(n* ancl ni} Aln ancl n';) h
{n; anc n,) A (nj ane nj)A rel € R,

The second part of the semantic analysis, the
verification process, involves the formulation of
a set of axioms defining those properties that the
extracted semantics of the specification should
possess. The problem of such & formulation is most
difficult because of possible lack of detail in
the correctness requirements, For the case of re-
lationa] semantics our main interest is concerned
with the structure of relations between the atomic
actions which .are defined on self-timed objects
(variables, registers, flags etc.) as well as the
asynchronous character of ordering of these
actions, Hence we must check whether our giobal
relational semantics is compliant with the local
semantics of these objects.

One of the simplest forms of coherence, with-
in the framework of this paper, would be expressed
by the axiom

v x € X !\Vai,aje Atom_on {xi) : "l(ai can aj)

where X is the set of modifiable variables, and
Atom on{x.) is the set of atoms involving variable
Ko Some,'more fine, forms of coherence may also
define relational configurations between atoms on
the same variables,depending on whether these
atoms are assignments or predicates, or wherther
they are guarded by mutual exclusion facilities
that are implicit, or even wether the variable is
involved in the right or the left hand side of the
assignment,or that variable is a wired~OR signal.

6. Impiementing semantic analysis within
a Prolog programming environment

It is quite suitable to use a Prolog program-
ming envirenment for constructing a prototype
software of hardware desgn tocis. Prolog is conve-

nient for writing ruies of lexical, syntax and
semantlc analyses in a compact and executable
form. The c¢orrrection of grammar rules as weli as
the modification of correctness criteria can be
done by local rewriting of corresponding axioms
of the Proleg vode. : :

We demonstrate here an example of a simple
technique how a system of Proiog axioms can be
written for the relations [ntroduced above.
Assume that the specification contains the follo-
wing fragment:

IF A1 THEN A® ELSE
PARBEGEN
BEGIN A3; ALk E£ND;
BEGIN AS5; A6 END
PAREND
Fi
in which Ai (1 = 1,.6) are atoms. As a result of
the syntax analysis step we obtain the following
list of elements of the relation ancl{nl,n2),
defining the parsing tree in the reduced form:
anct(1,2).
anc1(1,3}.
anc1{1,4).
anct{h,5).
ancl(4,6).
ancl(5,7).
anci{5,8).
anci(6,9}.
ancT(6,10).
where the integers in parentheses are assoclated
with the tree nodes as foilows:
T-1F ... FI, 2 - Al, 3 ~ A2, 4 - PARBEGIN ,..
PAREND, 5 - BEGIN ... END, 6 ~ A3, 7 - A4, 8 -
BEGIN ... END, 9 - A5, 10 - Ab,

The other result of the syntax analysis is
the information about the local semantics of ope-
rators, i.e., the relational attributes of the
tree nodes which s obtained in the form of the
following Prolog facts:

reli(2,3,seq),
rell(z,4,seq),
ret1(7,8,seq).
reli{9,10,seq).
rel1(5,6,con).
rel1{3,4,aft).

The flrst part of the semantic analysis is
concerned with computation of relations between
any two atomic actions,which can be expressed in
the following simplified form:

anc{N,N).
anc(N1,N2) :- anc1{N,N2}, anc{Ni,N}.
rel (N1,N2,anc}:- anc{NT,N2}, NI\=N2,I,
rel{N1,N2,anc) = anc(N2,N1), Ni\=N2,!,
rel {(N1,N2,R):= anc(N1i,N1),
anc(N12,N2),
relT{N11,N12,R),
where variables N,N1, N2, Nii, N12 stand for the
nodes in the parsing tree, and variable R denotes
the title of the relation. In fact, this fragmant
is capable to establish the relation between any
two nodes in the tree, not only between atom ones.
Provided that this code is loaded and compiled
we may state a goal for firding a relation, say,
between node 2 znd node 6 in the following form

7- rel(2,6,R), print{R}.

The program will produce the result = seq.

Since the analysis of the relational seman-
tics of a self-timed circuit specification

1i1-215

Supplied by the British Library - "The world's knowledge" www.bl.uk

1989 International Conference on Parallel Processing

defined on a set of discrete value cobjects is sub-
stantially based on the computation of the seq
and gon relations between atoms we should take
into account a special characteristic of nodes,
the fact of their atomicity. For the sake of cla-
rity, we do not distinguish here the types of
atoms, according to what has been sald in the
final paragraph of Section 5, and only define the
atomic(N,Id_list) fact where apart from the atom
number N we also have a list of identifiers
involved both In the left and in the right hand
sides of the atom as denoted by id_list.
Assume,for exampie, that atom Al (node2) is a
predicate, say, X=Y+Z, and atom AZ (node3) is an
assignment, say, X:=0. Then their definition in
the program database can be presented as facts

atemic(2, [x,y,zl).

atomic(3, [x]).

Here is the fragment which can check the
fact of non-coherence with respect to a certain
variable identified by id:

noncoherence (1d) := concurrent (N1, N2,1d},

write(N1), tab(3),
write(N2), tabt3),
write{ld), nl, fail,
concurrent{N1,N2,Id):~ atomary(N1,1d),
atomary{N2,1d),
N1\ =N2,
parallel (N1,N2}.
atomary (N, id) :~ atomic{K,!d_list),
member{1d, td list).

member (X, [X1_ 1). -

member (X, [_1¥]):- memeber(X,Y},

paraltel (N1,M2):= rel(N1,N2,R}, !, Recon.

parallel{Ni ,N2}:~ rel{N2,N1,R)}, I, R™con:

The collection of simple fragments of Prolog
code presented here is of course just a hint on
how we can test in & most rapid way those ideas
discussed in the previous section. During the
construction of a more or less versatile Prolog
prototype for the semantic analyser we have to
choose an adequate structural organisation of
program modules and data files. Fig.5 shows &
variant of such an corganisation in which the
fites F1 through F8 contain the follewing data:

F1 - the source code in the behaviour
specification language,

F2 - the list of lexical unities {internal
representation code},

F3 - the list of operator nodes and the anci
relation {the reduced parsing tree),

Fi4 - the list of local operator relations
rell (relational attributes of non-ter-
minal operators),

F5 - the list of atoms with identifier lists,

F6 - the list of nodes for which a complete
set of relations is built,

£7 - the list of global relations between all
operator nodes,

F8 - the result of verification, for example,
the list of atoms and corresponding
identifiers which do not satisfy the
coherence condition,

7. Practical application of the method

The above technique and the Prolog implemen-
tation of the semantic analyser for self-timed

logic specifications has been used in the checking
of the intermedlate draft of the BUS_ACQUISITION
LOGIC specification for the multiprocessor back-
plane standard [EEE-896.1 {Futurebus} [10,151.

We checked the coherence condition on the set of
discrete variables. An error had been discovered
in the specification of the PREEMPTION_AND ERROR_
CHECK operation, The atom which was a predicate
invelving variable $TATUS and the other atom
assigning a new value to STATUS were in the con
relation whiech might have been resulted in a
hazardous behaviour if implemented in that way.
The error had been cured by inserting an additio-
nal flag variable into the path where the assign-
ment took place. This flag is set to the true
value In the case of executing the assignment of
a new value to STATUS, The flag is then tested
after two parallel paths are joined, and if It has
been set to the true, the STATUS variable Is
assigned with a new value as required by the spe-
cification.

8. Conciusion

A reiation-based approach to the semantlc
analysis of concurrent loglc specifications pro-
vides rather suitable technigue for combining
the fine nature of a self-timed ordering of events
in a system with those formal tools of reasoning
about the correctness issues which are supported
by a Prolog programming environment. In this
paper we have only outlined in rather sketchy
terms the way of checking the stronger forms
of compliance between the global behavioural
descriptions of the system and the tocal operatio-
nal cliches of indlvidual components involved
in a globat behavior, The coherence property,
for example, demands that the global behaviour
should preserve the structure of relations given
on the set of atomic actions performed on a
particular object In accordance with the object’s
operational cliche, In our examples here we
required that all changes of values of a self-
timed variable must be totally ordered in a
sequence, thus not allowing the use of the same
variable in concurrent actlons, Future research
in this field Is quited open-doored, particularly,
in creating the structure of varlous kinds of
relational representations of coherence and
weaker compliance forms for various types of
asynchronous logic.

It {5 very important to distinguish between
appropriate requirements of complying with
these individual operational cliches in terms
of the relational semantics which may further
result in a comprehensive cliche library.

Another important Issue is related to
creating the flexible environment where various
forms of compliance can be easiliy generated
at the user-demand style, depending on the
level- of user's knowledge of the specified
hehaviour.

it is also desirable that the approach, and
the techniques it implies have been applied to
and tested on some more examples of real hardware
design practice.

1i1-216

Supplied by the British Library - "The world's knowledge" www .bl.uk

1989 International Conference on Paralie]l Processing

(1]

(2]

[4]

{5]

{6]

{71

[8]

fs]

{10]

{11}

(123

[13]

[14]

(151

References

J.L. Peterson, "Petri Net Theory and the
Modelling of Systems,'Prentice-Hall, New
York, NY, (1981),

C.A.R. Hoare, Communicating Sequential
Processes, Prentice-Hall, New York, NY,

(1985).

R. Milher, A Calculus of Communicating ‘
Systems, Lecture Notes in fomputer Science,
Vol. 92, Springer-Verlag, Bertin, (1980).

J.L.A. van de Snepscheut, Trace Theory and
VLS| Design, Lecture Notes in Computer
Science, Vol. 280, Springer-Verlag, Berlin,
(1985).

T.5. Anantharaman, £.M, Ciarke, M.J. Foster,
and 8. Mishra, "Compiling Path Expressions
into VLSI Circuits,” Distributed Computing
{1988), Vol.t, pp. 150-166.

B. Mishra, and E.M. Clarke, "Hierarchical
Verification of Asynchronous Circuits

Using Temporal Logic," Theoretical Computer
Sclence (1985}, Vol, 3B, pp. 269-29i.

Proceedings of the Seminar on Concurrency,
Carnegie-Me1lon University, Pittsburgh, PA,
July 1985, Lecture Notes in Computer
Science, Vol. 197, Springer~Verlag, Berlin,
{1985).

AV, Yakovlev, '"Designing Self-Timed
Systems,' VLS| Systems Design (September,
1965}, pp. 70-90.

£, Tarasova, The Ossip - a Language for
Specifying Self-Timed Digital Systems,
M.5¢c., Thesis, Computing Science Department,
feningrad Electrical Engineering institute,
Leningrad, (February, 1987), In Russian,

IEEE Standard Backplane Bus Specification
for Multiprocessor Architectures: Futurebus,
ANS|/IEEE Std 896.1 ~ 1987.

J. Misra, "Axioms for Memory Access in
Asynchronous Hardware Systems,'' Lecture
Notes in Computer Science , Vol, 197,
Springer-Verlag, Berlin, (1985).

V.l. Varshavsky et al., Self-Timed Control
of Concurrent Processes, Kluwer Academic
Publishers, Dordrecht, (1989).

L. Castellano, G. de Michelis, and L.Pomelle,
"Concurrency Versus interleaving: an Instruc-
tive Example,' Bulletin of the EATCS,

(1987), Vvol. 31, pp, 12~15,

{. Rosenblum, A. Yakovlev, and V.Yakoviev,
"A Look at Concurrency Semantics through
Lattice Glasses,' to appear in Bulletin of
the EATCS.

|EEE B96.1 Futurebus Working Group Mailing,
{EEE Computer Society, (May-June 19B85).

111-217

Figure 1.

ITtustrations

t
7(-7-")

Specification of a seif-timed
circuit behaviour by labelled
Petri net

Figure 2.

Marking diagram of Petri net
shown in Fig.1

Supplied by the British Library - "The world's knowledge” wwyv.bl.uk

1989 International Conference on Parallel Processing

t7 t6 ts t“ t t2 t1
(-2} (#z3) (=2;) (=z}) (-2z3) {+25) (+2})
t1(+z1) seq seq seq sed seq COA -
t2(+22) con seq con seq con -
t3(~23) seq con seq cob -
th[-zh) seq segq seg -
tS(-Z1) seq con -
t6(+z3) con -
ty(“zh) -
Figure 3. Triangular table defining
the seq and con relations
nt (<if_operator>}
nZz (AZ) n3 (A2) nk (<composite_

operator>)

5 (A3) nb (AL}

Figure 4. Example of specification

parsing tree

111-218

@ |

Lexical analyser

| Syntax analyser |
@ @? 6;9 ©-

Semantic analyser
(Part 1 ~ Semantics
extraction}

Semantic analyser
(Part 2 - Semantics
verification)

Figure 5. Example of organisation
of Prolog prototype
impiementation

Supplied by the British Library - "The world's knowledge" www.bl.uk

