

Power and Compute Codesign for "Little Digital" Electronics

Alex Yakovlev

Microsystems Group, EEE School

Newcastle University

ARM Research Summit, Cambridge 15 September 2016

Traditional Power-Compute Divide

Separate optimization cycles

Miniaturised electronics and 'real world' working conditions

Energy-constrained systems

• Solar energy, intermittent supply, small/no batteries, ...

Unreliable power supply

• Voltage fluctuations, low battery, ...

Hostile environments

High/low temperatures, noise, ...

Power-Compute Co-design

Co-optimization cycle

Problem definitions:

- For a given silicon area and given data processing functions, find the best way of allocating silicon to power and compute elements
- More specifically, for a given supply rate and given computational demands, which of the following system designs is better:
 - 1) Power supply: capacitor bank (CB) for storing energy and investing energy into charging and discharging flying caps; Compute: capable of sustaining high fluctuations of Vcc (e.g. asynchronous logic)
 - 2) Power supply: switched cap converter (SCC) to supply power at stable Vcc; Compute: more stable (voltage/timing) processing; extra energy costs: voltage regulator control
- In order to decide between these organisations, one would need to model these designs and characterise them in terms of energy utilisation and delivery of performance for given computation demands
- At present, there are no good ways for co-optimising power and compute!

Power 'regulation' for intermittency

Will power and data processing finally converge?

SAVVIE: Staying alive in variable, intermittent, low-power environments (EPSRC grant, 2013-16, collaboration with Bristol Univ, Dr Bernard Stark)

Capacitors: two operating modes

- Complete charge (CC) → information processing
- Almost no charge (NC) → power conversion

C1=0.05pF

TSMC 0.18um $W_n=0.5um$, $W_p=1.9um$ $V_{dd}=3.3V$ $f_{clk}=512MHz$

C1=5pF

What if ...

- We allow ourselves to work in the intermediate mode:
 - Partial Charge/Discharge of flying caps, but
 - Reduce the amount of switching activity in power control
- We will use self-timed (async) logic for compute engine to cope with variation, and we can also use async for power control

Preliminary study performed for:

X. Zhang, D. Shang, F. Xia, A. Yakovlev, A Novel Power Delivery Method for Asynchronous Loads in Energy Harvesting Systems, ACM JETC, vol. 7, no. 4, pp. 16.1-16.22 (Dec. 2011).

Switch Cap Converter vs Cap Bank

load

Power control based on capacitor bank blocks (CBBs) instead of DC-DC based on switched capacitor converter (SCC)

Holistic View on Energy Harvesting Powered System

X. Zhang, D. Shang, F. Xia, A. Yakovlev, A Novel Power Delivery Method for Asynchronous Loads in Energy Harvesting Systems, ACM JETC, vol. 7, no. 4, pp. 16.1-16.22 (Dec. 2011).

Asynchronous Control For Cap Bank

Asynchronous Control Specification (fragment)

Bigger picture: "Little Digital"

We seem to have layers of digital and analogue electronics; computing-resourcingcontrolling ...

Emergence of "little digital" and its design

- Analogue and digital electronics are becoming more intertwined
- Analogue domain becomes more complex and itself needs digital control
- Asynchronous design is most likely option for little digital

A4A: Asynchronous for Analogue (EPSRC grant, 2014-17, collaboration with Dialog Semiconductor)

EDA support for "little digital"

- Poor EDA support at present:
 - Mostly supports flow from schematic capture rather than behavioural capture
 - Synthesis from behavioural (RTL) is optimized for data processing logic and supports only synchronous – OK big digital
 - Manual and ad hoc solutions are prone to errors and hard to verify (weeks of simulations)
- Big challenge is EDA for asynchronous (hence our A4A project)
- Next step: codesign of analogue and asynchronous (forthcoming grant application "AxA") – focus on automated specification generation, synthesis of async for DSM (<=45 nm), formal verification of mixed signal designs, 'tiered relative timing' verification

Tool support: Workcraft

- Framework for interpreted graph models (STGs, Circuits, FSMs, data flow structures, xMAS networks)
 - Interoperability between modes
 - Elaborate GUI
- Includes many backend tools, e.g.
 - Petrify: STG and circuit synthesis
 - MPSAT: unfolding based verifier and synthesizer
- Public domain: workcraft.org
- Documentation, tutorials and exercises available

Vision for the Future

Approaches to designing 'little digital' electronics of the future will be based on event-driven, pulse-based, ultra-wide band techniques ... appropriate physical and mathematical models will be needed!

Future: Async-Analog (AxA) codesign: possible future flow

Collaboration with:

- Dialog Semiconductor
- Prof Chris Myers (Uni of Utah) on AMS model generation and LEMA tools
- Prof Jordi Cortadella (UPC, Barcelona) on specification synthesis and Petrify

V. Dubikhin; C. J. Myers; A. Yakovlev; D. Sokolov, "Design of Mixed-signal Systems with Asynchronous Control," in IEEE Design & Test, 33 (5), Oct. 2016.

Future: Intermittently powered system: layered approach with non-volatile storage

Backup slides

Power-Data Convergence: Energy-modulated computing

energy-modulated system

A. Yakovlev: Energymodulated computing, DATE 2011

SAVVIE Project (EPSRC-funded), Bristol and Newcastle

Staying alive in variable, intermittent, low-power environments

Energy harvesting and power intermittency

SAVVIE: Staying alive in variable, intermittent, low-power environments

(EPSRC grant, 2013-16, collaboration with Bristol Univ, Dr Bernard Stark)

Switch Cap Converter vs Cap Bank Block

Switched capacitor power delivery

• HCBB design can be dynamically configured to work in CBB or SCC mode

The principle of Capacitor Bank Block

In Principle

CBB Working Mechanism

CBB Working Mechanism

CBB Working Mechanism

Example of buck DC-DC: sync vs async

16/09/2016

Holistic comparison: Async buck vs Sync buck

- Significantly lower switching activity (no high-frequency sampling clock);
- Faster reaction to changes in sensor readings, which leads to:
 - Lower current ripple (240mA vs 400mA @ 4.7uH)
 - -- this can be traded off for coil size (e.g. async can achieve 300mA peak-to-peak current with 1.8uH coil while sync needs 6.8uH);
 - Smaller voltage overshoot;
 - Shorter resolution time for OV and UV conditions;
- Smaller losses and higher efficiency (10% on).