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ABSTRACT

The paper aims at the following goals:
1) to make a bridge between the concepts of Petri
Nets theory and the works concerned with self=
timed systems (speed-independent circuits);
2) to draw the designers' attention to a signal
graph model which is an interpreted marked graph
by demonstrating its advantages in producing
concise specifications of asynchromous system
behaviour and being an alternative tool to timing
diagrams, which are traditionally used for
interface protocol specification;j 3) to generalize
the signal graph model to allow finite time delay
values to be taken into account, and to suggest
a new approach to the analysis of the temporal
behaviour of dynamic systems aiming at reducing
the complexity of analysis procedure.

1. Introduction

The Petri Nets theory /1-4/ is popular
because it is a suitable and effective tool
oriented to modelling, analysis and synthesis of
parallel processes of different types. Most
researchers are satisfied with such advantages of
Petri Nets as: a) an ability to reflect asynchrony,
parallelism and non-determinacy of processes and
the dynamics of their operation; b) a simplicity
of syntax, a comprehensibility and a transparency
of the model's graphical appearance, and at the
same time high functionability due to the large
choice of the hierarchically and linguistically
structured functional and syntax subclasses of the
general formalism. Today one may readily confirm
that the theory of Petri Nets has essentially
become a quite independent scientific subject.
Moreover its application areas are constantly
expanding. The development of Petri Nets theory
is motivated by the theory's internal needs bul
the main drive is made through the demands of
system design.

It should be noted that in many aspects the
Petri Nets theory is tightly linked with automata
theory and is essentially a derivative of the
latter. However, since it is developing in a
relatively sutonomous manner, the Petri Nets
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theory is gradually moving away from the classic
automata theory, and it appears to be an
appropriate moment to build bridges between Petri
Nets and one of the most interesting parts of
automata theory, which was for the first time
studied in pioneer works by D.E. Muller /5,6/.
Generally the latter approach follows the same
demands as we require from the Petri Nets
formalism, namely: to provide a tool for the
description of dynamic behaviour of discrete
systems. Although Muller's theory appeared almost
at the same time as Petri nets i.e. more than
twenty years ago, the Muller model for some
extrinsic reasons had not actually been touched
until well into the middle of the '70s. It was
thought that the Muller model might be used only
within the frames of low-level hardware design

or at least of analysis and synthesis of a rather
small class of devices — so called speed-
independent circuits. As a matter of fact the
Muller transition diagrams end the research into
the lattice-theoretical properties of asynchronous
eircuits were obviously first attempts towards
describing and enalysing the parallel asynchronous
processes. In fact the behaviour of a speed-
independent circuit could represent a process
characterized by such general properties as
determinacy, persistancy, confluency, liveness,
safety etc.

Petri Nets describe process behaviour on the
basis of the 'condition-event' approach in
contrast to the Muller model which is closer to
the 'state-transition' concept. Attempts to
generalize the latter one were a transition system
by R. Keller /8/ and an asynchromous process by
V. Varshavsky et al /9/. It is worth noting that
the renaissance of Muller model is also necessary
because it is capable to solve onme of the most
urgent state-of-art problems of VLSI design: the
self-timing problem (see MIT Workshop Report on
this topic /10/).

The results under discussion here are based
on a signal graph. They essentially utilize both
the approaches mentioned. From the one side
signal graphs are interpreted marked graphs
(sublcass of Petri Nets), from the other side they
are more compact specification toeol for transition
diagrams (Muller diagrams). It is established




that the important subclass of speed-independent
circuits, so called distributive circuits /6,7/
can be described by signal graphs.

The analysis and sythesis of discrete devices
implementing data transfer protocols is often
carried out by using informal description languages
like timing or voltage charts. These diagrams
attract the designers attention by their 'customary
clearness' which however is not so evident when
attempts are undertaken to discover some of the
qualitative properties of protocols. The
organization of interface on the 'request-—
acknowledge' principle corresponds through some
interpretation both to particular subclasses of
Petri Nets and to semi-modular Muller diagrams.
These diagrams have the necessary self-timing
features, Signal graphs are therefore such a
formal tool for the analysing and specifying of
self-timed protocols.

Finally, we propose the gemeralisation of
signal graphs for the case of the time introduction:
timed signal graphs. In this case the analysis of
the time behaviour is reduced to the search in
transition diagram for particular states which,
although violate some self-timing properties, may
not lead to the bad behaviour if the time
constraints of its transitions are satisfied. This
analysis technique is the main distinctive feature
of approach proposed in comparison to known cnes.

2. Petri Nets and Marked Graphs: the main
definitions

A Petri Net (PN) is a bipartite oriented
graph PN={P,T,E,u°), vhere P is a finite set of
places, T is a finite set of transitions, E is a
finite set of arcs (EE (PxT) U(TxP)),p° is an
initial marking (p® : P-—> 2, where 2 = {0,1,2,..],
i.e. is a set of non-negative integers) /2/.

The sets of input and output places of the
given transition ;€T are denoted by I(tj) and
0(t;) respectively. Similarly 0(pi) and I(pi) are
denotations of sets of transitions which are
respectively output and input ones for the given
place pi€P. Marking is usually visualized by
tokens in places.

The firing of some enabled transition (local
action) generally causes the substitution of Petri
Net marking (global state). Thus the dynamics of
PN behaviour can adequately be described by
{uo,*,M), vhere u° is an initial marking, *is a
direct marking sequence relation and M is a set of
markings reachable from u°, The depiction of this
triple is an oriented g:m?h, the vertices of which
are labelled by vectors pl = (;:.13 ,ua i B 8

where n = | Pl. Such a graph is called a marking
disgram. If we label arcs of this diagram by the
denotations of corresponding firing transitions
then for this marking diagram and, therefore, for
the Petri Net we can build another diagram which
is called a cumulative di (of Petri Net
trensition firings). Initial marking is mapped on
vector a®, consisting of all zeros. The dimension
of vector is equal to the cardinality |T | of
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set T. For a transition u° ‘k u1 we build a vector
al which differs from a° only by the presence of
one in the kth component position which means that
transition ty has fired for the first time. When
moving along the sequence of the making diagram it
is quite straightforward to map (one—to-many) on
vectors a%, al,...,a8%, The component values on
each vector are equal to the numbers of
corresponding transition firings which occur on
this sequence. Thus it is clear that the
cumulative diagram represents the history of Petri
Net operation. More rigorously it can be defined
as a set of non-negative integer vectors and a
partial order relation (a = b if a; = by for any i)
So the cumulative diagram is a Hasse diagram.

0f further concern are the following
definitions:

- safe, if for any reachable marking none of the
places can store more than one token, i.e. for
any pi €p pg = 1;

ersistent, if for any reachable marking p
providing enabled transition tj € T all the
markings which are reachable from | either hold
this transition enabled or imply it is fired on
the sequence from u(or a once enabled transition
can not be disabled by the firing of other
transitions);

a marked graph, if each place pi has not more
than one input and one output transition, i.e.
it | 1(pi) = 1, 0(pi) =1.

A marked graph can also be defined as a
monochromatic oriented graph MG = {V,E, 40>, where
V is a finite set of vertices (analogous to
transitions of the Petri Net), E is a finite set of
arcs, E=VxV (analogous to the places together with
one input arc and ome output arc of the Petri Net).
Some fundamental results in marked graphs are in

PARFS

In a similar way as for Petri Nets a vertex
v €V is enabled if each of its input arcs has at
least one token. The firing rule for enabled
vertices is straightforward. If a vertex fires
then one token is removed from each of its input
arcs and one token is added to each of its output
arcs (indivisible operation). The cycle in graph
having exactly one token is called a synchrocyele.

Following statements (formal proof is omitted
here) concerning the classification of Petri Nets
in terms of the lattice theory /12/ will further
be basic for the establishing relationship between
transition diagrams and signal graphs.

Statements

1. The cumulative diagram of a persistent Petri
Net is a semimodular lattice with the zero
element. 1

2. The cumulative diagram of a persistent and safe
Petri Net is a distributive lattice with the
zero element.
The cumulative diagram of a marked graph is a
distributive lattice with the zero element.




3. [Iransition Diagrams and Muller Diagrams

A transition diagram (TD) is an oriented
graph (S,F) where 5 is a finite set of vertices
(states) and F C SxS is a finite set of arcs
(transitions). Each state is encoded by a vector
consisting of n values of variables xi(xi € X,
where X is a finite set of discrete variables)
given on the domain zf 5 which is a finite subset
of non-negative integers. If zf ={ 0,1}, then
TD is called binary. If SuFSv then an arc is
directed from Su to Sy and if in Su and Sv(u#v)
‘variable xi has different values, then in Su its
velue is marked by an asterisk. The variable
marked by the asterisk is called enabled (or
excited). For excited variable it is possible
to perform an action concerned with changing the
value of xi, The variables which are not marked
by asterisk are called stable. The firing of
variable xi (transition) is an action concerned
with substitution of state Su.in which xi is
ensbled by state Sv in which the value of xi has
changed (xi becomes stable).

Therefore the TD describes the allowed
sequences of variable value changes ordered by
the relation F and the duration time of any
transition is supposed to be arbitrary but finite.

It is accepted that in an initiated TD an
initial state is explicitly labelled. Some
definitions aiming at classification of TDs are
given below. They are given only for a binary TD
because the generalization to multiple-valued case
is straightforverd.

The state of TD is called:

- multiple (non-unique) if TD has at least one
state that differs from the given one only by
asterisk setting rather than by variables values
(e.g-y 10%1 and 1%01);

- bifurcate if it has more than one excited

variable;

detonant with respect to xi if it is bifurcate

and variable xi is stable in it, and there are

two or more states directly reachable from it in
which this variable is excited, i.e. there are
the following possible branches of variable
states:

— 1

- 0%
et B 0

or ~ O

- conflicting with respect to xi, if variable xi
is excited in it and there exists such a
directly reachable state in which xi is stable
while it has the same value, i.e. the following
transitions of xi are possible: 1* —=) 1 or
0% —)0.

The binary TD is called:

- contradictory if it has at least a pair of
multiple states;

- sequential if it has no bifurcate and conflicting
states;

= distributive if it has no detonant and
conflicting states;

- semi modular if it has no conflicting states.

Classes of sequential, distributive and semi
modular ID are denoted K,D and U respectively.
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Statement 4. The following inclusion holds for
these classes: U2 D S K.

Let in the bifurdate state & k

component variables be excited (k22). The
subcube of (bifurcate) state $ is a set of

states derived from 8 by means of all
perturbations of excited variable firings. If all
states of the mbcube are directly reachable from
8 then such a fragment of TD is called a hammock.
A subhammock is a fragment of the hammock in
which either some subcube states are not defined
or some arcs belonging to the hammock are absent.
TD is called regular if for each bifurcate state
S oen of the following conditions holds:
1) all of its subcube states form a hammock;
2) some of subcube states form a subhammock, and
the other subcube states (complementing subhammock
to a hammock) are not elsewhere presented in TD.
A Muller circuit is a model given by a system of
Boolean equations

xi=P1(x9 X3, . 00 y%lyanisxm)y 121320 00s0a

An initiated model also has an explicit
initial state, defined by fixed values of Boolean
variables x1,x2,...,%n, i.e. B={0,1] is their
domain. A circuit variable is called excited if
for some state xi=fi, and stable otherwise.

The tendency of the excited variables to
become stable genmerates the dynamic behaviour of
the circuit, i.e. transitions from an initial
state to other states which can be determined
according to the equation system. Consequently
the firing of variables excited in these
succeeding states causes new transitions and so
on. It is obvious that the operation of a Muller
circuit may be deseribed by a binary transition
diagram. However these diagrams have their own
specific properties that is why they can be named
distinctively. The TD generated by a Muller
circuit is called a Muller diagram (MD).

Statements

5. ATD is an MD if and dnly if it is binary,
non-contm dictory and regular.

6. Not every MD is semimodular.

While the statement 6 is obvious the proof of
the statement 5 is quite straightforward due to
the rules of transition from a TD having the above
mentioned properties to a Muller circuit. These
rules consist of making a truth table mapping
illustrated by the following example:

Example, Having analyzed the TD shown in Fig. 1
one can state that the TD is binary, non- -
contradictory and regular (hencé, it is an MD).
Besides that it is distributive. Table 1 is a
truth table in which all 27 = 8 vectors at
dimension 3 are defined. After minimization of
each function xi=f(x1,x2,x3) (i=1,2,3) one
obtains the following system:

Xy = Xpxav, (xzvxa) 4
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Table 1
0 ueue ur
190 0 000
010 Q1
11 100
0001 IR
1010 100
011 111
1. 100

Generally, for any MD in which less than 2% vectors
of length n are defined one can derive a number of
systems of equations. However, for a system with
a given initial state one can derive a unique MD.
The algorithm for forming an MD from a Muller
circuit is based upon the computation of
characteristic Boolean functions of reachability
set states /15/. Here it is not significant and
hence omitted.

4. Signal Nets and Signal Graphs
In order to build a bridge between Petri Nets

and transition diagrams (in other words, Muller
circuits) one should meke an interpretation of
Petri Nets, for example, by means of labelling
transitions. The semantics of this labelling is
expressed by changes of signal values which
describe events in the system being modelled. Let
X={x1,%25.40,xn) be a set of discrete variables.
Every variable xi has its own finite set of wvalues
(states) Ul,---,- ii » encoded say by non-negative
integers.

For each variable xi a set D(xi) of
allowed changes &xi is defined.
Examples. If xi is a binary signal then

D(xi):[xio—l,xi1-0}. For the sake of conciseness
xi0_1 will be denoted by xit and xi."o by xi~. If
xi is a ternary signal and is defined on the
domain {0,1,2], where the values 0,1 and 2
correspond, say, to low, middle and high potential
levels then D(xi):{xio"1,xi1'2,xiz"1,xi1'8}. 1

xi models a bundle of parallel bus wires then two
separate classes of states-information and transit
(or spacer) — can be defined by 1 and O
respectively.

So the interpretation means conferring labels
on the Petri Net or marked graph, i.e. more
formally it means definition of a partial function
€:T * D (or €:V~* D, for signal graph), where
D=UD(xi). Triple {MG,D,E} is called a s
graph and triple (PN,D,E) is a 1 net.
Here MG and PN are marked graph and Petri Net
respectively.

Somewhat similar models were studied in /13,
14/. However,the main objectives of /13/ were
the modelling of request-acknowledge systems and
investigation of composition conditions for such
systems. In /14/ the so called taxogram is
discussed but it has no explicit marking mechanism.

Now one can notice that the interpretation
(or labelling) function allows the derivation
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from a marked graph or Petri Net not only of a
marking diagram but alse of a transition
diagram each state vertex of which corresponds to
a marking vertex in the marking diagram. However
this correspond can not n arily be 47
one because of the contradictory states which are
possible in TD. At the same time the signal
graph generates not only a cumulative diagram of
transition (vertex) firings but also cumulative
diagram of variable firings., The vectors of this
cumulative diagram are comprised of the numbers
of variable firings so the vectors length is less
because the number of variables is always less at
least by 2 times than the number of vertices of
the graph. But it must be said that the Hasse
diagram structure of the former cumulative diagram
under certain conditions can be the same as that
of the latter one, i.e. the lattice properties may
hold. This condition is expressed through
definition of a valid labelling function.

The labelling function € is called valid for
given marked graph MG and set of allowed changes
D if for any variable xi all its changes Oxi
belong to some synchrocycle. In other words, a
valid labelling function avoids conflicts in
determination of the next value of a given
variable, i.e. no variable value changes can occur
simul taneously with another change of the same
variable,

Examples. A ma¥rked graph corresponding to the
distributive transition diagram in Fig. 1 having
been labelled by changes of signals x1, x2 and x3
becomes a signal graph and is shown in Fig. 2.
Fig. 3 is an example of a signal net which can not
be represented by a signal graph, because the
non-interpreted Petri Net correspanding to Fig. 3
is not a marked graph.

Statements

T. A signal graph generates a distributive
transition diagram if it has a valid labelling
function. (Proof follows from the Stetement 3)

8. A signal graph with a valid labelling function
can generate a contradictive transition
diagram.

A signal graph with a valid labelling function is

called pormal if for some allowed sequence of

markings it has no subset of variables X! C X

which can proceed through the whole cycie of their

values while the other variables (from X\X') stay

unchanged.

Statements

9. A normal signal graph function generates a
non-contradictory distributive transition
diagram.

10. A signal net generates TD which is semi-
modular (distributive) if two conditions hold:

1. the corresponding non-labelled Petri Net
is persistent (and safe)

2. for no marking there are two or more
enabled transitions which are labelled
with different changes of the same
variable xi.

(Proof follows from the Statements 1 and 2)
Below & normal signal graph generating a




distributive Muller diagram will be called self-
timed.

5. [limed Signal graphs

The above described signal graph model is a
suitable tool for representation of parallel
processes, in particular, distributive processes.
Since Piring time limits are not established in the
signal graph the time delays can be arbitrary but
finite. This model is predominantly meant for the
investigation of self-timing properties (non-
clocked behaviour) of phenomena. However a great
deal of applications demands determination of

time intervals. The most adequate examples are
those of data transfer interfaces and digital
controllers.

Let the signal graph be supplemented with
another type of vertices demoted by T(K) which
model inclusion of built-in delay with a value
equal to K time units. It is also natural to
admit the following denotations: T(=K),T(SK) and
T(K1 £, K2) the semantics of which is quite
obvious. We also allow the vertices of type &xi
to be supplied with time attribute of the following
kind: K15t(6xi)SK2 etc in a similar way as for
the above 'pure' time vertices. Such modified
signal greph will be called a timed signal graph.

Usually the data transfer bus protocols are
specified by timing diagrams. For example, the
timing diagram of the "read" operation protocol
for the UNIBUS is shown in fig. 4. It has signals
AC (modelling state of address and control limes
bundles), D (state of data bus), MSYN and SSIN
(states of master and slave synchronisation lines
respectively). The approach proposed here exploits
timed signal graph and significantly simplifies
the description technique as well as protocol
understanding itself. It also enables the designer
to define the perallelism in the process
specification. Such a graph for an ad hoc example
is shown in Fig. 5. Vertices denoted with sub-
indexes "m" and "s" imply the source entity -
"master” and "slave" respectively. The time delayws
of 150ns and 75ns are brought by vertices T(= 150)
and T(275) due to the UNIBUS requirement concerned
with the compensation of the "skew" phenomenon.

Thus in a signal graph the vertex of type
T(K1=,5K2) (pure time vertex) or b&xi(K15t(6xi)SK2)
(with time attribute) fires not sooner than in K1
time units and not later than K2 time units (after
it is enabled).

From the timed signal graph one can derive
corresponding timed TD which however should contain
some means for expressing time delays. That is
why in such diagram beside the asterisk there is
& symbol d. The corresponding value of time delay
must be given in a supplement to the TD. For
example, if after a change of signal xi from O to
1 there was a delay of 75ns then in those states
which correspond to the newly set value xi=1 one
should use as upper index a symbol 'd'. Among the
immediate successors of the state containing xi=1
there must be a state differing from the given
state only by having xi=1. Therefore in comparism
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with ordinary excitation of a variable which I
requires for semimodular diagrem a compulsory

firing of an excited variable, here one should

have a new "timed" excitation which is not

concerned with the switching of a variable but

influences the allowance of the excitation of other

variables. For the timed signal graph (Fig. 5) a

corresponding timed TD is shown in Fig. 6.

The necessity of time delays d1 and d2 com-
pensating signal skew is connected with the
requirement that a synchronising signal (MSYN or
8SYN) must be sensed by the recipient (slave or
master) properly later than the completion of |
signal changes on the parallel bundle of wires.
The satisfaction of this requirement helps to |
avoid reception errors. Since synchronisation and |
information lines may have quite different time
parameters such compensating delays must be used.
However specifying this protocol and taking into
account the possible asynchrony of protocol signas
we must look at this example with signal skew
from another point of view. Strictly speaking we
should model this protocol having in mind the
following: the setting of parallel signals on the
internal wires of master and the coresponding
change of values of the outside bundle of lines
that can be sensed by the slave must be specified
separately, because when the master has information
about the completion of setting of new bus values,
it switches its synchronising signal MSYN only
from its internal signals.

Such more elaborate consideration of transfer
process causes us to specify the events of setting
data or address on parallel buses in the master
and out of it with two different signal graph {f
vertices (see Fig. 7). For the sake of simplicity I
here used the denotation AC® (instead of two ACH |
and AC~) to show by one vertex that address and
control signals simply change their state without 1
noticing that this change may be made through
intermediate spacer state.

Moreover the Xertices representing the
outside events (ACB 3 , D_B) are obviously
"hanging" vertices because each of these events,
i.e, the completion of all necessary changes in
the bundle of parallel wires can not be sensed by
any other events. In fact, the slave transitions
are occurred when indicating the master transitims
only of wire signal MSIN. So abstmcting from
the exact vertex time values and accepting the
time delays as unbounded but finite we are
encouraged to establish that this protocel is
incorrect because it is both non-semi modular f
(conflicts are possible) and unsafe ("hanging"
vertices). I

However we may conclude this protocol to be I
correct if we permit and hence provide in
implementation the following time constraints i
between firing delays: +t(ACA) — t(MSIN') < 150ms, I

(MSTN=)-b (k) <T5ms, t(Df(or D7))-t(sSTN®
(or SSIN)) < 75ns. |
With these constraints provided the timed signal




graph will be safe and will not have the conflict-
ing states.

This example with interface led us to the
necessity of discussion of some general aspects of
temporal system analysis based on the properties
of timed signal graph., It is worth noting what
do we mean here by such analysis. Usually the
Petri Net analysis is concerned with the procedure
of investigation of some properties of the
modelled system. It is well known that the key
analysis problem is the reachability problem, the
solvability of which is supposed to be proved. It
is also known that the other analysis problems are
transferable to the reachability problem. However
when the question about Timed Petri Nets is arisen
the correspodning problems are unsolvable for the
general Timed Petri Net case. Not speaking much
here about these problems (they are given at length
in /2/) it can be stated that the investigation of
self-timed properties of Muller circuits is alsc
a significant analysis problem. This problem was
under thestudy of D,E. Muller himself /6/ and some
important results which gave the way to the
analysis automation system based on the Muller
model were issued in /15/.

The temporal behaviour analysis provides
designer with the knowledge of presence of such
undesirable effects as deadlocks, traps, hangups,
conflicts, non-productive cycles (tempo-blocking)
ete. The complexity of corresponding analysis
procedures is often very high even for relatively
small dimensions. This is because the analysis
by whatever method used is always concerned with
permutations of all possible system component time
value combinations. In this sense the system
analysis technique proposed here may be helpful
from an idealogical point of view. This technique
is based on a rather straightforward idea.

If the initial system model was a self-timed
diagram or circuit which was semi modular then
whatever time values the signal graph would be
labelled by the system would operate correctly,
i.e. undesirable effects would not be possible.
That is why the following technique is allowable.

It is supposed that the system is initially
represented by timed signal graph. Firstly,wve
build the transition diagram corresponding to this
signal graph without account of the time values,
i.e. as if this signal graph is self-timed.
Secondly, if this diagram appears to be semi
modular and hence correct in the self-timed sense
we may deduce that the account of time deleys is
eliminated at all and the system is correct in its
original timed sense.

Thirdly, if this diagram has some local
violations of semi modularity and hence the system
is incorrect in the self-timed sense then these
local violation points must be analysed with
account of the given time values. In fact, the
introdueing of time constraints on some system
transitions restricts the set of its possible
transition sequences (as well as permutations
sbove mentioned). Thus if it appears that some of

the sequences are not real due to time value
relations then the local behaviour in violation
points can be satisfactory in the timed sense.
The following example illustrates this idea.

Example. The fragment of the timed signal graph
is shown in Fig. 8a. Its variable changes are

+ - o+ - + - k
X3 9%y 9%y yXy X, X, . The corresponding time

constraints ere linked as attributes with all
given vertices. The transition diagram fragment
built in self-timed sense (see Fig. 8b) shows that
there is a local violation of semi modularity in
conflicting state 0100 when the completion of
transition x,~ is followed by the tramnsition x4-
but the previous transition ::4'+ is not yet
cowpleted, because of its "hanging" vertex. In
order to validate this signal graph we must check
the time constraints of two concurrent transitions:
x4+ and x,~ if the maximum time delay of x4" is
less than the minimum time delay of Xxq7 i.e. the
following relation holds:

xz(x4*) <K, (x,7).

6. Concluding remarks
The link between the Petri Nets and Muller's

speed independent circuits (self-timed systems) is
established through the bridge between persistent
and safe Petri Nets, marked and signal graphs from
one side and marking, transition diagrams can be
represented by normal signal graphs in a more
compact way. Signal graphs,hence,enable the
designer of the discrete system to specify his
timing diagrams in a more formal way. Timed signal
graphs are introduced and their analysis technique
with referring to time values,only if local self-
timed correctness (semimodularity) is violated,
is proposed. Therefore time values are a
factor reducing the number of possible sequences
and by that transforming the self-timed system to
one which is dependent on the particular
transition speeds. We hope that the approach
proposed will give rise to significant reduction
of temporal anslysis complexity. However the
formal proof of this fact is not yet obtained.

It should also be noted that the paper is
written in an advertising manner and aims at
drawing the readers attention to some research
directioms and problems rather than at giving the
list of formal results in this interesting area.
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operation protocol
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Figure 5. A timed signal graph for UNIBUS
read protocol

Figure 6. A timed transition diagram for
UNIBUS read protocol

Figure 7. More adequate modelling of UNIBUS
read protocol
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Figure 8. An illustration of violation of
semimodularity in self-timed sense
A Timed signal graph (a) and
transition diagram (b)




