

Contents

Page

Abstract ... 1

Introduction .. 2

Background ... 4

Semi-Modular and Distributive Process 6

Semi-Modularity and the Merge Paradigrn 13

Some Practical Implications of Non-Distributivity 17

Wired-OR Logic Synchronisation .. 17

Hardware Structures With Redundancy 19

Scheduling Tasks on Limited Resources 20

Speed-Independent Versus Delay-Insensitie Circuity 21

Concluding Remarks .. 22

Acknowledgements ... 22

Appendix ... 23

References .. 24

"

Abstract

The problems of semantic relationship between causality and interleaving and analysis of
functional determinism and do.ta dependency are tackled in terms of a lattice-theoretical approach.
We introduce a basic form of poset, the poset of cumulative states of concurrent system behaviour
(these states can be represented as multisets of process actions attributed to the events thus far
occurred in the system), which is called a cumulative diagram. It helps to characterise particular
subclasses of Petri net based processes, semi-modular and distributive ones, by means of the
major background theorems stating that
the cumulative diagram of a persistent (safe and persistent, marked graph) Petri net is a
semi-modular (distributive) lattice with a zero element.

The study then claims the following:
(i) the partial order semantics is descriptively equivalent to the interleaving semantics only for

distributive processes;
(ii) an operationally semi-modular process (confluent, in the Keller-Milner's sense), which may

however be non-distributive, can have some form of functional non-determinism (and,
hence, lose its confluence) - this results in:
(ii.I) the impossibility to derive uniquely a partial order description from a given set of

execution sequences, and
(ii.2) the distinction of possible execution sequences outcomes because of the merging of

differently valued token flows.
With respect to the (ii.2) issue we also claim that the purely control fl.ow semantics of a
semi-modular but non-distributive process is deterministic while its data fl.ow semantics may be
non-deterministic, and both the control and data flow semantics of a distributive process are
deterministic.

The properties herein discussed, using lattice-theoretical tools, nicely fit into the previous bed of
results on stability (by G.Winskel), confluence (by R. Keller and R.Milner), {AND+OR}causality
(by J.Gunawardena), conservatism and do.ta-independence (by M.Rem).

We demonstrate some interesting practical implications of the lattice characterisation of concurrency
in digital circuit and program design domains.

Topics covered: causality/partial order theory of concurrency, analysis and behaviour of
nets,high-level net models, application of nets to hardware structures

1

/\

Introduction

Concurrent systems, as opposed to sequential ones, suggest a number of ways to be semantically
characterised. This basically stems from the problem of finding an adequate representation of
concurrency paradigm in any of the formal frameworks employed,among which the most popular
are state-transition systems [l], CSP [2], trace sets [3], nets [4], algebra of interacting agents [5].
Before using any of these or some other notations one has to clearly realise which form of
concurrency semantics is needed for him/her and which is implied by the model. For the last ten
years the subject of relationship between the various concurrency semantics has acquired
tremendous interest among not only theoreticians but also in the practical design community [6,7].
For example, in our everyday practice of asynchronous digital hardware design we have been
witnessing how important it is to match the meaning of execution of the Petri nets used for
specifying self-timed systems with that of logical circuit dynamics [8].

The approach to represent a concurrent system's behavioral semantics through the set of execution
sequences, or traces, was obviously inspired by the relationship between state-transition systems
and the languages represented by them, which appeared to be quite natural for sequential systems.
Further developments of this view, with concurrency flavour, have given rise to such semantics as
step sequences ("execute as possible but not necessarily with maximal concurrency") , maximally
concurrent semantics [9], and partial order semantics [10].

Recently, a series of contributions to the EATCS Bulletin tackled the controversy between causal
(partial order) semantics and interleaving semantics [11-13]. The main result of these discussions
could be summarised as follows. Although interleaving semantics can be suitable in certain,
especially simulation-oriented, applications, the causal view upon concurrency is generally more
versatile, especially when one has to deal with refinable specifications [11], or when specific
properties like confusion, choice-absence, strong concurrency and "causal-next" relation, inherent
in causal semantics [13], should be treated. Another important practical issue in favour of
partial-order semantics is that it can be helpful in avoiding state-explosion problem, by explicit
separation of concurrency from non-determinism, thus making tractable reasoning about
concurrent systems [14].

In [15] we have outlined, by means of examples observation, the idea of a somewhat alternative
treatment of the above controversy, viz. using the concept of partially ordered sets (posets) and
lattices on the cumulative states of concurrent systems. Such states represent a history of the
system's behaviour through numerical records of action occurrences with respect to certain initial
state of the system. In other words, the poset and lattice characterisation can therefore be made also
for the set of traces themselves (as opposed, and in addition, to the partial orders and lattices which
are usually defined on the set of processes, trace sets or other forms of computation behaviour
description [2,3]): by collapsing the traces into their equivalence classes, the so-called multisets of
process actions, which are just another way to represent cumulative states. The first attempt to
highlight the link between dynamic behaviour of Petri nets and lattices was made in [16] by
Landweber and Robertson, who used Keller's fundamental arguments about the persistence
property in parallel computations to prove that the Parikh space (which is similar to the cumulative
state set) for a persistent Petri net forms a lattice under the natural ordering of integer vectors.

In this paper, a more in-depth discussion of the problem is presented. First, we introduce a
lattice-theoretical framework of concurrent system behaviour, which is then used for laying a
distinction between distributive and semi-modular processes. For the sake of clarity, we restrict
ourselves with the processes that are free from choices in their execution. Rather, we allow only
those alternative execution sequences, in terms of interleaving semantics, which are due to
concurrency and its "non-deterministic" simulation, but not pertaining to condition-branches or
conflict resolution. So far, this gives us necessary separation of concerns, whereof the central is
the pure concurrency concern.

One of our main results is that partial order semantics is equivalent, by its descriptive power, to
interleaving semantics only for distributive processes. Paving our way to this statement, we prove
important theorems stating that partial order specifications given in terms of Petri net subclasses
produce the cumulative state (or, equivalently, action multiset) behaviour which forms a
semi-modular lattice if the net is persistent, and a distributive lattice if the net is safe and persistent
or a marked graph net.

2

(\

Another important conclusion is that an operationally semi-modular process, which may however
be non-distributive, can have some form of functional non-determinism which results in: (i) the
impossibility to derive uniquely a partial order description fro,;n a given set of execution
sequences, and (ii) the distinction of possible execution outcomes because of the merging of
differently valued token flows.

The (ii) issue is discussed through an extended interpretation of a Petri net, by means of a
high-level net [17], in which tokens may have certain data values, or colours, and transition firings
may produce distinguished resultant markings with respect to the values of tokens in input places.
Analysis of this data-valued token interpretation allows us to establish a relationship between the
control flow semantics, defined as the behaviour under the assumption that all tokens are
indistinguishable, and data flow semantics, defined under the assumption that tokens may be
associated with data values. We claim that the purely control flow semantics of a semi-modular but
non-distributive process is deterministic, while its data flow semantics may be non-deterministic,
and that both these semantics of a distributive process are deterministic. The latter result
corresponds to the concept of data-independent and conservative processes presented in [18].
Thus, a data interpreted process is data-independent iff it is distributive.

Note that the results obtained with the lattice-theoretical approach are quite coherent to the ideas in
[19], where stable event structures and safe Petri nets are characterised within the framework of
algebraic domains. Here, the same class of processes is called distributive, with the restriction of
considering only the processes free from choices. Our analysis, however, lifts to another direction,
viz. to the case of persistent (and, generally, not necessarily safe) nets, where the partial orders
generated form semi-modular lattices (which are, in other words [19], a proper subclass of
consistently complete and algebraic domains - of course, up to isomorphism), and moreover, for
the case of marked graphs, even distributive lattices (corresponding to finitary a1J,d prime algebraic
domains [19]). This suggests [20] some way for unification by stating that a persistent and safe
net generates the same, finitary and prime algebraic, domain up to isomorphism. This latter result,
although being announced here because of its obvious theoretical importance, would, of course,
demand more space for discussion than the limits of the present paper may allow. It is therefore
postponed to a subsequent paper.

Recently, the investigation of similar properties has been done using causal automata [21], which,
in an explicit form of event causality, exhibit both distributive (AND-causality) and semi-modular
({AND,OR}-causality, which is identical to confluence in the sense of Milner's [22] notion)
paradigms.

Our analysis, therefore, brings us to a very important point where it seems quite necessary to
further examine the semantics of Petri net non-safeness because of its obvious two/ old nature: on
the one hand, it represents the purely event-causal (OR-causality) paradigm, or the so-called "input
conflict", which focuses on the possibility of alternative, and not necessarily mutually exclusive,
causes for the same event (and this has been the main glory for both [19] and [21]); on the other
hand, it may represent purely flow meaning, where the multiple tokens in the net places are just the
result of larger "token traffic" through the actions, without any causality complications. The
importance of the above distinction becomes even higher when we need to study the semantic
picture of high-level nets where even the flow semantics of multiple tokens, as we attempt to
show, brings some form of input conflict manifesting itself in data-dependency.

As a point to justify our approach it is worth quoting from Winskel's introduction to [19]: "There
remains the curious mismatch ... : a computation which is described by an event structure, or Petri
net, gives rise to a whole domain whereas usually in denotational semantics a computation denotes
a single element of a domain". It remains then to hope that this work would also contribute to
solving the above mismatch.

For the reasons of pragmatism, which appear to be quite demanding because, as [21] states, "most
authors ... have found instability to be either unnecessary or undesirable", we demonstrate some
interesting practical implications of the lattice characterisation of concurrency in circuit and program
design domains, where, sometimes, the question of "necessity" or "desirability" cannot simply
arise because of the "inevitability" of OR-causality (and hence, instability). We put more
emphasis on the hardware examples where the "semi-modular but non-distributive" paradigm of
merge has important, and perhaps novel to the reader, consequences in functionality. Here we
show how merge is implemented in a wired-OR logic, in afault-tolerant structure with module

(\

redundancy and in a task scheduling system, where it is either an initial prerequisite of structural
requirements ("inevitability" case) or can speed up the performance ("both "necessity" and
"desirability" case) under certain assumptions of relative delay value�. The final topic of the
implications section is analysis of a dichotomy. recently emerged in the area of asynchronous
circuits [23]. between speed-independence and delay-insensitivity. where the latter is a stronger
form of insensitivity of a circuit's correct behaviour to the delays in components (the delays are
both in gates and wires) than the former (the delays in wires are negligible). We prove that the
cumulative diagram describing the behaviour of a delay-insensitive circuit is distributive. This also
means that any speed-independent circuit whose behaviour is semi-modular and non-distributive
cannot be delay-insensitive.

Background

The discussion presented in this paper is based on some subclasses of Petri nets. The reader may
find some of our notions as being restrictive. Basically. we need only the formalism of ordinary
Petri nets. which is defined below. but in treating non-distributive processes with valued tokens. in
Section 4. we shall make a special resort to token-valued nets.

Also. for supporting analysis of our models by means of lattices. a short list of definitions and an
outline of appropriate proof technique is presented in Appendix. For more serious introduction on
lattices we recommend [24].

Definition 2.1 A quadruple PN = (S,T,F,Mo> is said to be a marked Petri net (shortly, a net) iff:

S and T are finite non-empty sets; S nT = �; F £ (S x T) U (T x S); M
0

: S -> N; where N
denotes the set of non-negative integers. Every mapping M: S ->N is called a marking of PN, and

for every x ES UT we denote:

ln(x) = {y: (y,x) E F} and Out (x) = {y: (x,y) E F}

The elements of Sand T are called places and transitions, respectively. Graphically they are
represented as circles and boxes (bars). F is the flow relation of PN. It is represented by arcs
joining boxes and circles, thereby defining the incidence function between transitions and places.
M

0
is called the initial marking of PN. Any marking M is visualised by the appropriate number of

dots, called tokens, inside circles, i.e. M(s) tokens inside the circle representing a places.

A Petri net PN can generate a dynamic beha,viour. This behaviour, or execution, is characterised
by the corresponding semantics of the sequences of transition firings. We introduce it as follows.

Definition 2.2 A transition t ET in a net PN = (S,T,F,M
0

) is said to be enabled under the

current marking M if/for all s Eln(t) M(s) � 1.

Definition 2.3 A transition t ET in a net PN = (S,T,F,M
0

) can fire if/ it is enabled. The firing of

t results in the new marking M' such tha,t for every s E S:

M'(s)= {
M (s) - 1 if/ s E ln(t) - Out(t)

M(s) + I if/ s E Out(t) - In(t)
M(s) otherwise

Graphically, the firing of a transition is represented as an instantaneous action removing exactly
one token from each of the input places of the transition and adding exactly one token to each of its
output places.

The above two definitions are fundamental in defining the so-called execution sequences model,
which was the most commonly used kind of Petri net semantics [25]. It was shown that such a
view does not distinguish between arbitrary interleaving (when two transitions can fire sequentially
but in either order) and concurrency (when two transitions are enabled under the same marking and

4

(\

can fire independently). For the purposes of this study, we do not need to abandon this semantics
and refer to some other, more recent ones, such as, for example, the step sequence semantics, in
which subsets of transitions firing simultaneously are defined.

Definition 2.4 Two markings M and M' of a net PN = (S,T,F,M0) are said to be in direct
sequence relation with respect to a transition t ET if/ t fires under M and such firing results in M'.
We denote this as M ft> M'. Correspondingly, M and M' are said to be in sequence relation with
respect some sequence of transitions <J = t1 ... tn where ti , ... ,tn ET iff there exist markings
Mi, ... ,Mn satisfying: Mft1>M1 ft2> M2 ... ltn>Mn =M'. We denote this as M [<DM'. We also
use notation M [> M' if we are not particularly interested in mentioning a firing sequence.

H two markings Mand M' are in the (direct) sequence relation, this fact also means that M' is
(directly) reachable fromM.

For two firing sequences <J and 't', 't'= t1 •.. tn , we define (<J + -r), called the excess of <Jover 't', as

follows: Let u
0
be <J. Obtain <Ji+J by deleting the leftmost occurrence of ti from <Ji, if ti occurs in

<Ji. If not, then <Ji+l=<Ji. Define (<J + 't') to be <Jn +J•

The dynamics of net behaviour can be conveniently depicted by the so-called reachability graph in
which vertices stand for the markings reachable from the initial marking Mo.

Definition 2.5 The triple MD = (M
0

, ->, R) is said to be the marking diagram of a net PN
=(S,T,F,M

0
) where M

0
is the initial marking, -> is the direct sequence relation, and R is the set of

markings reachable from M
0

•

The net's marking diagram is thus represented by the reachability graph. An arc of such a diagram
is associated with the transition which fires under the marking standing for the beginning vertex of
the arc and results in the marking associated with its ending vertex. Thus, the marking diagram

allows one to build, for a given firing sequence of transitions a= t1 , ... ,tn starting under the

marking M
0

, the unique corresponding sequence of markings M
0

, •.• ,Mn, and vice versa.

It is easily seen that from the marking diagram of a net one can derive all the firing sequence
semantics. A number of characteristic properties of the net can also be established from it, e.g.
reachability, liveness, boundedness etc. In this discussion, our main interest turns to algebraic
properties of the net behaviour that have no direct link with these, operational, issues.

Let <J be a sequence of transitions of PN = (S,T,F ,M
0

). Let # o(t), t ET, denote the number of
times t occurs in <J. The following statement is true due to the firing semantics definition.

Statement 2.1 For a PN = (S,T,F,Mo) and aft.ring sequence <J starting under marking M, the
resulting marking M' is such that for every s E S:

M'(s) = M(s) + L #<J (t) - L #<J(t)

t E In(s) t EOut(s)

Definition 2.6 Let PN = (S,T ,F,M
0

) be a net. A vector a having dimension n=/T/ is said to be

the transitionfiring vector if/for some firing sequence <J= tkJ, .. -,t1an starting from initial marking

M
0

: ai = # <J(ti) where i = 1, ... ,n and ti E T.
ai is said to be the i- th component of a.

5

(\

It is seen from this definition that each sequence of transition firings, with respect to initial marking
M

0
,_stands for the unique value of the transition firing vector, and hence, again, with respect to

M
0

, we can build the set of such values which can be mapped onto the set of reachable markings
using the equation from Statement 2.1.. Such mapping implies that the all zero value, aO = (0, ... ,0)
stands for M

0
, and for some ti and M such that M

0
[ti >M, we build combination al which

differs from aO only by the presence of one in the i-th position, thus meaning that transition ti has
fired for the first time: When moving along any firing sequence in the marking diagram from M

0
it

is quite straightforward to map (one-to-many) on vector values aO, al,

Consider a set A of values of the transition firing vector. On this set, we define
a partial order relation such that for a, b E A a :::; b iff there exist two firing
sequences a and (3 starting from the initial marking M0 , whose firing vectors are a

and b, respectively, and a is prefix of (3. Furthermore, the least upper bound of a
and b, if exists, is denoted LUB(a, b), and the greatest lower bound as GLB(a, b).

Note 2.1 Such an ordering was proved to be a partial order by Gunawardena
(20], who called it prefix order up to permutations to reflect the characteristic
property of Petri nets, sometimes called "the principle of irrelevance of history"
or trace permutability.

Definition 2.7 A pair C(PN) = (C, �),which is a partially ordered set (poset), is said to be the
cumulative diagram of net PN =(S,T ,F ,M

0
) iff C is the set of values of the transition firing vector

constructed for all firing sequences of PN with respect to M
0
.The elements of C are called

cumulative states.

The graphical representation of C(PN) would be a Hasse diagram with the zero element standing
for the initial marking.

The presence of the zero element in C(PN) guarantees that for any a,b EC there exists a lower
bound. However, due to potential non-determinism in the net's behaviour we cannot state that
C(PN) is generally a lattice. The following sections restrict our consideration to such subclasses of
Petri nets as marked graphs and persistent nets, for which C(PN) forms a lattice with respect to the
above ordering relation.

Note 2.2 The reader may however try as an exercise to disprove that C(PN) of an arbitrary live
net is a lattice (or even a lower sublattice), by finding an example of such a net for which, for some
two elements a and b in C, there is no GLB(a,b) in C. We call a net live iff each of its transitions
is live. According to [25], a transition ti is said to be live iff for any M, which is reachable from

M
<>'

there exists a firing sequence such that ti is enabled under M' and M[a>M'.

Note 2.3 It is also possible to build the same partial order on the set of equivalence classes of the
net's firing sequences, which can be regarded as multisets of transitions, or "traces" using the
terminology of [3].

Semi-modular and Distributive Processes

In this section we restrict ourselves with the subclass of behaviours which have no conditional
branches or conflicts between transitions. Using such a restriction, we establish a class of lattices
that are generated by purely concurrent processes. In terms of marked Petri nets these processes

(\

can be defined, in their finite representation, as marked graphs.

Definition 3.1 A net PN = (S,T ,F,M
0

) is said to be a marked graph if/for each place si E S:
/ In(sJ/ S 1 and I Out(sJ/ SI.

Since a marked graph assumes no more than one input and one output transition for each place, we
do no longer need a bipartite representation of such a net. Without any special definition we shall
allow a marked graph, wherever it gives notational convenience, to be a directed graph whose
vertices are semantically identical to the transitions of the corresponding Petri net and the arcs stand
for the places of the net. Hence, the marking function is defined on the set of arcs. Again,
graphically, it is designated by placing the appropriate number of tokens onto the arcs.

Before we present a lattice-theoretical characterisation of the processes described by marked graphs
we should introduce a wider subclass of Petri nets, which are also conflict-free with respect to
transition firing.

Definition 3.2 A net PN = (S,T,F ,M
0

) is called persistent if/ for each marking M reachable

from M
0

any transition ti ET enabled under M either remains enabled in the markings directly

reachable from M or fires thus leading to a marking M' such that M [ti> M', i.e. if M[ti> and

Mft1,••·•tk>M1, where ti i!{tJ,···,t,J, then M1fti>-

In other words, in a persistent net a once enabled transition cannot be disabled by the firing of
another transition. Persistent nets were studied in [16], but, by and large, with respect to the
reachability and boundedness problems. There is, however, an important theorem (Theorem 3.1)
in [16] stating that the Parikh space (the set of cumulative states, in our terms) built for a persistent

net is a lattice under the natural ordering of vectors (x S y iff xiSYi for all i, 1 Si.Sn). The proof of
this theorem is based on the following important lemma.

Lemma 3.1(16] Let a 1 and a2 be two firing sequences starting under the initial marking M
0

of a persistent net. Then there is a firing sequence /3, starting at M
0

, such that
b = max (ai,a2),

where a1,a2 and b the firing vectors (Parikh map points in [16]) co"esponding to a1 ,a2and /3,

respectively, and max denotes the componentwise maximum operation. Moreover, /3 may be

constructed so that /3= a 1 · (a 2+a 1), where · stands for usual concatenation of two sequences,

and + denotes the excess (as defined in Section 2).

This lemma also helps in proving the following.

Lemma 3.2 For a persistent net, if a1<= a2, where a1 and a2 are two cumlative states in (C, S)

and<= stands/or the natural ordering of vectors,<= is identical to the partial order 5:

Proof

Itis sufficient to show just that a1<= a2 implies M1[>M2, where M1 and M2 are reached from the

initial marking by the firing sequences corresponding to a 1 and a2 in accordance with Definition

2.6 and Statement 2.1. Let a
1
and a

2
stand for such sequences, respectively. According to

Lemma 3.1, we shall have, following the same notation, that b = max (ai,a2)=a2. Hence, due to

Statement 2.1, /3 leads to the same marking, M 2, as a
2

• Furthermore, since /3= a 1 · (a 2+a 1),

which means that /3 passes through Mi , after its partial execution a 1, it is clear that M 2 is

reachable from M1 by the firing sequence (ar,a1).Q.e.d.

7

(\

This lemma justifies, in our further discussion that takes place within the class of persistent nets
(and marked graphs), the usage of the natural ordering of vectors as the-partial order 5 relation
under the conditions of Definition 2. 7.

The following theorems are most crucial for the taxonomy of processes in terms of lattices. Our
Theorem 3.1 strengthens the corresponding result of Theorem 3.1 in [16].

Theorem 3.1 The cumulative diagram C(PN) of a persistent PN is semi-modular lattice with a
zero element under the ordering of Definition 2 .7(the natural ordering of vectors).

For notational convenience, define a disjunction a Vb, as a componentwise maximum, i.e. (a v
b);= max (ai,bi),and a conjunction a Ab, as componentwise minimum, i.e. (a Ab);= min (ai,bi)
for any a and bin C.

Proof of Theorem 3.1

By arguments similar to those used by Landweber and Robertson [16] and by Lemmas 3.1 and 3.2
we can state that C(PN) is a lattice under the natural ordering of vectors.

For semi-modularity of the lattice, we must show that if two distinct elements a and b in C both
cover an element c in C (in which case c is obviously GLB(a,b)), then both are covered by
LUB(a,b). By covering, we mean that a covers c if c < a and there is no element d such that
c<d<a. In C(PN), it is clearly seen that a covers c iff there is one transition in PN such that ai = ci

+ 1 and ai=ci for all other transitions.

Let a = (ai,a2, ... ,an) and b = (bi ,b2, ... ,bnJ where a i=b. Since c is covered by both a and b, we
have that c differs from a in just one component, say ai * ci; similarly, b differs from c in just one
component, say bi * ci

' Note that i * j. Thus we have that under some marking M corresponding
to c two transitions are enabled, ti and ti. Due to persistency, there must be markings M1, M2 and
M3 such thatM[ti>M1 , M[�>M2, Mifti>M3 andM2[ti>M3 with a,b andLUB(a,b) corresponding
to M1 , M2 and M3, respectively. Thus a and b differ from LUB (a,b) by only one component, ai
and bi respectively, which is, in each case, greater than the corresponding component of a and b.
Hence LUB(a,b) covers both a and b, and we have proved the semi-modularity of the lattice
C(PN). Q.e.d.

Statement 3.1 A marked graph is a persistent net.

This is true because if a transition ti of the marked graph is enabled, each of its incoming arcs (in a
monochromatic version) contain at least one token and there is no way to remove this token other
than to have this transition fired

Theorem 3.2 The cumulative diagram C(PN) of a marked graph PN is a distributive lattice with
a zero element under the ordering of Definition 2. 7(natural ordering of vectors).

Proof.
1. It is easy to prove that if C(PN) is closed under the disjunction and conjunction, then C(PN) is
a distributive lattice. In fact� with such assumptions and Lemma 3.2, LUB (a,b)=a Vb, GLB(a,b)
= a Ab. Then

GLB(a,LUB(b,c))
j
= (a A (b V c))

j = min(a
j
, max(b

j
,c

j
))= max (min(a

j,bj
),min(a

j
,c

j
))= ((a A b)

V (a A c))
j = LUB(GLB(a,b),GLB(a,c))

j
.

Similarly, the second distributivity law can be checked.

2. We now prove that for a marked graph PN, C(PN) is closed under disjunction and conjunction.
In fact, Lemma 3.1 provides us with the fact that C(PN) is closed under disjunction.

8

I\

To prove the second issue we need the definition of the inverse of a net.

Definition 3.3 The inverse of a net PN = (S,T ,F,M
0

) is the net PN' = .(S,T,F',M
0

) where F' =
{(s,t): (t,s) E FJ U {(t,s): (s,t)E F}.

Note 3.1 For a marked graph PN, the inverse PN' preserves all the basic properties, such as
strong connectivity, liveness, safeness to name but a few. The reachability of PN' is equivalent to
the backward reachabilty of PN.

Due to the above note we have that the number of firings of some transition ti between any two
markings M' and M" belonging to some sequence of reachable markings in a marked graph PN is
equal to that of the same transition ti between M" and M' belonging to the sequence of markings
for the inverse.

Consider two elements a and bin C(PN). Let M(a) denote the marking corresponding to a.

Thus there can be found two non-intersecting (except for the beginning and ending points)
sequences of values of the transition firing vector GLB(a,b), ... , a, ... , LUB(a,b) and
GLB(a,b), ... ,b, ... , LUB(a ,b) which correspond to the sequences of markings
M(GLB(a,b), ... ,M(a), ... , M(LUB(a,b)) and M(GLB(a,b)), ... ,M(b), ... ,M(LUB(a,b)). Due to
closure under disjunction, we have LUB(a,b)j = (a V b)j = max(aj,bj) for any j such that J Sj5n.

Consider now the inverse of PN initialised in marking M(LUB(a,b)), which we denote as PN'.
For such PN' we have two corresponding execution sequences beginning in M(LUB(a,b)):
M(LUB(a,b)), ... , M(a), ... ,M(GLB(a,b)) and M(LUB(a,b)), ... ,M(b), ... ,M(GLB(a,b)), which
are the inverses, both in terms of series of markings and those of transitions fired, of the sequences
for PN, since the reachabilities, forward and backward, are equivalent for a marked graph and its
inverse, respectively.

For these two sequences of markings of PN' we can build the corresponding sequences of values
of the transition firing vector with respect to the initial marking M(LUB(a,b)), which stands for the
zero element of C(PN').

For any transition tj in PN' the firing numbers between M(LUB(a,b)) and M(a) , M(b) can be
respectively expressed as:

a'•= max(a-b-) - a-and b'· = max(a-b-) - b-
J J' J J J J' J J (*)

Since the set C(PN') is closed under disjunction we have LUB(a',b')j = max(a1,b1) and it
follows from(*) that max(a1,b'j) = max(aj,bj) - min(aj,b/

Thus,

Since the number of firings of ti between M(GLB(a,b)) and M(LUB(a,b)) in PN is equal to that
between M(LUB(a,b)) and M(GLB(a,b)) in PN', we have

LUB(a,b)i - GLB(a,b)i = LUB(a',b')i- GLB(a',b')j = [max(ai,bi) - min(aj,bj)l - 0 = max(ai'bi)
- min(aj,bj).

Also, LUB(a,b)j = max (aj.bj), and hence GLB(a,b)j = min (aj,b/ Thus C(PN) is closed under
conjunction. Bearing in mind part 1 of the proof, C(PN) is a distributive lattice with zero
(0,0, ... ,0). Q.e.d.

Without a full proof, which is rather lengthy, we claim the following.

Theorem 3.3 The cumulative diagram C(PN) of a persistent and safe net PN is a distributive

9

(\

lattice with a zero element under the ordering of Definition 2.7(natural ordering of vectors).

Note 3.2 A net PN = (S,T,F,M0) is called safe iff for any madcing M reach�ble from M
0

M(s)�l for each s ES.

Sketch of proof of Theorem 3.3.

The proof can be done using the fact that a safe and persistent net can be transformed into a marked
graph by duplicating some transitions and places [26]. This duplication, however, preserves the
strict ordering between firings of the marked graph transitions corresponding to the same
transitions in the original safe and persistent Petri net.

The necessary behavioural equivalence of the cumulative diagrams, of the original net and the
marked graph, is guaranteed by this transformation because potential multiple instances of the same
transition, in the marked graph, can not be enabled concurrently. The complete proof, which is
postponed to a subsequent paper, would of course require the following technique:
(1) defining a net with a multiset of transitions and(or) a labelled net, by introducing a labelling
(functional) mapping of the set of transitions onto the set of transition names. (The transformation
gives the names of the original net transitions as the labels for the marked graph net transitions);
(2) defining the set of labelled firing sequences, and the corresponding set of cumulative states of a
labelled net (the so-called labelled cumulative states) with respect to the occurrences of the
transition labels;
(3) defining the mapping of a set of original (unlabelled) cumulative states onto that of labelled
ones, and then proving that this mapping preserves the partial order (implying homomorphism of
the cumulative diagrams);
(4) proving that if the labelled PN, in any reachable marking, does not allow, in its behaviour,
more than one transition with the same label to be enabled, then the unlabelled cumulative diagram
is isomorphic to the labelled one.

It is worth noting that the effect of labelling, which is further exemplified in Section 4, discussing
the merge paradigm, has also been examined in the context of deterministic causal automata [21].

Note 3.3 It is obviously not true that a persistent non-safe net always generates semi-modular
non-distributive cumulative diagram. It is sufficient to take a non-safe marked graph. This means
that the non-distributivity paradigm has a nature different from unsafeness or unboundedness. It
stems from the purely causal reasons and the so-called "input conflict" (or "OR-causality" [21]),
when an action may be initiated by alternative, but not mutually exclusive, causes. This kind of
conflict would manifest its non-deterministic flavour in the backward reachability (for example,
when it is impossible, for a marking with two tokens in the same place, to determine which one of
the two concurrently fired transitions has first added a token into their shared output place).

Now we are ready to tackle our main objective on the relationship between partial order semantics
and interleaving semantics. Although we should, first, consider an example.

Example 3.1 Consider two nets, PNJ and PN2, as shown in Fig.I. They are both persistent.
Furthermore, PN I is a marked graph. The corresponding marking diagrams, MDI and MD2, for
these nets are shown in Fig.2. The execution sequences, in terms of the interleaving semantics, are
given by ESJ = {abc, bac} and ES2 = {abc,bac,acb,bca}, for PNJ and PN2 respectively. The
cumulative diagrams of transition firing number vectors, C(PNJ) and C(PN2), are shown in
Fig.3. From these two diagrams one can deduce that for PNJ a poset of cumulative states is POI=
({000,J00,010,110,lll},�) and it forms a distributive lattice with zero 000, and for PN2 the
poset is PO2 = ({000,100,0J0,J0J,JJ0,0ll,lll}, �). which is semi-modular lattice with zero

000. Since for a=I0J and b=0l I, c = a A bis determined as ci = min (ai,bi), i = 1,2,3, and
hence, c = 001, whereas the GLB(a,b) = 000, we deduce that PO2 is not distributive.

From this example we can see that there must be some relationship between the lattice-theoretical
class of a process described by the net (here we had a distributive process depicted by the marked
graph and semi-modular process associated with the persistent non-safe net) and the possibility to
construct a unique partial order on the process events. To characterise such a relationship we first

10

(\

need to define a process as an acyclic net (often called an occurrence net [19]) in which every
transition fires at most once thus forming a unique process event. The appropriate definition can be
found in [27].

PNl:

a

MDI:

CDl:

2

b

4

PN2:

a

Figure 1. Petri nets for Example 3.1

MD2:

Figure 2. Marking diagrams for Example 3.1

abc abc

CD2:

C

Gil)
Figure 3. Cumulative diagrams for Example 3.1

11

2

For a process, the poset of transition firing vector values would of course be defined on binary
n-tuples where n is the number of transitions. Each component ai of such cumulative state a would
either be zero (transition ti has not yet fired) or one (transition ti has already fired). If we restrict
ourselves to considering only finite length (n is finite) processes, which is justifiable here because
the termination/liveness paradigm has no effect upon the lattice-theoretical characterisation of
concurrency semantics of processes, we can also introduce, like in Example 3.1, the notion of a set
of execution sequences as another process definition.

-Let ES be a set of process execution sequences each of which is defined on a finite alphabet T of
actions (called transitions), i.e. ES cT* where T* is the set of all finite-length sequences of
elements in T. Let also PREF(ES) be the set of all prefixes of sequences in ES. For each element u
in PREF(ES) we associate a binary n-tuple a such that n=/T/ and for each i=l .. n, ai=l if ti occurs
in u, and ai=O if it does not. After applying the equivalence relation to the elements of PREF(ES),
by which the sequences corresponding to the same n-tuples collapse into one element (equivalence
class) [3], we obtain a new form of a set of traces, denoted as ES

0

, where each element is in
one-to-one correspondence with a transition firing vector value. If we construct a partial order
relation, S, over this set, which is based on the prefix-order relation between sequences of
PREF(ES) up to permutations, we shall come to the conclusion that ES

O is also a poset.
Furthermore, if ES is the original set of execution sequences for a process net PN, then it is clear
that due to the above theorems ES

O is a semi-modular lattice, with respect to S being the natural
ordering of vectors, if PN is a persistent net, and it is a distributive lattice if PN is a marked graph.

Note 3.4 The definition of a process, where each transition may fire only once (so-called
single-run execution), makes it unnecessary to consider persistent and safe nets as a special case
because their single run-execution would be represented as a marked graph.

Now consider the problem of how to construct a partial order semantics on the set of process
actions from the interleaving semantics of the set of execution sequences. We claim the following.

Theorem 3.4 Let us be given the interleaving semantics, ES, of some process which produces
some poset of cumulative states, denoted as ES

0

• This poset is built over the set of sequences in
PREF(ES) pre/fr-ordered up to permutations. A partial order whose sequentialisations generate the
same ES

0

,and therefore satisfying ES, can be built on the set of process actions iff ES
O

is a
distributive lattice with respect to the partial order.

Proof

(i) Assume a process satisfying ES
O can be defined by a partial order on the set of its actions. Then

it is possible to construct the corresponding marked graph net PN by associating a transition with
each action and a place with each ordering pair. Furthermore, we should add the input place for
each minimum action in the partial order. These additional arcs are then marked with tokens. Due
to the construction of sets ES

O and C(PN) and Theorem 3.2, the set C(PN) is a distributive lattice
with zero, and so is ES

0

•

(ii) Assume ES
O is a distributive lattice with zero. To prove the possibility of building a partial

order from ES we need to define the following two relations on the set of process actions.

Two actions a and bare said to be in the< relation, called "a precedes b" and denoted as a< b iff a
precedes b for each sequence of ES which they occur in. Two actions are said to be in the II
relation, called "a is independent of b" and denoted a II b, iff "(a < b) & "(b < a).

Thus using the < and II relations we can build a partial order on the set of actions. This order is
obviously unique for the given ES because of the way the < and II relations are built. The only
thing that remains to be treated is that whether this partial order will generate exactly the same ES

0

set. Let it generate some ES
°'
. It is clear, by the proof of (i) that ES °' is also a distributive lattice.

Without loss of generality, assume that ES °' '¢ ES
O and let ES °':> ES � The latter means that the

cumulative diagram for ES °' must contain some additional cumulative states. If these states are
intermediate, i.e. covered each by at least one of the states from ES

0

, then it contradicts to the
distributivity of ES

0

• If this is a set of additional states forming their own independent sequences in
ES °'

, then it is easily seen that the partial order which has been built from ES
O will be different

from the order which has generated ES °'(it will contain more II pairs, and less< ones), which is,

12

(\

again, a contradiction. Q.e.d.

Note 3.5 We should bear in mind that in constructing a partial order fo:r,: some ES whose ES
O is

not distributive, it is possible to obtain the order which, being conv�rted into a marked graph PN
by the technique described in (i), will generate another interleaving semantics ES'. Of course, ES'•
is a distributive lattice. It may differ from ES

O by some additional prefixes which have not been
presented in ES

0

• These new prefixes will correspond to some additional cumulative states in
C(PN) which are covered by the states of the original lattice. Here we emphasize the fact that the
distributive lattice is the greatest possible set that "contains" prefixes of the execution sequences
which comply with the given partial order on the process actions (Cf., the synchronisation [3] and
weaving, or shuffle, [18] operators on the set of traces would be examples of alternative
manifestations of distributivity.)

Example 3.1 (continued) Let us build a partial order consistent with ES2 using the< and II
relations introduced above. We obtain the following: a II b, b II c, a II c. For such a partial order we
can construct a marked graph net shown in Fig.4. This net generates interleaving semantics ES2' =

ES2 U {cab, cba}. ES2'
0

is a distributive lattice.

PN3:

a b C

Figure 4. Marked graph for a distributive process

We conclude this section with a reference to the work ofD.E. Muller (it is well presented in [28]),
who made very similar observations on the taxonomy of lattice characterisations for
speed-independent asynchronous circuits. Muller had reportedly shown that for specifying
distributive circuits (those that generate distributive cumulative diagrams of logical element
switchings), one can use the so-called change charts, which appear to be posets labelled with
switching actions. We can thus use marked graphs for most succinct specifications of concurrent
logical circuits if we need to obtain distributive processes in these circuits [29].

Semi-modularity and the Merge Paradigm

In this section we outline a closer (though in a less formal style) look at the processes which have
been characterised in the above lattice framework as semi-modular. The class of semi-modular
processes contains that of distributive ones. So we are especially interested here in semi-modular
and non-distributive processes. Such processes can be specified by persistent, but non-safe, nets.
An example of such process was presented in Fig.l as PN2. Looking at the behaviour of this net
more carefully we notice that transition c can fire as a result either of transition b or transition a,

and not necessarily as a result of the both of them. Furthermore, if we do not distinguish between
the tokens "coming from" a and b to place 3, we have a rather deterministic picture where c
"doesn't care" whose token it is enabled by and it fires rather "indifferently" bringing again such an
undistinguishable token to its output place 5. This operational determinism results in that the
cumulative diagram for such a net (Fig,3, C(PN2) is semi-modular and has the greatest element
111. The corresponding marking diagram MD2 shown in Fig.2 represents a confluent [l]
transition system.

Now look at another way of interpreting the process PN2, which was suggested to the author by
W.Reisig [30]. We redraw PN2 in such a way as to make the tokens in places 1 and 2 have two
different values (colours) as shown in Fig. 5. We denote it as PN2 '. Assume this net has the
semantics which is represented by the marking diagram MD2' shown in Fig.6. It has two final
states, which the process may enter in either way. This depends on which of the values, A or B
token, first passes through c from place 3 to place 5. To characterise this value-dependent
non-determinism of PN2' in terms of lattices of cumulative states we can extend our definition of
the "non-coloured" transition firing vector to the case of the coloured firing vector. Thus for PN2'
we have a cumulative diagram C(PN2') as shown in Fig.7. One can clearly see that for O,A and B

13

ordered as O < A and O < B, this is not a lattice because ABA and ABB have no LUB in it.

PN2':

a

Figure 5. High-level Petri net with non-deterministic behaviour

MD2':

5A2B 1A5B

Figure 6. Marking diagram for Petri net in Fig.5

CD2':

AOA BBO

Figure 7. Cumulative diagram for Petri net in Fig.5

From these considerations, which may look just a special case, we should however claim the
following general statements establishing the relationship between control flow semantics, defined
as the behaviour under the assumption that all tokens are indistinguishable, and data flow
semantics, defined under the assumption that some tokens may be associated with data values
(colours).

Statement 4.1 Purely control flow semantics of a semi-modular non-distributive process is
deterministic, whereas its data-flow semantics may be non-deterministic.

14

"

Statement 4.2 Both control and data flow semantics of a distributive process are deterministic.

Note 4.1 Under the definition of data-independence introduced by M .. Rem [18], we can also
claim as a corollary:

Corollary 4.1 Distributive processes are data-independent.

The data-flow non-determinism of non-distributive processes has a very interesting paradigm
which is often regarded as a merge operator. The functional semantics of merge has been defined
for example in [2] where the merge function has two input data sequences Left] and Left2 and one
output sequence Right which merges Left] and Left2 in either way.

The functional specification of merge can be done in a number of ways. For example, in a
Lisp-like notation:

merge (Leftl, Left2)
if Leftl = NIL then Left2

else
if Left2 = NIL then Leftl

else
cons(car(Leftl),merge(cdr(Leftl),Left2))

or
cons(car(Left2),merge(Leftl,cdr(Left2))

fl
fl

The "or" in the above specification is the source of non-determinism of the resultant Right
sequence, which can be an arbitrary interleaving of the Left] and Left2 sequences providing only
that the projection of Right on the alphabet of Leftl channel is equal to Leftl, and the projection of
Right on the Left2 channel alphabet is equal to Left2.

Our example of the PN2' net (Fig.5) is a net specification of the merge operator for the case of one
element sequences.

Another interesting paradigm of generating a semi-modular but non-distributive lattice behaviour is
attributable to the introduction of labels on the process transitions. In other words, if we consider
the definition of a labelled process net as a tuple (S,T,F,M0,W ,L) where S,T,F,M0 have the same
meaning as for a non-labelled net, and Wis a finite alphabet of labelling symbols, labels, and L:T
-> W is a labelling function, which assigns certain labels to all the transitions of the net. Of course,
it is possible that this function may assign the same label to more than one transition.

Now if we introduce the same partial order framework on the behaviour of such a labelled net as
we did for nets in terms of cumulative diagrams on the set of transition firing vectors, but here the
vector components would stand for the labels rather than for transitions, we may obtain a different
lattice-oriented semantics of the given net. (Cf., Hint for proof of Theorem 3.3.) For example,
having been given a labelled marked graph we may have a distributive lattice of the transition firing
vector values but the partial order built on the firing vector values for labelled actions may be a
non-distributive lattice, if, for some reachable markings, there is at least one pair of concurrently
enabled transitions that have same labels. The following example illustrates this paradigm.

Example 4.1 Let a labelled marked graph be given in Fig.8. This graph generates a deterministic
behaviour whose marking diagram converges to the marking corresponding to a token in place 5.
However, we can distinguish our interpretation of the process observing separately two different
cumulative diagrams, one for the transition firing vector, as shown in Fig.9, and the other, for the
labelled action firing vector, presented in Fig.10. The first forms a distributive lattice because the
given net is a marked graph, while the second, which is homomorphic to the first (with respect to
the mapping defined in Hint for Theorem 3.3), is a semi-modular, non-distributive lattice because
action c can be enabled for the first time either as a result of a orb. This example shows that it is
possible to change the lattice observational view on the process not only by means of (i) token
distinction (data dependency), but also by (ii) introducing a labelling function, which may assign
the same label to some mutually concurrent transitions, thus resulting in non-distributive semantics

15

f\

(action labelling dependency).

Note 4.2 It is interesting to point out again that interleaving semantics, represented in this
example by the cumulative diagram in Fig. IO, does not give full �nformation about the causal
structure of events because it may correspond to some other nets, for example, to the non-safe one
with a place which is shared as an output place· by transitions a and b and which is the input place
for transition c.

PN3:

a

C

I

ti t2

t3 t4

3

2

b

C

4

Figure 8. Marked graph with labelled transitions

16

tl t2 t3 t4 t5

01010

11111

Figure 9. Cumulative diagram for the transition firing vectors

abed

1010 0110

1121

Figure 10. Cumulative diagram for labelled action firing vectors

Some Practical Implications of Non-distributivity

The practice of parallel programming, which is applied to both software and hardware design
domains, shows that the constructs used for building concurrent programs have either deterministic
process semantics, which can always be described by partial orders (distributive, or purely parallel
processes), or non-deterministic process semantics related with such constructs like mutual
exclusion or general merge operators (non-semi-modular, or non-confluent processes). There is
however an interesting class of computational behaviour, which corresponds to semi-modular but
non-distributive process semantics and can be associated with a special construct called a control
flow merge. The latter provides not only some.specific functionality, which is often overlooked or
disregarded as "unnecessary or undesirable" (Cf., discussion in Introduction), but, in many cases,
helps to achieve better performance of the specified concurrent system.

Wired-OR Logic Synchronisation

The self-timed design principle used in constructing concurrent hardware [29,31] demands that
each signal in such a system must be "acknowledged" by other signals through causal relationship
between them. Thus, the system operates safely, without hazards, and it is impossible that an
activated signal (for some 0-1 or 1-0 transition) is disabled without reaching its goal state. Usually,
to achieve such a feature, the synchronisation between signals is organised by means of the
so-called Muller C-elements [28], which function as some event-oriented AND elements. The two

17

input C-element,which is sometimes called a synchronisation flip-flop (it has an internal feedback
interconnection), is defined by the following logical function:

where x1 and x2 are the input signals and y is the output (and feedback) signal. In both transition

phases, the value of y is changed last with respect to the changes of x 1 and x2 • This ordering,
corresponding to the required discipline of using a C-element, is depicted by the marked graph net
in Fig. 11.

-x,

-x,

Figure 11. The marked graph specification of C-element behavior

From this specification we can see that the process associated with this element is distributive. Let
us now assume that we need to provide synchronisation of a group of modules whose number is
large enough, and it is impossible to interconnect them to a multi-input C-element.

In order to synchronise modules in a dist ributed (but non-distributive !) way, we can use a
wired-OR logic, connecting modules to a fixed number of wires (independently of the number of
modules synchronised and performing the synchronisation in a safe, deterministic way). It has
been proved elsewhere [32] that the least possible number of wires needed for such
synchronisation is three and the module signal transitions on these wires are cyclically shifted
through these three wires, say, x,y and z, executing at each cycle both the transition-AND and
transition-OR synchronisation actions. The corresponding behaviour, on a pair of wires, say, x
and y, can be specified in the way shown in Fig. 12 (for the case of two modules).

This figure presents a one-third part of the whole specification, and it is easily seen that this
process is non-distributive: the transition labelled with +x may be enabled either after the +x1 or

+x2 labelled transition. Thus, here, the use of the non-distributivity paradigm helps to have an
elegant distributed synchronisation instead of having a bunch of individual wires coming to a
common C-element. The part of the dynamic behaviour of a wired-OR "logic element" related to
the above transitions on wire x plays the same role as a one-element merge operator with the purely
control flow semantics - it merges the result of actions +x 1 , +x2 etc on the same wire x, which
exhibits the +x transition as an acknowledgement of the first of the OR-causal actions.

18

Figure 12. The Petri net specification of wired-OR logic operation

Hardware Structures with Redundancy

Another example of organising non-distributive computations can be found in hardware structures
with redundancy. Let us have a group (again, for simplicity, we take two) of functionally
equivalent, but possibly working with different speeds, modules which produce the results of the
same tasks onto the common data bus, as shown in Fig.13.

They do it in the manner where the computation result is taken from the first-to-complete module
and the subsequent completion of the task in the other module is needed only to make the
comparison of the result of each module with the result established on the merging bus, with the
possibility to make a backward recovery action in the case of a mismatch. If there is no mismatch,
the normal computation flow can be already quite ahead of the current point of the result
matchings, thus making the whole fault-tolerance mechanism operate, generally, faster than in
conventional schemes, in which a voting element waits for the completion of the tasks in all the
redundancy modules before producing the final result to the next computation stage.

19

X Input data for Task

X

Task
Module 1

OK Fail

y

Merging Bus

y

Output r esult

y

Task
Module2

X

Comparator 2

OK Fail

Figure 13. A hardware structure with redundancy

Scheduling Tasks on Limited Resources

The final example of a non-distributive but deterministic computation is taken from the domain of
analysis of dynamic software system behaviour.

Let us have a group of n independent tasks, say, in an operating system kernel, which may be
executed concurrently because they have no dependency on data. Unfortunately, the number of
available resources for their concurrent execution, denoted by m, is such that m < n. again, for
simplicity, take n = 3 and m = 2.

Since there is no way to run all the three tasks concurrently, as for example was possible in Fig.4
for actions a,b and c standing for the tasks, whose duration is denoted by T

a
• Tb and Tc

respectively, the natural way for achieving maximum performance would be, first, to run two of
them and then, upon the completion of the fastest of them, to allocate the released resource to the
third task. This organisational discipline can be depicted by the semi-modular but non-distributive
process shown in Fig.l, PN2. This scheduling strategy provides some intermediate situation
between two adjacent distributive computation structures, a fully concurrent computation of Fig. 4
and a too-restrictive computation ofFig.l, PNl.

To show the performance gam, which is intuitively quite obvious, we compare the time values for
these three computation structures. If we denote the computation times for the scheduling schemes
of Fig.l, PNl, Fig.1, PN2 and Fig.4 as Tl, T2 and T3, respectively, we can easily derive the
expressions:

Tl = max (T
a
,Tb) + Tc,

T2 = max ((min(Ta ,Tb) + Tc),Ta ,Tb),

T3 = max (T
a
,Tb,Tc)

Obviously, T 1 ;;=: T2 � T3.

20

r
Thus if the number of resources is limited, one may resort to a schedule, whose behaviour is
non-distributive, in order to eliminate the performance loss pertaining to using a partially ordered
schedule, which would fit the original partial order, determined by data dependencies etc, into the
limited resource framework.

Those above and some other examples demonstrate that the semi-modularity paradigm is by no
means a theoretical exercise, superfluous in real life. Rather, it can support certain modes of
concurrent computations (distributed synchronisations, structural redundancy, task scheduling
etc.) in a much more efficient way than can be achieved using just partial order (AND-causality)
structures.

Speed-Independent versus Delay-Insensitive Circuits

The dichotomy between semi-modularity and distributivity (or, in the sense of [20], between
{AND,OR}- causality and {AND }-causality) brings also some analytical power into the area of
dichotomy between speed-independence and delay-insensitivity, which makes a special interest for
the asynchronous design community [23].

It is now commonly accepted that an asynchronous hardware circuit is called speed-independent if
its behaviour is correct and insensitive to the delays of logical elements (elementary gates) that
constitute the circuit, and the delays of interconnecting wires are negligible. A circuit is called
delay-insensitive if its behaviour is correct and insensitive both to the gate and wire delays. Hence,
the class of delay-insensitive circuits is narrower than that of speed-independent ones.

The word "correct" in the above definitions has the following meaning: the circuit is free from
logical hazards and every signal transition, often called a signal change, produced at the output of a
component (a logical gate, for speed independence, and a gate or a wire, for delay-insensitivity) is
"acknowledged" by some other component before the component is again committed to change its
output signal.

It was shown by D.E.Muller (see [28]) that circuits whose behaviour is described by a
semi-modular cumulative diagram on the set of cumulative states, which are the values of signal
transition vector, has correct a behaviour that is independent of delays of the components whose
output signals are the components of the cumulative states. According to this property, a circuit
with a semi-modular behaviour with respect to its logical gates is speed-independent.

Assume, again, that the circuit is described by a semi-modular diagram with respect to its gates.
Can this circuit be delay-insensitive? The answer is not clear until we check if the behaviour of the
circuit, which is now defined on an extended set of signals because we also include the wires as
separate components, will remain semi-modular. Staying on general terms of analysis, we can
easily prove the following important property.

Statement 5.1 // a circuit which is speed-independent has a semi-modular but non-distributive
behaviour with respect to its gates, this circuit is not delay insensitive.

Proof

Assume, to the contrary, that the circuit, whose behaviour is semi-modular but non-distributive, is
delay-insensitive. This means that the circuit is insensitive to the delays both in wires and gates and
every transition on the output of each component has a chance to be acknowledged by some other
component in the circuit. The latter fact concerns also each wire in the circuit (of course, we should
only consider the wires that serve as interconnections between the gates, rather than those
interconnections which are internal to the gates). Now, because of non-distributivity, we can find a
signal whose transition is caused by the OR-causality of a pair (without loss of generality, we can
assume two signals as OR-causes) of signals, i.e. this transition can occur as a result of either one
or the other transition. It is clear that, in order to implement this causality physically, the circuit
must contain wires interconnecting the outputs of gates whose signal transitions are the OR-causes
of the given transition to the input of the gate whose signal transition is the given,
"non-distributive", transition. Now if we take these two wires as separate components whose
output signal transitions must always be acknowledged, we come to the situation where because
the gate whose output exhibits the given transition acknowledges, under OR causality, only one of
the two cause-transitions produced by the above wires, we fail to acknowledge the other transition

21

and, hence, the corresponding wire's delay may affect the circuit operation. If the circuit is cyclic
in operation (so called live) then it is possible that the next signal transition will be initiated on that
wire before the previous transition has completed. So we come to contradiction. The circuit is not
delay-insensitive. Q.e.d.

From this statement and the fact that a wire (we do not allow any wired-OR interconnections
outside the components) cannot be the element whose signal transition is the effect of OR-causality
- the wire has only one input signal, we can deduce another important claim.

Statement 5.2 If a circuit is delay-insensitive, its behaviour is distributive with respect to all
components, both gates and wires.

Concluding Remarks

We have presented a lattice-theoretical characterisation of some important semantic notions in
analysis of concurrent systems. Our main effort has been applied to the subclasses of Petri nets,
persistent, safe and persistent and marked graph nets, which produce a behaviour definable in
terms of posets of cumulative states of transition firing numbers. The lattice properties of such
behaviour has led us to the important subclasses of computational behaviours, or processes,
semi-modular and distributive ones, so we have been able to treat the problem of relationship
between the descriptive powers of interleaving semantics and partial order semantics of processes
(single-run executions).

The characterisation presented fits quite well within the domain analysis of event structures of
Winskel and the boolean-algebraic analysis of causal automata of Gunawardena. Furthermore,
because lattices on cumulative states of the net behaviour can generally provide more descriptive
power than Winskel's domains on event structure configurations our approach sheds more light on
the subclass of persistent Petri nets, and particularly marked graphs, for which Winskel's safeness
requirement can be lifted

This approach has also produced some fruitful results in analysing deterministic nature of
data-valued semantics of processes, which looks quite promising for further investigation of
semantics of high-level nets.

The distinction of a subclass of non-distributive processes from the class of semi-modular
(confluent in Milner's sense and {AND,OR}-causal in Gunawardena's sense) ones has yielded
interesting pragmatic implications in the areas of circuit and program design. For example, the
analysis of speed-independence/delay-insensitivity dichotomy can further help a formulation of
synthesis restrictions such as: it is impossible to construct a delay-insensitive circuit for a
specification of a semi-modular and non-distributive behaviour, or there does not exist any
delay-insensitive implementation for speed-independent circuit whose behaviour is
non-distributive.

The paper thus points to several topics for further research, particularly claiming attention to:

(1) a more rigorous unification of the results on lattice characterisation of persistent nets with
Winskel's domain analysis of safe nets,
(2) a deeper investigation of determinism and confluence in data-flow semantics of high-level nets,
(3) a formulation of a stricter link between implementability conditions for delay-insensitive circuits
and the classes of their behavioral specification.

Acknowledgement

I would like to thank my friend and colleague, Leonid Rosenblum, for the endless hours of joint
work and his brilliant advice, as well as Jeremy Gunawardena, Anthony Mazurkiewicz and
Wolfgang Reisig for interesting discussions on the subject . I am also grateful-to the Department of
Computer Studies at the Polytechnic of Wales for their facilities and support during my stay there
as a lecturer.

22

Appendix

Although the main part of the paper, e.g. Section 3, tacitly assumes that the reader is familiar with
the basic notions of partial order and lattice theory, this brief supplement may appear useful, at
least to provide a background for mutual understanding between the reader and the author on the
usage of the following definitions.

Let S be a non-empty set and :::;; a partial order relation. Then the pair (S,:::;;) denotes the partially
ordered set (poset).

Definition A.1 An upper bound of a pair of elements (a,b), a,bES, denoted as UB(a,b), is an

element c ES such that a:::;;c and b�. A lower bound of a pair of elements (a,b), a,bES, denoted

as LB(a,b), is an element c ES such that c:::;;a and c::;;h.

Definition A.2 A least upper bound of a pair of elements (a,b), a,bES, denoted as LUB(a,b),

is an element c ES such that c=UB(a,b) and for all other d, d=UB(a,b), c:::;;d. A greatest lower

bound of a pair of elements (a,b), a,bES, denoted as GLB(a,b), is an element c ES such that

c=LB(a,b) and for all other d, d=LB(a,b), d�c.

Definition A.3 A poset (S,:::;;) is said to be a lattice iff every pair of elements (a,b), a,b ES has
both LUB(a,b) and GLB(a,b) within S.

Definition A.4 For two elements a and b of a poset (S,:::;;), a,bES, such that a<b, we say that

b covers a iff there is no element cES such that a<c<b.

A usual graphical representation of a poset is a Hasse diagram, in which vertices correspond to the
elements of the poset and arcs stand for the covers relation.

Definition A.5 A lattice (S,:::;;) is said to be semi-modular iff for every pair of elements (a,b),

a,bES, such that both a and b cover GLB(a,b), LUB(a,b) covers both a and b.

Definition A.6 A lattice (S,:::;;) is said to be distributive iff for any elements a,b,c ES the
following distributive law is satisfied:

GLB(a,LUB(b,c)) = LUB(GLB(a,b),GLB(a,c)).

It is known that an alternative definition based the other distributive law (dual to the above with
respect to GLB and LUB) is also true, which is a characteristic property of distributive lattices.

The relationship between the above two classes of lattices is known to be such that distributive
lattices are a subclass of semi-modular ones.It may also be of some interest to note that another
class oflattices, modular ones, which is known in lattice theory as a "half-way" between the above
two, has no adequate paradigm in the semantics of concurrent processes, or better say in the
"physics of computations".

An almost standard technique of analysis of a mathematical model as a lattice prescribes that the

model is first presented as a poset of elements, typically having some structure, with the :::;; relation
defined in terms of more primitive relations on the components of the structure of the poset's
elements. The structure of elements is also used as a basis for defining and proving the intuitive
meaning of the LUB (or, sometimes called, "join") and GLB ("meet) elements in terms of some
appropriate algebraic binary operators, such as disjunction, max etc and conjunction, min etc,
respectively. This should finally facilitate giving a positive or negative answer to the question:
whether the poset is a lattice or not, by checking if the poset is closed under these operations. It is
also possible, using the values of primitive components, to define the cover relation between
elements in an adequate and straightforward way, so as to help querying about the lattice's
semi-modularity.

23

References

1. Keller, R.M., A fundamental theorem of asynchronous parallel computation, LNCS,
Springer-Verlag, Berlin, No.24, (1975).

2. Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International,
Englewood Cliffs, NJ, 1985

3. Mazurkiewicz, A., Trace theory, LNCS, Springer-Verlag, Berlin, No.255, (1986).
4. Reisig, W., Petri Nets - An Introduction, EATCS Monographs on Theoretical Computer

Science, Springer-Verlag, Berlin, (1985).
5. Milner, R., A Calculus for Communicating Systems, LNCS, Springer-Verlag, Berlin,

No.92, (1980).
6. Proceedings of the Workshop on Semantics for Concurrency, Leicester University, U.K.,

July 1990, Spinger-Verlag, Berlin, (1990).
7. Seminar on Concurrency, Carnegie-Mellon University, Pittsburgh, PA, July 1984,

LNCS, Springer-Verlag, Berlin, No.197, (1985).
8. Tiusanen, M., Some unresolved problems in modelling self-timed circuits using Petri nets,

Bulletin of EATCS, October 1988, No. 36
9. Janicki, R., and M. Koutny, On equivalent execution semantics of concurrent systems,

LNCS, Springer-Verlag, Berlin, No. 266, (1987).
10. Pratt, V.R., Modelling concurrency with partial orders, Int. Journal of Parallel

Programming, Vol.15, No.1, (1986).
11. Castellano,L., DeMichelis, G., and L. Pomello. Concurrency versus interleaving: an

instructive example, Bulletin of EATCS, February 1987, No.31.
12. Benson, D.B., Concurrency and interleaving are equally fundamental, Bulletin of EATCS,

October 1987, No.33.
13. Reisig, W., Concurrency is more fundamental than interleaving, Bulletin of EATCS, June

1988, No.35.
14. Probst, D.K., and H.F.Li, Modelling reactive hardware processes using partial orders,

Workshop on Semantics of Concurrency, Leicester University, July 1990,
Springer-Verlag, 1990.

15. Rosenblum, L., Yakovlev,A., and V.Yakovlev, A look at concurrency semantics through
"lattice glasses", Bulletin of EATCS, February 1989, No. 37.

16. Landweber, L.H., and E.L. Robertson, Properties of conflict free and persistent Petri nets,
Jornal of ACM, Vol.25, No.3, July 1978.

17. Genrich, H., and K.Lautenbach, System modelling with high-level Petri nets, Theoretical
Computer Science, Vol. 13, 1981.

18. Rem, M., Trace theory and systolic computations, LNCS, Springer-Verlag, Berlin,
No.258, (1987).

19. Winskel, G., Event structures, LNCS, Springer-Verlag, Berlin, No.255,(1986).
20. Gunawardena, J., private communication, 1990.

21. Gunawardena, J., Causal automata I: confluence= {AND,OR} causality, Proc. Workshop
on Semantics of Concurrency, Leicester University, July 1990, Springer-Verlag, 1990.

22. Milner, R., Communication and Concurrency, Prentice-Hall International, London, 1989.
23. Martin, A.I., The limitations to delay insensitivity in asynchronous circuits, Proc. MIT

Conference on Advanced Research in VLSI, MIT Press, 1990
24. Birkhoff, G., Lattice Theory, Providence, RI, 1967.
25. Peterson, J., Petri Net Theory and the Modelling of Systems, Prentice-Hall, Englewood

Cliffs, NJ, 1981.
26. Ramamoorthy, C.V., and G.S. Ho, Performance evaluation of asynchronous concurrent

systems using Petri nets, IEEE Transactions on Software Engineering, Vol. SE-6, No.5,
September 1980.

27. Best, E., Fernandez, C., and H.Plunnecke, Concurrent systems and processes,
manuscript, 1985.

28. Miller, R.E., Switching Theory, Vol.2, Wiley and Sons, NY, 1965.
29. Yakovlev, A., and A. Petrov, Petri nets and parallel bus controller design, Proc. 11th Int.

Conference on Applications and Theory of Petri Nets, Paris, France, June 1990.
30. Reisig, W., private communication, 1989.
31. Yakovlev, A., Designing self-timed systems, VLSI Systems Design, September 1985.
32. Varshavsky, VJ., et al., Implementation and analysis of the TRIMOSBUS self-clocking

interface, Automatic Control and Computer Science (USA), Translated from Russian,
Allerton Press, Vol. 19, No.4,(1985).

24

	Poly-Wales-TR-CS-91-9-Lattices-title-page
	Poly-Wales-TR-CS-91-9-Lattices

