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Abstract 

The problems of semantic relationship between causality and interleaving and analysis of 
functional determinism and do.ta dependency are tackled in terms of a lattice-theoretical approach. 
We introduce a basic form of poset, the poset of cumulative states of concurrent system behaviour 
(these states can be represented as multisets of process actions attributed to the events thus far 
occurred in the system), which is called a cumulative diagram. It helps to characterise particular 
subclasses of Petri net based processes, semi-modular and distributive ones, by means of the 
major background theorems stating that 
the cumulative diagram of a persistent (safe and persistent, marked graph) Petri net is a 
semi-modular (distributive) lattice with a zero element. 

The study then claims the following: 
(i) the partial order semantics is descriptively equivalent to the interleaving semantics only for

distributive processes;
(ii) an operationally semi-modular process (confluent, in the Keller-Milner's sense), which may

however be non-distributive, can have some form of functional non-determinism (and,
hence, lose its confluence) - this results in:
(ii.I) the impossibility to derive uniquely a partial order description from a given set of

execution sequences, and 
(ii.2) the distinction of possible execution sequences outcomes because of the merging of 

differently valued token flows. 
With respect to the (ii.2) issue we also claim that the purely control fl.ow semantics of a 
semi-modular but non-distributive process is deterministic while its data fl.ow semantics may be 
non-deterministic, and both the control and data flow semantics of a distributive process are 
deterministic. 

The properties herein discussed, using lattice-theoretical tools, nicely fit into the previous bed of 
results on stability (by G.Winskel), confluence (by R. Keller and R.Milner), {AND+OR}causality 
(by J.Gunawardena), conservatism and do.ta-independence (by M.Rem). 

We demonstrate some interesting practical implications of the lattice characterisation of concurrency 
in digital circuit and program design domains. 

Topics covered: causality/partial order theory of concurrency, analysis and behaviour of 
nets,high-level net models, application of nets to hardware structures 
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Introduction 

Concurrent systems, as opposed to sequential ones, suggest a number of ways to be semantically 
characterised. This basically stems from the problem of finding an adequate representation of 
concurrency paradigm in any of the formal frameworks employed,among which the most popular 
are state-transition systems [l], CSP [2], trace sets [3], nets [4], algebra of interacting agents [5]. 
Before using any of these or some other notations one has to clearly realise which form of 
concurrency semantics is needed for him/her and which is implied by the model. For the last ten 
years the subject of relationship between the various concurrency semantics has acquired 
tremendous interest among not only theoreticians but also in the practical design community [6,7]. 
For example, in our everyday practice of asynchronous digital hardware design we have been 
witnessing how important it is to match the meaning of execution of the Petri nets used for 
specifying self-timed systems with that of logical circuit dynamics [8]. 

The approach to represent a concurrent system's behavioral semantics through the set of execution 
sequences, or traces, was obviously inspired by the relationship between state-transition systems 
and the languages represented by them, which appeared to be quite natural for sequential systems. 
Further developments of this view, with concurrency flavour, have given rise to such semantics as 
step sequences ("execute as possible but not necessarily with maximal concurrency") , maximally 
concurrent semantics [9], and partial order semantics [10]. 

Recently, a series of contributions to the EATCS Bulletin tackled the controversy between causal 
(partial order) semantics and interleaving semantics [11-13]. The main result of these discussions 
could be summarised as follows. Although interleaving semantics can be suitable in certain, 
especially simulation-oriented, applications, the causal view upon concurrency is generally more 
versatile, especially when one has to deal with refinable specifications [11], or when specific 
properties like confusion, choice-absence, strong concurrency and "causal-next" relation, inherent 
in causal semantics [13], should be treated. Another important practical issue in favour of 
partial-order semantics is that it can be helpful in avoiding state-explosion problem, by explicit 
separation of concurrency from non-determinism, thus making tractable reasoning about 
concurrent systems [14]. 

In [15] we have outlined, by means of examples observation, the idea of a somewhat alternative 
treatment of the above controversy, viz. using the concept of partially ordered sets (posets) and 
lattices on the cumulative states of concurrent systems. Such states represent a history of the 
system's behaviour through numerical records of action occurrences with respect to certain initial 
state of the system. In other words, the poset and lattice characterisation can therefore be made also 
for the set of traces themselves (as opposed, and in addition, to the partial orders and lattices which 
are usually defined on the set of processes, trace sets or other forms of computation behaviour 
description [2,3]): by collapsing the traces into their equivalence classes, the so-called multisets of 
process actions, which are just another way to represent cumulative states. The first attempt to 
highlight the link between dynamic behaviour of Petri nets and lattices was made in [16] by 
Landweber and Robertson, who used Keller's fundamental arguments about the persistence 
property in parallel computations to prove that the Parikh space (which is similar to the cumulative 
state set) for a persistent Petri net forms a lattice under the natural ordering of integer vectors. 

In this paper, a more in-depth discussion of the problem is presented. First, we introduce a 
lattice-theoretical framework of concurrent system behaviour, which is then used for laying a 
distinction between distributive and semi-modular processes. For the sake of clarity, we restrict 
ourselves with the processes that are free from choices in their execution. Rather, we allow only 
those alternative execution sequences, in terms of interleaving semantics, which are due to 
concurrency and its "non-deterministic" simulation, but not pertaining to condition-branches or 
conflict resolution. So far, this gives us necessary separation of concerns, whereof the central is 
the pure concurrency concern. 

One of our main results is that partial order semantics is equivalent, by its descriptive power, to 
interleaving semantics only for distributive processes. Paving our way to this statement, we prove 
important theorems stating that partial order specifications given in terms of Petri net subclasses 
produce the cumulative state (or, equivalently, action multiset) behaviour which forms a 
semi-modular lattice if the net is persistent, and a distributive lattice if the net is safe and persistent 
or a marked graph net. 
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Another important conclusion is that an operationally semi-modular process, which may however 
be non-distributive, can have some form of functional non-determinism which results in: (i) the 
impossibility to derive uniquely a partial order description fro,;n a given set of execution 
sequences, and (ii) the distinction of possible execution outcomes because of the merging of 
differently valued token flows. 

The (ii) issue is discussed through an extended interpretation of a Petri net, by means of a 
high-level net [17], in which tokens may have certain data values, or colours, and transition firings 
may produce distinguished resultant markings with respect to the values of tokens in input places. 
Analysis of this data-valued token interpretation allows us to establish a relationship between the 
control flow semantics, defined as the behaviour under the assumption that all tokens are 
indistinguishable, and data flow semantics, defined under the assumption that tokens may be 
associated with data values. We claim that the purely control flow semantics of a semi-modular but 
non-distributive process is deterministic, while its data flow semantics may be non-deterministic, 
and that both these semantics of a distributive process are deterministic. The latter result 
corresponds to the concept of data-independent and conservative processes presented in [18]. 
Thus, a data interpreted process is data-independent iff it is distributive. 

Note that the results obtained with the lattice-theoretical approach are quite coherent to the ideas in 
[19], where stable event structures and safe Petri nets are characterised within the framework of 
algebraic domains. Here, the same class of processes is called distributive, with the restriction of 
considering only the processes free from choices. Our analysis, however, lifts to another direction, 
viz. to the case of persistent (and, generally, not necessarily safe) nets, where the partial orders 
generated form semi-modular lattices (which are, in other words [19], a proper subclass of 
consistently complete and algebraic domains - of course, up to isomorphism), and moreover, for 
the case of marked graphs, even distributive lattices (corresponding to finitary a1J,d prime algebraic 
domains [19]). This suggests [20] some way for unification by stating that a persistent and safe 
net generates the same, finitary and prime algebraic, domain up to isomorphism. This latter result, 
although being announced here because of its obvious theoretical importance, would, of course, 
demand more space for discussion than the limits of the present paper may allow. It is therefore 
postponed to a subsequent paper. 

Recently, the investigation of similar properties has been done using causal automata [21], which, 
in an explicit form of event causality, exhibit both distributive (AND-causality) and semi-modular 
({AND,OR}-causality, which is identical to confluence in the sense of Milner's [22] notion) 
paradigms. 

Our analysis, therefore, brings us to a very important point where it seems quite necessary to 
further examine the semantics of Petri net non-safeness because of its obvious two/ old nature: on 
the one hand, it represents the purely event-causal (OR-causality) paradigm, or the so-called "input 
conflict", which focuses on the possibility of alternative, and not necessarily mutually exclusive, 
causes for the same event (and this has been the main glory for both [19] and [21]); on the other 
hand, it may represent purely flow meaning, where the multiple tokens in the net places are just the 
result of larger "token traffic" through the actions, without any causality complications. The 
importance of the above distinction becomes even higher when we need to study the semantic 
picture of high-level nets where even the flow semantics of multiple tokens, as we attempt to 
show, brings some form of input conflict manifesting itself in data-dependency. 

As a point to justify our approach it is worth quoting from Winskel's introduction to [19]: "There 
remains the curious mismatch ... : a computation which is described by an event structure, or Petri 
net, gives rise to a whole domain whereas usually in denotational semantics a computation denotes 
a single element of a domain". It remains then to hope that this work would also contribute to 
solving the above mismatch. 

For the reasons of pragmatism, which appear to be quite demanding because, as [21] states, "most 
authors ... have found instability to be either unnecessary or undesirable", we demonstrate some 
interesting practical implications of the lattice characterisation of concurrency in circuit and program 
design domains, where, sometimes, the question of "necessity" or "desirability" cannot simply 
arise because of the "inevitability" of OR-causality (and hence, instability). We put more 
emphasis on the hardware examples where the "semi-modular but non-distributive" paradigm of 
merge has important, and perhaps novel to the reader, consequences in functionality. Here we 
show how merge is implemented in a wired-OR logic, in afault-tolerant structure with module 
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redundancy and in a task scheduling system, where it is either an initial prerequisite of structural 
requirements ("inevitability" case) or can speed up the performance ("both "necessity" and 
"desirability" case) under certain assumptions of relative delay value�. The final topic of the 
implications section is analysis of a dichotomy. recently emerged in the area of asynchronous 
circuits [23]. between speed-independence and delay-insensitivity. where the latter is a stronger 
form of insensitivity of a circuit's correct behaviour to the delays in components (the delays are 
both in gates and wires) than the former (the delays in wires are negligible). We prove that the 
cumulative diagram describing the behaviour of a delay-insensitive circuit is distributive. This also 
means that any speed-independent circuit whose behaviour is semi-modular and non-distributive 
cannot be delay-insensitive. 

Background 

The discussion presented in this paper is based on some subclasses of Petri nets. The reader may 
find some of our notions as being restrictive. Basically. we need only the formalism of ordinary 
Petri nets. which is defined below. but in treating non-distributive processes with valued tokens. in 
Section 4. we shall make a special resort to token-valued nets. 

Also. for supporting analysis of our models by means of lattices. a short list of definitions and an 
outline of appropriate proof technique is presented in Appendix. For more serious introduction on 
lattices we recommend [24]. 

Definition 2.1 A quadruple PN = (S,T,F,Mo> is said to be a marked Petri net (shortly, a net) iff: 

S and T are finite non-empty sets; S nT = �; F £ (S x T) U (T x S); M
0

: S -> N; where N 
denotes the set of non-negative integers. Every mapping M: S ->N is called a marking of PN, and 

for every x ES UT we denote: 

ln(x) = {y: (y,x) E F} and Out (x) = {y: (x,y) E F} 

The elements of Sand T are called places and transitions, respectively. Graphically they are 
represented as circles and boxes (bars). F is the flow relation of PN. It is represented by arcs 
joining boxes and circles, thereby defining the incidence function between transitions and places. 
M

0 
is called the initial marking of PN. Any marking M is visualised by the appropriate number of 

dots, called tokens, inside circles, i.e. M(s) tokens inside the circle representing a places. 

A Petri net PN can generate a dynamic beha,viour. This behaviour, or execution, is characterised 
by the corresponding semantics of the sequences of transition firings. We introduce it as follows. 

Definition 2.2 A transition t ET in a net PN = (S,T,F,M
0

) is said to be enabled under the 

current marking M if/for all s Eln(t) M(s) � 1. 

Definition 2.3 A transition t ET in a net PN = (S,T,F,M
0

) can fire if/ it is enabled. The firing of 

t results in the new marking M' such tha,t for every s E S: 

M'(s)= { 
M (s) - 1 if/ s E ln(t) - Out(t)

M(s) + I if/ s E Out(t) - In(t)
M( s) otherwise 

Graphically, the firing of a transition is represented as an instantaneous action removing exactly 
one token from each of the input places of the transition and adding exactly one token to each of its 
output places. 

The above two definitions are fundamental in defining the so-called execution sequences model, 
which was the most commonly used kind of Petri net semantics [25]. It was shown that such a 
view does not distinguish between arbitrary interleaving (when two transitions can fire sequentially 
but in either order) and concurrency (when two transitions are enabled under the same marking and 
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can fire independently). For the purposes of this study, we do not need to abandon this semantics 
and refer to some other, more recent ones, such as, for example, the step sequence semantics, in 
which subsets of transitions firing simultaneously are defined. 

Definition 2.4 Two markings M and M' of a net PN = (S,T,F,M0) are said to be in direct 
sequence relation with respect to a transition t ET if/ t fires under M and such firing results in M'. 
We denote this as M ft> M'. Correspondingly, M and M' are said to be in sequence relation with 
respect some sequence of transitions <J = t1 ... tn where ti , ... ,tn ET iff there exist markings 
Mi, ... ,Mn satisfying: Mft1>M1 ft2> M2 ... ltn>Mn =M'. We denote this as M [<DM'. We also 
use notation M [ > M' if we are not particularly interested in mentioning a firing sequence. 

H two markings Mand M' are in the (direct) sequence relation, this fact also means that M' is 
(directly) reachable fromM.

For two firing sequences <J and 't', 't'= t1 •.. tn , we define ( <J + -r), called the excess of <Jover 't', as

follows: Let u
0 
be <J. Obtain <Ji+J by deleting the leftmost occurrence of ti from <Ji, if ti occurs in

<Ji. If not, then <Ji+l=<Ji. Define ( <J + 't') to be <Jn +J• 

The dynamics of net behaviour can be conveniently depicted by the so-called reachability graph in
which vertices stand for the markings reachable from the initial marking Mo. 

Definition 2.5 The triple MD = (M
0

, ->, R) is said to be the marking diagram of a net PN 
=(S,T,F,M

0
) where M

0 
is the initial marking, -> is the direct sequence relation, and R is the set of 

markings reachable from M
0

• 

The net's marking diagram is thus represented by the reachability graph. An arc of such a diagram 
is associated with the transition which fires under the marking standing for the beginning vertex of 
the arc and results in the marking associated with its ending vertex. Thus, the marking diagram 

allows one to build, for a given firing sequence of transitions a= t1 , ... ,tn starting under the

marking M
0

, the unique corresponding sequence of markings M
0

, •.• ,Mn, and vice versa.

It is easily seen that from the marking diagram of a net one can derive all the firing sequence 
semantics. A number of characteristic properties of the net can also be established from it, e.g. 
reachability, liveness, boundedness etc. In this discussion, our main interest turns to algebraic 
properties of the net behaviour that have no direct link with these, operational, issues. 

Let <J be a sequence of transitions of PN = (S,T,F ,M
0

). Let # o(t), t ET, denote the number of 
times t occurs in <J. The following statement is true due to the firing semantics definition.

Statement 2.1 For a PN = (S,T,F,Mo) and aft.ring sequence <J starting under marking M, the 
resulting marking M' is such that for every s E S: 

M'(s) = M(s) + L #<J (t) - L #<J(t)

t E In(s) t EOut(s)

Definition 2.6 Let PN = (S,T ,F,M
0

) be a net. A vector a having dimension n=/T/ is said to be 

the transitionfiring vector if/for some firing sequence <J= tkJ, .. -,t1an starting from initial marking 

M
0

: ai = # <J(ti ) where i = 1, ... ,n and ti E T. 
ai is said to be the i- th component of a. 

5 
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It is seen from this definition that each sequence of transition firings, with respect to initial marking 
M

0
,_stands for the unique value of the transition firing vector, and hence, again, with respect to 

M
0

, we can build the set of such values which can be mapped onto the set of reachable markings 
using the equation from Statement 2.1.. Such mapping implies that the all zero value, aO = (0, ... ,0) 
stands for M

0
, and for some ti and M such that M

0
[ti >M, we build combination al which 

differs from aO only by the presence of one in the i-th position, thus meaning that transition ti has 
fired for the first time: When moving along any firing sequence in the marking diagram from M

0 
it 

is quite straightforward to map (one-to-many) on vector values aO, al, ... . 

Consider a set A of values of the transition firing vector. On this set, we define 
a partial order relation such that for a, b E A a :::; b iff there exist two firing 
sequences a and (3 starting from the initial marking M0 , whose firing vectors are a

and b, respectively, and a is prefix of (3. Furthermore, the least upper bound of a
and b, if exists, is denoted LUB(a, b), and the greatest lower bound as GLB(a, b). 

Note 2.1 Such an ordering was proved to be a partial order by Gunawardena 
(20], who called it prefix order up to permutations to reflect the characteristic 
property of Petri nets, sometimes called "the principle of irrelevance of history" 
or trace permutability. 

Definition 2.7 A pair C(PN) = (C, �),which is a partially ordered set (poset), is said to be the 
cumulative diagram of net PN =(S,T ,F ,M

0
) iff C is the set of values of the transition firing vector 

constructed for all firing sequences of PN with respect to M
0
.The elements of C are called 

cumulative states. 

The graphical representation of C(PN) would be a Hasse diagram with the zero element standing 
for the initial marking. 

The presence of the zero element in C(PN) guarantees that for any a,b EC there exists a lower 
bound. However, due to potential non-determinism in the net's behaviour we cannot state that 
C(PN) is generally a lattice. The following sections restrict our consideration to such subclasses of 
Petri nets as marked graphs and persistent nets, for which C(PN) forms a lattice with respect to the 
above ordering relation. 

Note 2.2 The reader may however try as an exercise to disprove that C(PN) of an arbitrary live 
net is a lattice (or even a lower sublattice), by finding an example of such a net for which, for some 
two elements a and b in C, there is no GLB( a,b) in C. We call a net live iff each of its transitions 
is live. According to [25], a transition ti is said to be live iff for any M, which is reachable from 

M
<>' 

there exists a firing sequence such that ti is enabled under M' and M[ a>M'. 

Note 2.3 It is also possible to build the same partial order on the set of equivalence classes of the 
net's firing sequences, which can be regarded as multisets of transitions, or "traces" using the 
terminology of [3]. 

Semi-modular and Distributive Processes 

In this section we restrict ourselves with the subclass of behaviours which have no conditional 
branches or conflicts between transitions. Using such a restriction, we establish a class of lattices 
that are generated by purely concurrent processes. In terms of marked Petri nets these processes 
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can be defined, in their finite representation, as marked graphs. 

Definition 3.1 A net PN = (S,T ,F,M
0

) is said to be a marked graph if/for each place si E S: 
/ In(sJ/ S 1 and I Out(sJ/ SI. 

Since a marked graph assumes no more than one input and one output transition for each place, we 
do no longer need a bipartite representation of such a net. Without any special definition we shall 
allow a marked graph, wherever it gives notational convenience, to be a directed graph whose 
vertices are semantically identical to the transitions of the corresponding Petri net and the arcs stand 
for the places of the net. Hence, the marking function is defined on the set of arcs. Again, 
graphically, it is designated by placing the appropriate number of tokens onto the arcs. 

Before we present a lattice-theoretical characterisation of the processes described by marked graphs 
we should introduce a wider subclass of Petri nets, which are also conflict-free with respect to 
transition firing. 

Definition 3.2 A net PN = (S,T,F ,M
0

) is called persistent if/ for each marking M reachable 

from M
0 

any transition ti ET enabled under M either remains enabled in the markings directly 

reachable from M or fires thus leading to a marking M' such that M [ti> M', i.e. if M[ti> and 

Mft1,••·•tk>M1, where ti i!{tJ,···,t,J, then M1fti>-

In other words, in a persistent net a once enabled transition cannot be disabled by the firing of 
another transition. Persistent nets were studied in [16], but, by and large, with respect to the 
reachability and boundedness problems. There is, however, an important theorem (Theorem 3.1) 
in [16] stating that the Parikh space (the set of cumulative states, in our terms) built for a persistent 

net is a lattice under the natural ordering of vectors (x S y  iff xiSYi for all i, 1 Si.Sn). The proof of 
this theorem is based on the following important lemma. 

Lemma 3.1(16] Let a 1 and a2 be two firing sequences starting under the initial marking M
0

of a persistent net. Then there is a firing sequence /3, starting at M
0

, such that 
b = max (ai,a2),

where a1,a2 and b the firing vectors (Parikh map points in [16]) co"esponding to a1 ,a2and /3, 

respectively, and max denotes the componentwise maximum operation. Moreover, /3 may be 

constructed so that /3= a 1 · ( a 2+a 1 ), where · stands for usual concatenation of two sequences, 

and + denotes the excess (as defined in Section 2). 

This lemma also helps in proving the following. 

Lemma 3.2 For a persistent net, if a1<= a2, where a1 and a2 are two cumlative states in (C, S) 

and<= stands/or the natural ordering of vectors,<= is identical to the partial order 5: 

Proof 

Itis sufficient to show just that a1<= a2 implies M1[>M2, where M1 and M2 are reached from the 

initial marking by the firing sequences corresponding to a 1 and a2 in accordance with Definition 

2.6 and Statement 2.1. Let a
1 
and a

2 
stand for such sequences, respectively. According to 

Lemma 3.1, we shall have, following the same notation, that b = max (ai,a2)=a2. Hence, due to 

Statement 2.1, /3 leads to the same marking, M 2, as a
2 

• Furthermore, since /3= a 1 · ( a 2+a 1 ), 

which means that /3 passes through Mi , after its partial execution a 1, it is clear that M 2 is

reachable from M1 by the firing sequence (ar,a1).Q.e.d.

7 
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This lemma justifies, in our further discussion that takes place within the class of persistent nets 
(and marked graphs), the usage of the natural ordering of vectors as the-partial order 5 relation 
under the conditions of Definition 2. 7. 

The following theorems are most crucial for the taxonomy of processes in terms of lattices. Our 
Theorem 3.1 strengthens the corresponding result of Theorem 3.1 in [16]. 

Theorem 3.1 The cumulative diagram C(PN) of a persistent PN is semi-modular lattice with a 
zero element under the ordering of Definition 2 .7( the natural ordering of vectors). 

For notational convenience, define a disjunction a Vb, as a componentwise maximum, i.e. (a v
b);= max (ai,bi),and a conjunction a Ab, as componentwise minimum, i.e. (a Ab);= min (ai,bi) 
for any a and bin C.

Proof of Theorem 3.1 

By arguments similar to those used by Landweber and Robertson [16] and by Lemmas 3.1 and 3.2 
we can state that C(PN) is a lattice under the natural ordering of vectors. 

For semi-modularity of the lattice, we must show that if two distinct elements a and b in C both 
cover an element c in C (in which case c is obviously GLB(a,b)), then both are covered by 
LUB( a,b ). By covering, we mean that a covers c if c < a and there is no element d such that 
c<d<a. In C(PN), it is clearly seen that a covers c iff there is one transition in PN such that ai = ci

+ 1 and ai=ci for all other transitions.

Let a =  (ai,a2, ... ,an) and b = (bi ,b2, ... ,bnJ where a i=b. Since c is covered by both a and b, we 
have that c differs from a in just one component, say ai * ci; similarly, b differs from c in just one 
component, say bi * ci

' Note that i * j. Thus we have that under some marking M corresponding
to c two transitions are enabled, ti and ti. Due to persistency, there must be markings M1, M2 and
M3 such thatM[ti>M1 , M[�>M2, Mifti>M3 andM2[ti>M3 with a,b andLUB(a,b) corresponding
to M1 , M2 and M3, respectively. Thus a and b differ from LUB (a,b) by only one component, ai
and bi respectively, which is, in each case, greater than the corresponding component of a and b. 
Hence LUB( a,b) covers both a and b, and we have proved the semi-modularity of the lattice 
C(PN). Q.e.d. 

Statement 3.1 A marked graph is a persistent net. 

This is true because if a transition ti of the marked graph is enabled, each of its incoming arcs (in a 
monochromatic version) contain at least one token and there is no way to remove this token other 
than to have this transition fired 

Theorem 3.2 The cumulative diagram C(PN) of a marked graph PN is a distributive lattice with 
a zero element under the ordering of Definition 2. 7( natural ordering of vectors). 

Proof. 
1. It is easy to prove that if C(PN) is closed under the disjunction and conjunction, then C(PN) is
a distributive lattice. In fact� with such assumptions and Lemma 3.2, LUB (a,b)=a Vb, GLB(a,b)
= a  Ab. Then

GLB(a,LUB(b,c))
j 
= (a A (b V c))

j = min(a
j
, max(b

j
,c

j
))= max (min(a

j,bj
),min(a

j
,c

j
))= ((a A b) 

V (a A c))
j = LUB(GLB(a,b),GLB(a,c))

j
. 

Similarly, the second distributivity law can be checked. 

2. We now prove that for a marked graph PN, C(PN) is closed under disjunction and conjunction.
In fact, Lemma 3.1 provides us with the fact that C(PN) is closed under disjunction.

8 
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To prove the second issue we need the definition of the inverse of a net. 

Definition 3.3 The inverse of a net PN = (S,T ,F,M
0

) is the net PN' = .(S,T,F',M
0

) where F' =
{(s,t): (t,s) E FJ U {(t,s): (s,t)E F}. 

Note 3.1 For a marked graph PN, the inverse PN' preserves all the basic properties, such as 
strong connectivity, liveness, safeness to name but a few. The reachability of PN' is equivalent to 
the backward reachabilty of PN.

Due to the above note we have that the number of firings of some transition ti between any two 
markings M' and M" belonging to some sequence of reachable markings in a marked graph PN is 
equal to that of the same transition ti between M" and M' belonging to the sequence of markings 
for the inverse. 

Consider two elements a and bin C(PN). Let M( a) denote the marking corresponding to a.

Thus there can be found two non-intersecting (except for the beginning and ending points) 
sequences of values of the transition firing vector GLB( a,b ), ... , a, ... , LUB( a,b) and 
GLB( a,b), ... ,b,  ... , LUB(a ,b) which correspond to the sequences of markings 
M(GLB(a,b), ... ,M(a), ... , M(LUB(a,b)) and M(GLB(a,b)), ... ,M(b), ... ,M(LUB(a,b)). Due to 
closure under disjunction, we have LUB( a,b )j = ( a V b )j = max( aj,bj) for any j such that J Sj5n.

Consider now the inverse of PN initialised in marking M(LUB(a,b)), which we denote as PN'.
For such PN' we have two corresponding execution sequences beginning in M(LUB(a,b)):
M(LUB(a,b)), ... , M(a), ... ,M(GLB(a,b)) and M(LUB(a,b)), ... ,M(b), ... ,M(GLB(a,b)), which 
are the inverses, both in terms of series of markings and those of transitions fired, of the sequences 
for PN, since the reachabilities, forward and backward, are equivalent for a marked graph and its 
inverse, respectively. 

For these two sequences of markings of PN' we can build the corresponding sequences of values 
of the transition firing vector with respect to the initial marking M(LUB(a,b)), which stands for the 
zero element of C(PN').

For any transition tj in PN' the firing numbers between M(LUB(a,b)) and M(a) , M(b) can be 
respectively expressed as: 

a'•= max(a-b-) - a-and b'· = max(a-b-) - b-
J J' J J J J' J J (*) 

Since the set C(PN') is closed under disjunction we have LUB( a',b')j = max(a1,b1) and it
follows from(*) that max(a1,b'j) = max(aj,bj) - min(aj,b/

Thus, 

Since the number of firings of ti between M(GLB(a,b)) and M(LUB(a,b)) in PN is equal to that 
between M(LUB(a,b)) and M(GLB(a,b)) in PN', we have 

LUB(a,b)i - GLB(a,b)i = LUB(a',b')i- GLB(a',b')j = [max(ai,bi) - min(aj,bj)l - 0 = max(ai'bi)
- min( aj,bj).

Also, LUB(a,b)j = max (aj.bj), and hence GLB(a,b)j = min (aj,b/ Thus C(PN) is closed under 
conjunction. Bearing in mind part 1 of the proof, C(PN) is a distributive lattice with zero 
(0,0, ... ,0 ). Q.e.d. 

Without a full proof, which is rather lengthy, we claim the following. 

Theorem 3.3 The cumulative diagram C(PN) of a persistent and safe net PN is a distributive
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lattice with a zero element under the ordering of Definition 2.7(natural ordering of vectors). 

Note 3.2 A net PN = (S,T,F,M0) is called safe iff for any madcing M reach�ble from M 
0 

M(s)�l for each s ES. 

Sketch of proof of Theorem 3.3. 

The proof can be done using the fact that a safe and persistent net can be transformed into a marked 
graph by duplicating some transitions and places [26]. This duplication, however, preserves the 
strict ordering between firings of the marked graph transitions corresponding to the same 
transitions in the original safe and persistent Petri net. 

The necessary behavioural equivalence of the cumulative diagrams, of the original net and the 
marked graph, is guaranteed by this transformation because potential multiple instances of the same 
transition, in the marked graph, can not be enabled concurrently. The complete proof, which is 
postponed to a subsequent paper, would of course require the following technique: 
(1) defining a net with a multiset of transitions and(or) a labelled net, by introducing a labelling
(functional) mapping of the set of transitions onto the set of transition names. (The transformation
gives the names of the original net transitions as the labels for the marked graph net transitions);
(2) defining the set of labelled firing sequences, and the corresponding set of cumulative states of a
labelled net (the so-called labelled cumulative states) with respect to the occurrences of the
transition labels;
(3) defining the mapping of a set of original (unlabelled) cumulative states onto that of labelled
ones, and then proving that this mapping preserves the partial order (implying homomorphism of
the cumulative diagrams);
(4) proving that if the labelled PN, in any reachable marking, does not allow, in its behaviour,
more than one transition with the same label to be enabled, then the unlabelled cumulative diagram
is isomorphic to the labelled one.

It is worth noting that the effect of labelling, which is further exemplified in Section 4, discussing 
the merge paradigm, has also been examined in the context of deterministic causal automata [21]. 

Note 3.3 It is obviously not true that a persistent non-safe net always generates semi-modular 
non-distributive cumulative diagram. It is sufficient to take a non-safe marked graph. This means 
that the non-distributivity paradigm has a nature different from unsafeness or unboundedness. It 
stems from the purely causal reasons and the so-called "input conflict" (or "OR-causality" [21]), 
when an action may be initiated by alternative, but not mutually exclusive, causes. This kind of 
conflict would manifest its non-deterministic flavour in the backward reachability (for example, 
when it is impossible, for a marking with two tokens in the same place, to determine which one of 
the two concurrently fired transitions has first added a token into their shared output place). 

Now we are ready to tackle our main objective on the relationship between partial order semantics 
and interleaving semantics. Although we should, first, consider an example. 

Example 3.1 Consider two nets, PNJ and PN2, as shown in Fig.I. They are both persistent. 
Furthermore, PN I is a marked graph. The corresponding marking diagrams, MDI and MD2, for 
these nets are shown in Fig.2. The execution sequences, in terms of the interleaving semantics, are 
given by ESJ = {abc, bac} and ES2 = {abc,bac,acb,bca}, for PNJ and PN2 respectively. The 
cumulative diagrams of transition firing number vectors, C(PNJ) and C(PN2), are shown in 
Fig.3. From these two diagrams one can deduce that for PNJ a poset of cumulative states is POI= 
({000,J00,010,110,lll},�) and it forms a distributive lattice with zero 000, and for PN2 the 
poset is PO2 = ({000,100,0J0,J0J,JJ0,0ll,lll}, �). which is semi-modular lattice with zero 

000. Since for a=I0J and b=0l I, c = a A bis determined as ci = min (ai,bi), i = 1,2,3, and
hence, c = 001, whereas the GLB( a,b) = 000, we deduce that PO2 is not distributive.

From this example we can see that there must be some relationship between the lattice-theoretical 
class of a process described by the net (here we had a distributive process depicted by the marked 
graph and semi-modular process associated with the persistent non-safe net) and the possibility to 
construct a unique partial order on the process events. To characterise such a relationship we first 
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need to define a process as an acyclic net (often called an occurrence net [19]) in which every 
transition fires at most once thus forming a unique process event. The appropriate definition can be 
found in [27]. 

PNl: 

a 

MDI: 

CDl: 

2 

b 

4 

PN2: 

a 

Figure 1. Petri nets for Example 3.1 

MD2: 

Figure 2. Marking diagrams for Example 3.1 

abc abc 

CD2: 

C 

Gil) 
Figure 3. Cumulative diagrams for Example 3.1 
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For a process, the poset of transition firing vector values would of course be defined on binary 
n-tuples where n is the number of transitions. Each component ai of such cumulative state a would
either be zero (transition ti has not yet fired) or one (transition ti has already fired). If we restrict
ourselves to considering only finite length (n is finite) processes, which is justifiable here because
the termination/liveness paradigm has no effect upon the lattice-theoretical characterisation of
concurrency semantics of processes, we can also introduce, like in Example 3.1, the notion of a set
of execution sequences as another process definition.

-Let ES be a set of process execution sequences each of which is defined on a finite alphabet T of
actions (called transitions), i.e. ES cT* where T* is the set of all finite-length sequences of
elements in T. Let also PREF(ES) be the set of all prefixes of sequences in ES. For each element u
in PREF(ES) we associate a binary n-tuple a such that n=/T/ and for each i=l .. n, ai=l if ti occurs
in u, and ai=O if it does not. After applying the equivalence relation to the elements of PREF(ES),
by which the sequences corresponding to the same n-tuples collapse into one element (equivalence
class) [3], we obtain a new form of a set of traces, denoted as ES 

0

, where each element is in
one-to-one correspondence with a transition firing vector value. If we construct a partial order
relation, S, over this set, which is based on the prefix-order relation between sequences of
PREF( ES) up to permutations, we shall come to the conclusion that ES 

O is also a poset.
Furthermore, if ES is the original set of execution sequences for a process net PN, then it is clear
that due to the above theorems ES 

O is a semi-modular lattice, with respect to S being the natural
ordering of vectors, if PN is a persistent net, and it is a distributive lattice if PN is a marked graph.

Note 3.4 The definition of a process, where each transition may fire only once (so-called
single-run execution), makes it unnecessary to consider persistent and safe nets as a special case
because their single run-execution would be represented as a marked graph.

Now consider the problem of how to construct a partial order semantics on the set of process
actions from the interleaving semantics of the set of execution sequences. We claim the following.

Theorem 3.4 Let us be given the interleaving semantics, ES, of some process which produces
some poset of cumulative states, denoted as ES 

0

• This poset is built over the set of sequences in
PREF(ES) pre/fr-ordered up to permutations. A partial order whose sequentialisations generate the
same ES 

0

,and therefore satisfying ES, can be built on the set of process actions iff ES 
O 

is a
distributive lattice with respect to the partial order.

Proof

(i) Assume a process satisfying ES 
O can be defined by a partial order on the set of its actions. Then

it is possible to construct the corresponding marked graph net PN by associating a transition with
each action and a place with each ordering pair. Furthermore, we should add the input place for
each minimum action in the partial order. These additional arcs are then marked with tokens. Due
to the construction of sets ES 

O and C(PN) and Theorem 3.2, the set C(PN) is a distributive lattice
with zero, and so is ES 

0

• 

(ii) Assume ES 
O is a distributive lattice with zero. To prove the possibility of building a partial

order from ES we need to define the following two relations on the set of process actions.

Two actions a and bare said to be in the< relation, called "a precedes b" and denoted as a< b iff a 
precedes b for each sequence of ES which they occur in. Two actions are said to be in the II 
relation, called "a is independent of b" and denoted a II b, iff "(a < b) & "(b < a). 

Thus using the < and II relations we can build a partial order on the set of actions. This order is 
obviously unique for the given ES because of the way the < and II relations are built. The only 
thing that remains to be treated is that whether this partial order will generate exactly the same ES 

0 

set. Let it generate some ES
°'
. It is clear, by the proof of (i) that ES °' is also a distributive lattice. 

Without loss of generality, assume that ES °' '¢ ES 
O and let ES °':> ES � The latter means that the 

cumulative diagram for ES °' must contain some additional cumulative states. If these states are 
intermediate, i.e. covered each by at least one of the states from ES 

0

, then it contradicts to the 
distributivity of ES 

0

• If this is a set of additional states forming their own independent sequences in 
ES °'

, then it is easily seen that the partial order which has been built from ES 
O will be different 

from the order which has generated ES °'(it will contain more II pairs, and less< ones), which is, 
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again, a contradiction. Q.e.d. 

Note 3.5 We should bear in mind that in constructing a partial order fo:r,: some ES whose ES 
O is 

not distributive, it is possible to obtain the order which, being conv�rted into a marked graph PN 
by the technique described in (i), will generate another interleaving semantics ES'. Of course, ES'• 
is a distributive lattice. It may differ from ES 

O by some additional prefixes which have not been 
presented in ES 

0

• These new prefixes will correspond to some additional cumulative states in 
C(PN) which are covered by the states of the original lattice. Here we emphasize the fact that the 
distributive lattice is the greatest possible set that "contains" prefixes of the execution sequences 
which comply with the given partial order on the process actions (Cf., the synchronisation [3] and 
weaving, or shuffle, [18] operators on the set of traces would be examples of alternative 
manifestations of distributivity.) 

Example 3.1 (continued) Let us build a partial order consistent with ES2 using the< and II 
relations introduced above. We obtain the following: a II b, b II c, a II c. For such a partial order we 
can construct a marked graph net shown in Fig.4. This net generates interleaving semantics ES2' =

ES2 U {cab, cba}. ES2'
0

is a distributive lattice. 

PN3: 

a b C 

Figure 4. Marked graph for a distributive process 

We conclude this section with a reference to the work ofD.E. Muller (it is well presented in [28]), 
who made very similar observations on the taxonomy of lattice characterisations for 
speed-independent asynchronous circuits. Muller had reportedly shown that for specifying 
distributive circuits (those that generate distributive cumulative diagrams of logical element 
switchings), one can use the so-called change charts, which appear to be posets labelled with 
switching actions. We can thus use marked graphs for most succinct specifications of concurrent 
logical circuits if we need to obtain distributive processes in these circuits [29]. 

Semi-modularity and the Merge Paradigm 

In this section we outline a closer (though in a less formal style) look at the processes which have 
been characterised in the above lattice framework as semi-modular. The class of semi-modular 
processes contains that of distributive ones. So we are especially interested here in semi-modular 
and non-distributive processes. Such processes can be specified by persistent, but non-safe, nets. 
An example of such process was presented in Fig.l as PN2. Looking at the behaviour of this net 
more carefully we notice that transition c can fire as a result either of transition b or transition a,

and not necessarily as a result of the both of them. Furthermore, if we do not distinguish between 
the tokens "coming from" a and b to place 3, we have a rather deterministic picture where c
"doesn't care" whose token it is enabled by and it fires rather "indifferently" bringing again such an 
undistinguishable token to its output place 5. This operational determinism results in that the 
cumulative diagram for such a net (Fig,3, C(PN2) is semi-modular and has the greatest element 
111. The corresponding marking diagram MD2 shown in Fig.2 represents a confluent [l]
transition system.

Now look at another way of interpreting the process PN2, which was suggested to the author by 
W.Reisig [30]. We redraw PN2 in such a way as to make the tokens in places 1 and 2 have two
different values (colours) as shown in Fig. 5. We denote it as PN2 '. Assume this net has the
semantics which is represented by the marking diagram MD2' shown in Fig.6. It has two final
states, which the process may enter in either way. This depends on which of the values, A or B
token, first passes through c from place 3 to place 5. To characterise this value-dependent
non-determinism of PN2' in terms of lattices of cumulative states we can extend our definition of
the "non-coloured" transition firing vector to the case of the coloured firing vector. Thus for PN2'
we have a cumulative diagram C(PN2') as shown in Fig.7. One can clearly see that for O,A and B
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ordered as O < A and O < B, this is not a lattice because ABA and ABB have no LUB in it. 

PN2': 

a 

Figure 5. High-level Petri net with non-deterministic behaviour 

MD2': 

5A2B 1A5B 

Figure 6. Marking diagram for Petri net in Fig.5 

CD2': 

AOA BBO 

Figure 7. Cumulative diagram for Petri net in Fig.5 

From these considerations, which may look just a special case, we should however claim the 
following general statements establishing the relationship between control flow semantics, defined 
as the behaviour under the assumption that all tokens are indistinguishable, and data flow 
semantics, defined under the assumption that some tokens may be associated with data values 
(colours). 

Statement 4.1 Purely control flow semantics of a semi-modular non-distributive process is 
deterministic, whereas its data-flow semantics may be non-deterministic. 
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Statement 4.2 Both control and data flow semantics of a distributive process are deterministic. 

Note 4.1 Under the definition of data-independence introduced by M .. Rem [18], we can also 
claim as a corollary: 

Corollary 4.1 Distributive processes are data-independent. 

The data-flow non-determinism of non-distributive processes has a very interesting paradigm 
which is often regarded as a merge operator. The functional semantics of merge has been defined 
for example in [2] where the merge function has two input data sequences Left] and Left2 and one 
output sequence Right which merges Left] and Left2 in either way. 

The functional specification of merge can be done in a number of ways. For example, in a 
Lisp-like notation: 

merge (Leftl, Left2) 
if Leftl = NIL then Left2 

else 
if Left2 = NIL then Leftl 

else 
cons( car(Leftl ),merge( cdr(Leftl ),Left2)) 

or 
cons(car(Left2),merge(Leftl,cdr(Left2)) 

fl 
fl 

The "or" in the above specification is the source of non-determinism of the resultant Right 
sequence, which can be an arbitrary interleaving of the Left] and Left2 sequences providing only 
that the projection of Right on the alphabet of Leftl channel is equal to Leftl, and the projection of 
Right on the Left2 channel alphabet is equal to Left2. 

Our example of the PN2' net (Fig.5) is a net specification of the merge operator for the case of one 
element sequences. 

Another interesting paradigm of generating a semi-modular but non-distributive lattice behaviour is 
attributable to the introduction of labels on the process transitions. In other words, if we consider 
the definition of a labelled process net as a tuple (S,T,F,M0,W ,L) where S,T,F,M0 have the same 
meaning as for a non-labelled net, and Wis a finite alphabet of labelling symbols, labels, and L:T 
-> W is a labelling function, which assigns certain labels to all the transitions of the net. Of course, 
it is possible that this function may assign the same label to more than one transition. 

Now if we introduce the same partial order framework on the behaviour of such a labelled net as 
we did for nets in terms of cumulative diagrams on the set of transition firing vectors, but here the 
vector components would stand for the labels rather than for transitions, we may obtain a different 
lattice-oriented semantics of the given net. (Cf., Hint for proof of Theorem 3.3.) For example, 
having been given a labelled marked graph we may have a distributive lattice of the transition firing 
vector values but the partial order built on the firing vector values for labelled actions may be a 
non-distributive lattice, if, for some reachable markings, there is at least one pair of concurrently 
enabled transitions that have same labels. The following example illustrates this paradigm. 

Example 4.1 Let a labelled marked graph be given in Fig.8. This graph generates a deterministic 
behaviour whose marking diagram converges to the marking corresponding to a token in place 5. 
However, we can distinguish our interpretation of the process observing separately two different 
cumulative diagrams, one for the transition firing vector, as shown in Fig.9, and the other, for the 
labelled action firing vector, presented in Fig.10. The first forms a distributive lattice because the 
given net is a marked graph, while the second, which is homomorphic to the first (with respect to 
the mapping defined in Hint for Theorem 3.3), is a semi-modular, non-distributive lattice because 
action c can be enabled for the first time either as a result of a orb. This example shows that it is 
possible to change the lattice observational view on the process not only by means of (i) token 
distinction (data dependency), but also by (ii) introducing a labelling function, which may assign 
the same label to some mutually concurrent transitions, thus resulting in non-distributive semantics 
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(action labelling dependency). 

Note 4.2 It is interesting to point out again that interleaving semantics, represented in this 
example by the cumulative diagram in Fig. IO, does not give full �nformation about the causal 
structure of events because it may correspond to some other nets, for example, to the non-safe one 
with a place which is shared as an output place· by transitions a and b and which is the input place 
for transition c.

PN3: 

a 

C 

I 

ti t2 

t3 t4 

3 

2 

b 

C 

4 

Figure 8. Marked graph with labelled transitions 
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tl t2 t3 t4 t5 

01010 

11111 

Figure 9. Cumulative diagram for the transition firing vectors 

abed 

1010 0110 

1121 

Figure 10. Cumulative diagram for labelled action firing vectors 

Some Practical Implications of Non-distributivity 

The practice of parallel programming, which is applied to both software and hardware design 
domains, shows that the constructs used for building concurrent programs have either deterministic 
process semantics, which can always be described by partial orders (distributive, or purely parallel 
processes), or non-deterministic process semantics related with such constructs like mutual 
exclusion or general merge operators (non-semi-modular, or non-confluent processes). There is 
however an interesting class of computational behaviour, which corresponds to semi-modular but 
non-distributive process semantics and can be associated with a special construct called a control 
flow merge. The latter provides not only some.specific functionality, which is often overlooked or 
disregarded as "unnecessary or undesirable" (Cf., discussion in Introduction), but, in many cases, 
helps to achieve better performance of the specified concurrent system. 

Wired-OR Logic Synchronisation 

The self-timed design principle used in constructing concurrent hardware [29,31] demands that 
each signal in such a system must be "acknowledged" by other signals through causal relationship 
between them. Thus, the system operates safely, without hazards, and it is impossible that an 
activated signal (for some 0-1 or 1-0 transition) is disabled without reaching its goal state. Usually, 
to achieve such a feature, the synchronisation between signals is organised by means of the 
so-called Muller C-elements [28], which function as some event-oriented AND elements. The two 
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input C-element,which is sometimes called a synchronisation flip-flop (it has an internal feedback 
interconnection), is defined by the following logical function: 

where x1 and x2 are the input signals and y is the output (and feedback) signal. In both transition 

phases, the value of y is changed last with respect to the changes of x 1 and x2 • This ordering, 
corresponding to the required discipline of using a C-element, is depicted by the marked graph net
in Fig. 11.

-x,

-x,

Figure 11. The marked graph specification of C-element behavior 

From this specification we can see that the process associated with this element is distributive. Let 
us now assume that we need to provide synchronisation of a group of modules whose number is 
large enough, and it is impossible to interconnect them to a multi-input C-element. 

In order to synchronise modules in a dist ributed (but non-distributive !) way, we can use a 
wired-OR logic, connecting modules to a fixed number of wires (independently of the number of 
modules synchronised and performing the synchronisation in a safe, deterministic way). It has 
been proved elsewhere [32] that the least possible number of wires needed for such 
synchronisation is three and the module signal transitions on these wires are cyclically shifted 
through these three wires, say, x,y and z, executing at each cycle both the transition-AND and 
transition-OR synchronisation actions. The corresponding behaviour, on a pair of wires, say, x 
and y, can be specified in the way shown in Fig. 12 (for the case of two modules). 

This figure presents a one-third part of the whole specification, and it is easily seen that this 
process is non-distributive: the transition labelled with +x may be enabled either after the +x1 or 

+x2 labelled transition. Thus, here, the use of the non-distributivity paradigm helps to have an
elegant distributed synchronisation instead of having a bunch of individual wires coming to a
common C-element. The part of the dynamic behaviour of a wired-OR "logic element" related to
the above transitions on wire x plays the same role as a one-element merge operator with the purely
control flow semantics - it merges the result of actions +x 1 , +x2 etc on the same wire x, which
exhibits the +x transition as an acknowledgement of the first of the OR-causal actions.
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Figure 12. The Petri net specification of wired-OR logic operation 

Hardware Structures with Redundancy 

Another example of organising non-distributive computations can be found in hardware structures 
with redundancy. Let us have a group (again, for simplicity, we take two) of functionally 
equivalent, but possibly working with different speeds, modules which produce the results of the 
same tasks onto the common data bus, as shown in Fig.13. 

They do it in the manner where the computation result is taken from the first-to-complete module 
and the subsequent completion of the task in the other module is needed only to make the 
comparison of the result of each module with the result established on the merging bus, with the 
possibility to make a backward recovery action in the case of a mismatch. If there is no mismatch, 
the normal computation flow can be already quite ahead of the current point of the result 
matchings, thus making the whole fault-tolerance mechanism operate, generally, faster than in 
conventional schemes, in which a voting element waits for the completion of the tasks in all the 
redundancy modules before producing the final result to the next computation stage. 
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Figure 13. A hardware structure with redundancy 

Scheduling Tasks on Limited Resources 

The final example of a non-distributive but deterministic computation is taken from the domain of 
analysis of dynamic software system behaviour. 

Let us have a group of n independent tasks, say, in an operating system kernel, which may be 
executed concurrently because they have no dependency on data. Unfortunately, the number of 
available resources for their concurrent execution, denoted by m, is such that m < n. again, for 
simplicity, take n = 3 and m = 2. 

Since there is no way to run all the three tasks concurrently, as for example was possible in Fig.4 
for actions a,b and c standing for the tasks, whose duration is denoted by T

a
• Tb and Tc 

respectively, the natural way for achieving maximum performance would be, first, to run two of 
them and then, upon the completion of the fastest of them, to allocate the released resource to the 
third task. This organisational discipline can be depicted by the semi-modular but non-distributive 
process shown in Fig.l, PN2. This scheduling strategy provides some intermediate situation 
between two adjacent distributive computation structures, a fully concurrent computation of Fig. 4 
and a too-restrictive computation ofFig.l, PNl. 

To show the performance gam, which is intuitively quite obvious, we compare the time values for 
these three computation structures. If we denote the computation times for the scheduling schemes 
of Fig.l, PNl, Fig.1, PN2 and Fig.4 as Tl, T2 and T3, respectively, we can easily derive the 
expressions: 

Tl = max (T
a
,Tb) + Tc, 

T2 = max ((min(Ta ,Tb) + Tc),Ta ,Tb), 

T3 = max (T
a
,Tb,Tc) 

Obviously, T 1 ;;=: T2 � T3. 
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Thus if the number of resources is limited, one may resort to a schedule, whose behaviour is 
non-distributive, in order to eliminate the performance loss pertaining to using a partially ordered 
schedule, which would fit the original partial order, determined by data dependencies etc, into the 
limited resource framework. 

Those above and some other examples demonstrate that the semi-modularity paradigm is by no 
means a theoretical exercise, superfluous in real life. Rather, it can support certain modes of 
concurrent computations (distributed synchronisations, structural redundancy, task scheduling 
etc.) in a much more efficient way than can be achieved using just partial order (AND-causality) 
structures. 

Speed-Independent versus Delay-Insensitive Circuits 

The dichotomy between semi-modularity and distributivity (or, in the sense of [20], between 
{AND,OR}- causality and {AND }-causality) brings also some analytical power into the area of 
dichotomy between speed-independence and delay-insensitivity, which makes a special interest for 
the asynchronous design community [23]. 

It is now commonly accepted that an asynchronous hardware circuit is called speed-independent if 
its behaviour is correct and insensitive to the delays of logical elements (elementary gates) that 
constitute the circuit, and the delays of interconnecting wires are negligible. A circuit is called 
delay-insensitive if its behaviour is correct and insensitive both to the gate and wire delays. Hence, 
the class of delay-insensitive circuits is narrower than that of speed-independent ones. 

The word "correct" in the above definitions has the following meaning: the circuit is free from 
logical hazards and every signal transition, often called a signal change, produced at the output of a 
component (a logical gate, for speed independence, and a gate or a wire, for delay-insensitivity) is 
"acknowledged" by some other component before the component is again committed to change its 
output signal. 

It was shown by D.E.Muller (see [28]) that circuits whose behaviour is described by a 
semi-modular cumulative diagram on the set of cumulative states, which are the values of signal 
transition vector, has correct a behaviour that is independent of delays of the components whose 
output signals are the components of the cumulative states. According to this property, a circuit 
with a semi-modular behaviour with respect to its logical gates is speed-independent. 

Assume, again, that the circuit is described by a semi-modular diagram with respect to its gates. 
Can this circuit be delay-insensitive? The answer is not clear until we check if the behaviour of the 
circuit, which is now defined on an extended set of signals because we also include the wires as 
separate components, will remain semi-modular. Staying on general terms of analysis, we can 
easily prove the following important property. 

Statement 5.1 // a circuit which is speed-independent has a semi-modular but non-distributive 
behaviour with respect to its gates, this circuit is not delay insensitive. 

Proof 

Assume, to the contrary, that the circuit, whose behaviour is semi-modular but non-distributive, is 
delay-insensitive. This means that the circuit is insensitive to the delays both in wires and gates and 
every transition on the output of each component has a chance to be acknowledged by some other 
component in the circuit. The latter fact concerns also each wire in the circuit ( of course, we should 
only consider the wires that serve as interconnections between the gates, rather than those 
interconnections which are internal to the gates). Now, because of non-distributivity, we can find a 
signal whose transition is caused by the OR-causality of a pair (without loss of generality, we can 
assume two signals as OR-causes) of signals, i.e. this transition can occur as a result of either one 
or the other transition. It is clear that, in order to implement this causality physically, the circuit 
must contain wires interconnecting the outputs of gates whose signal transitions are the OR-causes 
of the given transition to the input of the gate whose signal transition is the given, 
"non-distributive", transition. Now if we take these two wires as separate components whose 
output signal transitions must always be acknowledged, we come to the situation where because 
the gate whose output exhibits the given transition acknowledges, under OR causality, only one of 
the two cause-transitions produced by the above wires, we fail to acknowledge the other transition 
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and, hence, the corresponding wire's delay may affect the circuit operation. If the circuit is cyclic 
in operation (so called live) then it is possible that the next signal transition will be initiated on that 
wire before the previous transition has completed. So we come to contradiction. The circuit is not 
delay-insensitive. Q.e.d. 

From this statement and the fact that a wire (we do not allow any wired-OR interconnections 
outside the components) cannot be the element whose signal transition is the effect of OR-causality 
- the wire has only one input signal, we can deduce another important claim.

Statement 5.2 If a circuit is delay-insensitive, its behaviour is distributive with respect to all 
components, both gates and wires. 

Concluding Remarks 

We have presented a lattice-theoretical characterisation of some important semantic notions in 
analysis of concurrent systems. Our main effort has been applied to the subclasses of Petri nets, 
persistent, safe and persistent and marked graph nets, which produce a behaviour definable in 
terms of posets of cumulative states of transition firing numbers. The lattice properties of such 
behaviour has led us to the important subclasses of computational behaviours, or processes, 
semi-modular and distributive ones, so we have been able to treat the problem of relationship 
between the descriptive powers of interleaving semantics and partial order semantics of processes 
(single-run executions). 

The characterisation presented fits quite well within the domain analysis of event structures of 
Winskel and the boolean-algebraic analysis of causal automata of Gunawardena. Furthermore, 
because lattices on cumulative states of the net behaviour can generally provide more descriptive 
power than Winskel's domains on event structure configurations our approach sheds more light on 
the subclass of persistent Petri nets, and particularly marked graphs, for which Winskel's safeness 
requirement can be lifted 

This approach has also produced some fruitful results in analysing deterministic nature of 
data-valued semantics of processes, which looks quite promising for further investigation of 
semantics of high-level nets. 

The distinction of a subclass of non-distributive processes from the class of semi-modular 
(confluent in Milner's sense and {AND,OR}-causal in Gunawardena's sense) ones has yielded 
interesting pragmatic implications in the areas of circuit and program design. For example, the 
analysis of speed-independence/delay-insensitivity dichotomy can further help a formulation of 
synthesis restrictions such as: it is impossible to construct a delay-insensitive circuit for a 
specification of a semi-modular and non-distributive behaviour, or there does not exist any 
delay-insensitive implementation for speed-independent circuit whose behaviour is 
non-distributive. 

The paper thus points to several topics for further research, particularly claiming attention to: 

(1) a more rigorous unification of the results on lattice characterisation of persistent nets with
Winskel's domain analysis of safe nets,
(2) a deeper investigation of determinism and confluence in data-flow semantics of high-level nets,
(3) a formulation of a stricter link between implementability conditions for delay-insensitive circuits
and the classes of their behavioral specification.
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Appendix 

Although the main part of the paper, e.g. Section 3, tacitly assumes that the reader is familiar with 
the basic notions of partial order and lattice theory, this brief supplement may appear useful, at 
least to provide a background for mutual understanding between the reader and the author on the 
usage of the following definitions. 

Let S be a non-empty set and :::;; a partial order relation. Then the pair (S,:::;;) denotes the partially 
ordered set (poset). 

Definition A.1 An upper bound of a pair of elements (a,b), a,bES, denoted as UB(a,b), is an 

element c ES such that a:::;;c and b�. A lower bound of a pair of elements (a,b), a,bES, denoted 

as LB(a,b), is an element c ES such that c:::;;a and c::;;h. 

Definition A.2 A least upper bound of a pair of elements (a,b), a,bES, denoted as LUB(a,b), 

is an element c ES such that c=UB(a,b) and for all other d, d=UB(a,b), c:::;;d. A greatest lower 

bound of a pair of elements (a,b), a,bES, denoted as GLB(a,b), is an element c ES such that 

c=LB(a,b) and for all other d, d=LB(a,b), d�c. 

Definition A.3 A poset (S,:::;;) is said to be a lattice iff every pair of elements ( a,b ), a,b ES has 
both LUB(a,b) and GLB(a,b) within S. 

Definition A.4 For two elements a and b of a poset (S,:::;;), a,bES, such that a<b, we say that 

b covers a iff there is no element cES such that a<c<b. 

A usual graphical representation of a poset is a Hasse diagram, in which vertices correspond to the 
elements of the poset and arcs stand for the covers relation. 

Definition A.5 A lattice (S,:::;;) is said to be semi-modular iff for every pair of elements (a,b), 

a,bES, such that both a and b cover GLB(a,b), LUB(a,b) covers both a and b. 

Definition A.6 A lattice (S,:::;;) is said to be distributive iff for any elements a,b,c ES the 
following distributive law is satisfied: 

GLB(a,LUB(b,c)) = LUB(GLB(a,b),GLB(a,c)). 

It is known that an alternative definition based the other distributive law (dual to the above with 
respect to GLB and LUB) is also true, which is a characteristic property of distributive lattices. 

The relationship between the above two classes of lattices is known to be such that distributive 
lattices are a subclass of semi-modular ones.It may also be of some interest to note that another 
class oflattices, modular ones, which is known in lattice theory as a "half-way" between the above 
two, has no adequate paradigm in the semantics of concurrent processes, or better say in the 
"physics of computations". 

An almost standard technique of analysis of a mathematical model as a lattice prescribes that the 

model is first presented as a poset of elements, typically having some structure, with the :::;; relation 
defined in terms of more primitive relations on the components of the structure of the poset's 
elements. The structure of elements is also used as a basis for defining and proving the intuitive 
meaning of the LUB (or, sometimes called, "join") and GLB ("meet) elements in terms of some 
appropriate algebraic binary operators, such as disjunction, max etc and conjunction, min etc, 
respectively. This should finally facilitate giving a positive or negative answer to the question: 
whether the poset is a lattice or not, by checking if the poset is closed under these operations. It is 
also possible, using the values of primitive components, to define the cover relation between 
elements in an adequate and straightforward way, so as to help querying about the lattice's 
semi-modularity. 
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