
1

Hardware
and Petri nets

Alex Yakovlev
Univ. Newcastle upon Tyne

Advanced Course on Petri nets,

Eichstätt, 24-26 Sept, 2003

Contents and schedule of lectures

• Introduction (Wednesday,10:30-10:45)
• Hardware modelling with Petri nets

(Wednesday,10:45-12:00)
• Circuit Synthesis (Thursday 10:30-12:00):

– Direct synthesis of Petri nets (Thursday, 10:30-11:15)
– Logic synthesis from STGs (Thursday, 11:15-12:00)

• Analysis and verification (Friday, 10:30-11:15)
• Performance analysis (Friday, 11:15-12:00)

Main bib references
• A.V. Yakovlev, A.M.Koelmans. Petri nets and digital hardware

design, Lectures on Petri nets II: Applications, Advances in Petri
Nets, LNCS vol. 1492, Springer 1998, pp. 154-236

• A. Kondratyev, M. Kishinevsky, A. Taubin, J. Cortadella, L. Lavagno.
The use of Petri nets for the design and verification of asynchronous
circuits and systems, Jour. Cir.,Syst. And Comp., vol.8, no.1, Feb
1998, pp. 67-118.

• Hardware Design and Petri Nets (Editors: A. Yakovlev, L. Gomes, L.
Lavagno), Kluwer Academic Publishers, March 2000, ISBN 0-7923-
7791-5, 344 pp

• J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A.
Yakovlev, Logic Synthesis of Asynchronous Controllers and
Interfaces, Springer, March 2002, ISBN3-540-43152-7

• Hardware Design and Concurrency, Advances in Petri nets, LNCS
vol. 2549, Springer, ISBN 3-540-00199-9, 345pp.

Hardware and Petri Nets:
Introduction

Alex Yakovlev
Univ. Newcastle upon Tyne

Advanced Course on Petri nets,

Eichstätt, 24-26 Sept, 2003

Introduction. Outline

• Role of Hardware in modern systems
• Role of Hardware design tools
• Role of a modeling language
• Why Petri nets are good for Hardware

Design
• History of “ relationship” between

Hardware Design and Petri nets
• Asynchronous Circuit Design

Role of Hardware in modern
systems

• Technology allows putting 1 billion
transistors on a chip

• System on Chip is a reality – 1 billion
operations per second

• Hardware and software designs are no
longer separate

• Hardware becomes distributed,
asynchronous and concurrent

2

Role of Hardware design tools

• Design productivity is a problem due to chip
complexity and time to market demands

• Need for well-integrated CAD with simulation,
synthesis, verification and testing tools

• Modelling of system behaviour at all levels of
abstraction with feedback to the designer

• Design re-use is a must but with max technology
independence

Int. Technology Roadmap for
Semiconductors says:

• 2010 will bring a system-on-a-chip with:
– 4 billion 50-nanometer transistors, run at 10GHz
– Moore’s law: steady growth at 60% in the number of

transistors per chip per year as the functionality of a
chip doubles every 1.5-2 years.

• Technology troubles: process parameter variation, power
dissipation (IBM S/390 chip operation PICA video), clock
distribution etc. present new challenges for Design and
Test

• But the biggest threat of all is design cost

Design productivity gap

A design team of 1000 working for 3 years on a MPU chip
would cost some $1B (25% time spent on verification, 45% on
redesign after first silicon)

Role of Modelling Language

• Design methods and tools require good modelling and
specification techniques

• Those must be formal and rigorous and easy to
comprehend (cf. timing diagrams, waveforms,
traditionally used by logic designers)

• Today’s hardware description languages allow high level
of abstraction

• Models must allow for equivalence-preserving
refinements

• They must allow for non-functional qualities such as
speed, size and power

Why Petri nets are good for
hardware design

• Finite State Machine is still the main formal tool in
hardware design but it may be inadequate for distributed,
concurrent and asynchronous hardware

• Petri nets:
– simple and easy to understand graphical capture
– modelling power adjustable to various types of behaviour at

different abstraction levels
– formal operational semantics and verification of correctness

(safety and liveness) properties
– possibility of mechanical synthesis of circuits from net models

A bit of history of their “marriage”

• 1950’s and 60’s: Foundations (Muller & Bartky, Petri,
Karp & Miller, …)

• 1970’s: Toward Parellel Computations (MIT, Toulouse,
St. Petersburg, Manchester …)

• 1980’s: First progress in VLSI and CAD, Concurrency
theory, Signal Transition Graphs (STGs)

• 1990’s: First asynchronous design (verification and
synthesis) tools: SIS, Forcage, Petrify

• 2000’s: Powerful asynchronous design flow (incl.
hardware-software codesign and system-on-chip design)

3

Introduction to Asynchronous
Circuits

• What is an asynchronous circuit?
– Physical (analogue) level
– Logical level
– Speed-independent and delay-insensitive circuits

• Why go asynchronous?
• Why control logic?
• Role of Petri nets
• Asynchronous circuit design based on Petri nets

What is an asynchronous circuit

• No global clock; circuits are self-timed or self-clocked

• Can be viewed as hardwired versions of parallel and
distributed programs – statements are activated when
their guards are true

• No special run-time mechanism – the “program
statements” are physical components: logic gates,
memory latches, or hierarchical modules

• Interconnections are also physical components: wires,
busses

Synchronous Design

Register

Sender Logic
Register

Receiver

Clock

Data

Data input

Clock

Tsetup Thold

Timing constraint: input data must stay unchanged within a
setup/hold window around clock event. Otherwise, the latch may fail
(e.g. metastability)

Asynchronous Design

Register

Sender Logic
Register

Receiver

Data

Data input

Req

Req/Ack (local) signal handshake protocol instead of global clock

Causal relationship

Handshake signals implemented with completion detection in data
path

Ack(nowledge)

Req(est)

Ack

Physical (Analogue) level

• Strict view: an asynchronous circuit is a (analogue)
dynamical system – e.g. to be described by differential
equations

• In most cases can be safely approximated by logic level
(0-to-1 and 1-to-0 transitions) abstraction; even hazards
can be captured

• For some anomalous effects, such as metastability and
oscillations, absolute need for analogue models

• Analogue aspects are not considered in this tutorial

Logical Level

• Circuit behaviour is described by sequences of up (0-to-
1) and down (1-to-0) transitions on inputs and outputs

• The order of transitions is defined by causal relationship,
not by clock (a causes b, directly or transitively)

• The order is partial if concurrency is present
• Two prominent classes of async circuits: speed-

independent (work for any gate delay variations) and
delay-insensitive (for both gate and wire delays)

• A class of async timed (not clocked!) circuits allows
special timing order relations (a occurs before b, due to
delay assumptions)

4

Simple circuit example

req1
x
y

+

req2
a
b

+

req3

*

C
ack1

ack2 ack3

out

out=(x+y)*(a+b)

+

+

*

x

y

a

b

out

Data flow graph Control flow graph –
Petri net

req1

req2

ack1

ack2

req3 ack3

Muller C-element

Key component in asynchronous circuit design – like
a Petri net transition

C
x1

y
x2

y=x1*x2+(x1+x2)y

Set-part Reset-part

It acts symmetrically for pairs of 0-1 and 1-0
transitions – waits for both input events to occur

Muller C-element

C
x1

y
x2

y=x1*x2+(x1+x2)y

Set-part Reset-part

Power

Ground

x1

x2x2 x1

y

NMOS circuit
implementation

Muller C-element (in CMOS)
Vdd

Gnd

x1

x1

x1

x1x2

x2

x2

x2

y

y

y

C
x1

y
x2

y=x1*x2+(x1+x2)y

Set-part Reset-part

Why asynchronous is good

• Performance (work on actual, not max delays)
• Robustness (operationally scalable; no clock distribution;

important when gate-to-wire delay ratio changes)
• Low Power (‘change-based’ computing – fewer signal

transitions)
• Low Electromagnetic Emission (more even

power/frequency spectrum)
• Modularity and re-use (parts designed independently;

well-defined interfaces)
• Testability (inherent self-checking via ack signals)

Obstacles to Async Design

• Design tool support – commercial design tools
are aimed at clocked systems

• Difficulty of production testing – production
testing is heavily committed to use of clock

• Aversion of majority of designers, trained ‘with
clock’ – biggest obstacle

• Overbalancing effect of periodic (every 10 years)
‘asynchronous euphoria’

5

Why control logic

• Customary in hardware design to separate control logic from
datapath logic due to different design techniques

• Control logic implements the control flow of a (possibly concurrent)
algorithm

• Datapath logic deals with operational part of the algorithms
• Datapath operations may have their (lower level) control flow

elements, so the distinction is relative
• Examples of control-dominated logic: a bus interface adapter, an

arbiter, or a modulo-N counter
• Their behaviour is a combination of partial orders of signal events
• Examples of data-dominated logic are: a register bank or an

arithmetic-logic unit (ALU)

Role of Petri Nets

• We concentrate here on control logic
• Control logic is behaviourally more diverse than data

path
• Petri nets capture causality and concurrency between

signalling events, deterministic and non-deterministic
choice in the circuit and its environment

• They allow:
– composition of labelled PNs (transition or place sync/tion)
– refinement of event annotation (from abstract operations down to

signal transitions)
– use of observational equivalence (lambda-events)
– clear link with state-transition models in both directions

Design flow with Petri nets

High-level languages
(VHDL, CSP, …)

Transition systems
Predicates on traces

Abstract behavioural model
Labelled Petri nets (LPNs)

Signalling refinementTiming
diagrams

Logic behavioural model Signal
Transition Graphs (STGs)

Syntax-direct translation
(deriving circuit structure)

STG-based logic synthesis
(deriving boolean functions)

Library
cells

Circuit
netlist

Decomposition and gate
mapping

Verification and
Performance analysis

Abstract behaviour synthesis

Hardware and Petri Nets:
Modelling

Alex Yakovlev
Univ. Newcastle upon Tyne

Advanced Course on Petri nets,

Eichstätt, 24-26 Sept, 2003

Modelling.Outline

• High level modelling and abstract
refinement; processor example

• Low level modelling and logic synthesis;
interface controller example

• Modelling of logic circuits: event-driven and
level-driven parts

• Properties analysed

High-level modelling:Processor
Example

Instruction
Fetch

Instruction
Execution

Program
Counter
Update

Memory
Address

Register Load

Memory
Read

Instruction
Register Load

Two-word
Instruction

Decode

Two-word
Instruction

Execute

One-word
Instruction

Decode

One-word
Instruction

Execute

6

High-level modelling:Processor
Example

• Details of further refinement, circuit implementation (by
direct translation) and performance estimation (using
UltraSan) are in:
A. Semenov, A.M. Koelmans, L.Lloyd and A. Yakovlev. Designing
an asynchronous processor using Petri Nets, IEEE Micro, 17(2):54-
64, March 1997

• For use of Coloured Petri net models and use of
Design/CPN in processor modelling:
F.Burns, A.M. Koelmans and A. Yakovlev. Analysing superscalar
processor architectures with coloured Petri nets, Int. Journal on
Software Tools for Technology Transfer, vol.2, no.2, Dec. 1998, pp.
182-191.

Using Coloured Petri nets

in

IR

PC

Value

Value

1'fetch

[#no fetch = pc]

1'fetch 1'fetch

Count

1'(no=1,instr=INT,d=0,d'=0,t=0)+

1'pc

1'(pc+1)

FETCH
@+1

1'1

Color Set:
color Instr = with INT | FPADD | MUL | DIV | BRA | NULL;
color Line = int; color Dep = int;color Target = int; color Count = int timed;
colour Value = record no:Line*instr:Instr*d:Dep*d':Dep*t:Target timed;

Var Set:
var fetch : Value;
var pc : Count

1'(no=2,instr=MUL,d=1,d'=0,t=0)+
1'(no=3,instr=DIV,d=0,d'=0,t=0)+

Using Coloured Petri nets

FETCH [#no fetch = i]
@+ 1

C
if time()<2 then id_:=0 else ();
i f time()<2 then pred:=8 else();
i f adr<>0 then pred := ! id_ else();
i f #instr fetch=BRA orelse adr<>0
then inc(id_) else ();
! id_ mod 5;IRValue

in

Value 1`{no=1,id_=0,instr=INT,d=0,d'=0,t=0}+
1`{no=2,id_=0,instr=INT,d=0,d'=1,t=0}+
1`{no=4,id_=0,instr=DIV,d=2,d'=0, t=2}+
1`{no=5,id_=0,instr=INT,d=1,d'=0,t=3}+
1`{no=6,id_=0,instr=INT,d=0,d'=0,t=0}+

PC
C oun t

1`1

c o l o r B i t = b o o l w i t h (n , y) ;
c o l o r C o u n t = i n t t i m e d ;
c o l o r L i n e = i n t ;
c o l o r I n s t r = w i t h I N T | F P A D D | M U L
| D I V | B R A | N U L L ;
c o l o r D e p = i n t ;
c o l o r W A W = i n t ;

c o l o r B r a = u n i o n n o _ : L i n e + t a : L i n e
+ b : B i t ;
c o l o r B P U = u n i o n n o : L i n e + t : L i n e ;

D E C O D E
@ + 1

[i f # i n s t r d e c o d e < > B R A t h e n
 # t d e c o d e = # n o w b e l s e t r u e]

w i n d
V a l u e

D I V
@+ 2 4

e x o u t
V a l u e

D M E M
@+ 1

w b
V a l u e

WB
@+ 1

C

i n p u t w b ;
o u t p u t k ;
a c t i o n
i f # n o w b = 1 0 t h e n
w r i t e _ r e p o r t (" \ n i n s t r / c y c l e = " ^
m a k e s t r i n g (r e a l (# n o w b) / r e a l (t i m e () - 4)) ^
" \ n T i m e = " ^ m a k e s t r i n g (t i m e () + 1))
e l s e () ;
i f ! p r e d = # i d _ w b t h e n 1 e l s e 0 ;

s t a l l

V a l u e

4 ` { n o = 0 , i d _ = 0 , i n s t r = I N T ,
 d = 0 , d ' = 0 , t = 0 }

F P A D D
H S N e w # 2

c o n t -

Out o f Order/
Central Wind/
Branch Pred

stal l
B r a

1 `b (y)

MU L
H S N ew #4

co n t-
>r es

IN T

[(# i n s t r ex ec u te=IN T o r e l se
 # i n s t r ex ec u te =B R A) an d a ls o
 #d ex ec u te = #n o w b an d a ls o
 #d ' exec u te = #n o w b]

@ + 1 C

in p u t ex ec u te ;
o u tp u t (b r a ,ad r , b r an ch);
ac t io n
i f t im e() < 3 th en r :=0 e l se ();
i f # in s t r ex ecu te = B R A th en i n c (r)
el s e ();
i f # in s t r ex ecu te = B R A an d a l so

co n t

I n s t r
4 `N U L L

1
C o u n t

1 `1

b p u

B P U

1`n o (0)+1 `t (0)

B P U
@ + 1

1 `f et c h

[ad r =0] /
u p d f(p ,
f et c h)

1 `i

1 `d eco d e

d eco d e

exec u te

1`exec u te

1 `d m em

1`d m em

1`w b

i f ad r <> 0 t h en 1 `ad r e l se i f
#i n s t r f e t ch =B R A an d a l so #n o f e tc h =b p u
th en 1`(# t f e tc h) e ls e 1`(i+n o fe tc h)

[k =0] /4 `w b

w b

w b

1`in s t

1 `IN T

1

[b r an c h =y] /
(1 `n o _ (b r a)+1`t a(ad r)
+1 `b (y))

1 `n o (b p u)+1 `t (ad r)

1 `n o (b p u)+1 `t (0)

1 `f e tc h

1 `b (y)

1`n o (b r a)+1 `t(ad r)
i f b r <>b r a th en
1 `n o (b r)+1 `t(ad)
e l se 1`n o (0)+1 `t (ad)

1 `n o _(b r)+1`t a(ad) 1 `b (y)

Low-level modelling: “lazy token”
ring adaptor

Client 1

Adaptor 1

Client 2 Client 1

Adaptor 1 Adaptor 1

R G D G DG D RR

Low-level modelling: “lazy token”
ring adaptor

Client 1

Adaptor 1

Client 2 Client 1

Adaptor 1 Adaptor 1

R G D G DG D RR
RrLr

La Ra

Lazy ring adaptor

Lr

dumdum

R

Ra

Rr

La

G

D

t=0 t=1

Ring
adaptor

R G D

Ra

Rr

La

Lr

t=0

(token isn’t
initially here)

7

Lazy ring adaptor

Lr

dumdum

R

Ra

Rr

La

G

D

t=0 t=1

Ring
adaptor

R G D

Ra

Rr

La

Lr

t=0->1->0
(token must be
taken from the

right and past to
the left

Lazy ring adaptor

Lr

dumdum

R

Ra

Rr

La

G

D

t=0 t=1

Ring
adaptor

R G D

Ra

Rr

La

Lr

t=1

(token is
already
here)

Lazy ring adaptor

Lr

dumdum

R

Ra

Rr

La

G

D

t=0 t=1

Ring
adaptor

R G D

Ra

Rr

La

Lr

t=0->1
(token must be
taken from the

right)

Lazy ring adaptor

Lr

dumdum

R

Ra

Rr

La

G

D

t=0 t=1

Ring
adaptor

R G D

Ra

Rr

La

Lr

t=1
(token is here)

Logic Circuit Modelling

Event-driven elements Petri net equivalents

C

Muller C-
element

Toggle

Logic Circuit Modelling

Level-driven elements Petri net equivalents

NAND gate

x(=1)

y(=1)

z(=0)

NOT gate

x(=1) y(=0) x=0

x=1
y=0

y=1

b

x=0

x=1z=0

z=1
y=0

y=1

8

Logic Circuit Modelling: examples

Pipeline data
Stage

Data In Data Out

Pipeline control
Stage

Rin

Ain

Rout

Aout

Data
Enable

Pipeline control must
guarantee:

•Handshake
protocols between
the stages

•Safe propagation of
the previous datum
before the next one

Event-driven circuit

C
C

C1 XOR I1

I4

C2

Toggle

I3

I2

Rin

Aout

Aout Rout

AinRin

Rout

Ain

fast-fwd
option

Level-driven circuit

I2-

C1+

I2+

C1-

C1=1 C1=0

n_Ain/Rin

y1

I2=1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1
Rout

I2 C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Level-driven circuit

I2-

C1+

I2+

C1-

C1=1 C1=0

n_Ain/Rin

y1

I2=1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1
Rout

I2 C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Set-part

Level-driven circuit

I2-

C1+

I2+

C1-

C1=1 C1=0

n_Ain/Rin

y1

I2=1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1
Rout

I2 C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Reset-part

Level-driven circuit

I2-

C1+

I2+

C1-

C1=1 C1=0

n_Ain/Rin

y1

I2=1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1
Rout

I2 C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Without y2 in
Set part of y1
this trace can
happen:

I2+

C1+

I2-

C2+

I1+

C1-

I2+ C2-

C1+

9

Level-driven circuit

I2-

C1+

I2+

C1-

C1=1 C1=0

n_Ain/Rin

y1

I2=1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1
Rout

I2 C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

Without y2 in
Set part of y1
this trace can
happen:

I2+

C1+

I2-

C2+

I1+

C1-

I2+ C2-

disabling
C1+

Properties analysed

• Functional correctness (need to model environment)

• Deadlocks
• Hazards:

– non-1-safeness for event-based
– non-persistency for level-based

• Timing constraints
– Absolute (need Time(d) Petri nets)
– Relative (compose with a PN model of order conditions)

More about this in the Verification Part

How adequate is PN model?

• Petri nets have events with atomic action semantics

• Asynchronous circuits may exhibit behaviour that does
not fit within this domain – due to inertia

0*

0*

0->1

0->1

a

b

a

b

a b

00

01

11

10

Petri Nets versus Circuits

x- y+ AND
x

y

1->0
0*

1

p1

p2 p3

p1

p2 p3

x- y+

y+
y+ disabled
(no memory

of past)

x

y

z

z

with large inertial
(RC) delay

Race between x- and y+ causes nondeterministic
behaviour on y:

(1) Either there is a 0-1-0 pulse

(2) Or nothing

switching
threshold

Request-Grant-Done (RGD) arbiter

C

C
mutex

r1

g2

g1

r2

R1

R2 G2

D2

G1

D1

Request-Grant-Done (RGD) arbiter

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

10

Request-Grant-Done (RGD) arbiter

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

mutex

r1

g2

g1

r2

(locally
optimised

model)

Request-Grant-Done (RGD) arbiter

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

C

Request-Grant-Done (RGD) arbiter

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

Request-Grant-Done (RGD) arbiter

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

Interface from

event-based part to
level-based part

Request-Grant-Done (RGD) arbiter

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

Interface from

level-based part to
event-based part

Request-Grant-Done (RGD) arbiter
with environment

r1-

r1=0

r1=1

r1+
g1-

g1=0
g1=1

g1+

r2-

r2=0

r2=1

r2+
g2-

g2=0g2=1

g2+
me

R1

R2

D2

G2

G1

D1

Private
section 1

Private
section 2

Critical
section 1

Critical
section 2

11

Modelling. Conclusions

• Choosing the right level of modelling is crucial
• Refinement of Petri net models and

interpretation can be used in hardware design
• Petri nets are too abstract to capture analogue

phenomena in circuits
• However, non-persistence or non-safeness can

(conservatively) approximate the possibility of
hazards

Hardware and Petri Nets:
Synthesis

Alex Yakovlev
Univ. Newcastle upon Tyne

Advanced Course on Petri nets,

Eichstätt, 24-26 Sept, 2003

Tutorial Outline

• Introduction
• Modeling Hardware with PNs
�Synthesis of Circuits from PN specifications
• Circuit verification with PNs
• Performance analysis using PNs

Hardware Design and Petri Nets – Adv. Tutorial

Synthesis.Outline

• Abstract synthesis of Labelled PNs (LPNs) from
causality constraints and transition systems

• Handshake and signal refinement (LPN-to-STG)
• Direct translation of LPNs and STGs to circuits
• Logic synthesis from STGs

Synthesis from Causality Constraints
(compositional approach)

• Behaviour defined in terms of Causality
Constraints - characteristic predicates defined
on traces

• These constraints produce LPN “snippets”
• Construction of LPNs as compositions of

snippets
• Examples: n-place buffer, 2-way merge

Synthesis from Causality Constraints

Causality Constraints:

#b <= #a+1

a

#a <= #b+1

a

b

b

Assemble LPN using
“ Conjunction-Parallel

composition” rule

a b

Labelled Petri net:

12

Causality Constraints: General Form(1)

a1

am

…
b1

bn

…

A={a1, …,am}; B= {b1, …, bn}

ktaitbiBAt
m

i

n

i �� ==
∗ ≤+∪∈∀

11
)(#)(#:)(

Generic primitive
LPN component:

a1 am

…

k

b1 bn

…

Specific cases:

Generic primitive
causality constraint:

a b

#b<=#a

Simple causality

a b

#b<=#a +2

2-delayed causality

a1

b

#b<=#a1 +#a2

Simple OR-causality

a2

Simple selection

a
b1

b2

#b1+#b2<=#a

Causality Constraints: General Form(2)

a1

am

…
b1

bn

…

U={u1, …,um}; B= {v1, …, vn}

kvitaiuitbiBAt
m

i

n

i �� ==
∗ ≤+∪∈∀

11
)(#)(#:)(

Generic primitive
LPN component:

a1 am

…

k

b1 bn

…

Specific cases (modelling counters):

Same with weights:

a b

#b*2<=#a

Simple frequency
divider

a b

#b<=#a*2 +2

2-goahead frequency
multiplier

a1

b

#b*2<=#a1 +#a2

OR-causality with
divider

a2

Selector with
multiplier

a
b1

b2

#b1+#b2<=#a*2

u1 um

vnv1

22 2 2

Composition of LPNs

a

p1p2

b

a d

c a

p3

p6

p5

p4

N1:

N2:

N1 || N2:

a a

c

b

d

p3

p4

p5

p6

p2

p1

Example: merge

merge

C1

C2
C3 p1: #C3<=#C1+#C2

p2: #C1<=#C3+1
p3: #C2<=#C3+1

C1

C2

C3
p1

p3

p2

Incorrect –
unbounded

net!

Example: merge

merge

C1

C2
C3

C1

C2

C3p1 p2

p1: #C3<=#C1+#C2
p2: #C1+#C2<=#C3+2

Example: merge (refined)

merge

p1: #r3<=#r1+#r2
p2: #a1+#a2<=#a3

p3-p5: #ai<=#ri
p6-p8: #ri<=#ai+1

p2p1

C1
a1
r1

C2r2

r3

a2
a3

C3
r1 a1

r3 a3

r2 a2

p3

p4

p5

p6

p7

p8

13

More examples

Buf(n)
P(ut) G(et) p1: #P<=#G+n

p2: #G<=#P+n P G

n

Div(n)
in out p1: #<in=#out*2+2

p2: #out*2<=#in in out

n

n

n

n-place buffer

Modulo-n counter (frequency divider)

Decomposition of LPNs

Buf(n)
P(ut) G(et)

Div(n)
in out

Buf(n-1)
P(ut) x

Buf(1)
G(et)

Div(n/2)
in x

Div(2)
out

Decomposition of LPNs

P G

n

x GP x

n-1

X

in out

n

n

n

x out

2

2

in x

n/2
n/2

n/2

2

X

Decomposition of LPNs

P G

n

x GP x

n-1

in out

n

n

n

x out

2

2

in x

n/2
n/2

n/2

2

Synthesis from transition systems

• Modelling behaviour in terms of a sequential
capture – Transition System

• Synthesis of LPN (distributed and concurrent
object) from TS (using theory of regions)

• Examples: one place buffer, counterflow pp

Transition Systems

s1

s3s2

a

b

b

a

Original TS specification

Not (semi-)elementary

The relationship between Transition
Systems and Petri nets and conditions for
synthesizability of a PN from a TS are
based on Theory of Regions

(Ehrenfeucht, Rozenberg, Nielsen,
Thiagarajan, Mukund, Darondeau et al.)

14

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

Not (semi-)elementary

No non-trivial
regions!

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

s1

s3s2

a

b

b

a

s4

Splitting
states x

Inserting
dummy
events:

(x)

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

s1

s3s2

a

b

b

a

s4

Splitting
states x

Inserting
dummy
events:

(x)

This transformation preserves observational equivalence

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

s1

s3s2

a

b

b

a

s4

Region r1:

exit(b)

enter(x)

no-cross(a)

x

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

s1

s3s2

a

b

b

a

s4

Region r2:

exit(a)

enter(x)

no-cross(b)

x

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

s1

s3s2

a

b

b

a

s4

Region r3:

exit(x)

enter(b)

no-cross(a)

x

15

Transition Systems and regions

s1

s3s2

a

b

b

a

Original TS specification

s1

s3s2

a

b

b

a

s4

Region r4:

exit(x)

enter(a)

no-cross(b)

x

From Transition System to LPN

s1

s3s2

a

b

b

a

s4

x
Regions in the TS are associated with
places in the LPN

Events are associated with transitions

Exit/entry/no-cross relations are
associated with pre/post relations

From Transition System to LPN

s1

s3s2

a

b

b

a

s4

x

r1: exit (b), enter(x), no-cross(a)

x

b

r1

From Transition System to LPN

s1

s3s2

a

b

b

a

s4

x

r1: exit (b), enter(x), no-cross(a)

r2: exit (a), enter(x), no-cross(b)

x

ba

r2 r1

From Transition System to LPN

s1

s3s2

a

b

b

a

s4

x

r1: exit (b), enter(x), no-cross(a)

r2: exit (a), enter(x), no-cross(b)

r3: exit (x), enter(b), no-cross(a)

x

ba

r2 r1

r3

From Transition System to LPN

s1

s3s2

a

b

b

a

s4

x

r1: exit (b), enter(x), no-cross(a)

r2: exit (a), enter(x), no-cross(b)

r3: exit (x), enter(b), no-cross(a)

r4: exit (x), enter(a), no-cross(b)

x

ba

r2 r1

r4 r3

16

Example: counterflow pipeline

E

C

F

IR

PR

PR

PI

PI

AR

ARAI

AI

G

Molnar’s 5-state TS:
Examples of regions:

r1={E,R} – pre-region(AI), post-region(PI)

r2={I,F,C} – pre-region(PI), post-region(AI), co-region(G)

Violation of semi-elementarity:

1. Intersection of pre-regions (only r2!) for PI {I,F,C} is
not equal to Excitation Region for PI {I,C}

2. Intersection of pre-regions (empty!) for G is not
equal to Excitation Region for G {F}

Notation: exit(a) -> pre-region(a), entry(a) -> post-
region(a), inside(a) -> co-region(a)

Example: counterflow pipeline

E

C

F

IR

PR

PR

PI

PI

AR

ARAI

AI

G

Molnar’s 5-state TS: Solution:

Split a state (E) and insert a silent
action (d), preserving behavioural

(observational) equivalence

Example: counterflow pipeline

E

C

F

IR

PR

PR

PI

PI

AR

ARAI

AI

G

Molnar’s 5-state TS:

E2

C

F

IR

PR

PR

PI

PI

AR

ARAI

AI

G

E1

d

Example: counterflow pipeline

E2

C

F

IR

PR

PR

PI

PI

AR

ARAI

AI

G

E1

d

Semi-elementary TS

Minimal set of regions:

r1 = {E1,E2,I} <- pre(AR), post(PR)

r2 = {E1,E2,R} <- pre(AI), post (PI), co(d)

r3 = {R,F,C} <- pre(PR), post(AR), co(G)

r4 = {I,F,C} <- pre(PI), post(AI)

r5 = {E2,I,C} <- pre(PI,AR), post(G,d)

r6 = {E2,R,C} <- pre(PR,AI), post(G,d)

r7 = {E1,I,F} <- pre(G,d), post(PR,AI)

Example: counterflow pipeline

E2

C

F

IR

PR

PR

PI

PI

AR

ARAI

AI

G

E1

d

Semi-elementary TS

r6

AI PI

PR AR

G d

r4

r2

r1

r3

r5
r7

Semi-elementary Petri net

Synthesis from process-based
languages

• Modelling behaviour in terms of a process
(-algebraic) specifications (CSP, …)

• Synthesis of LPN (concurrent object with explicit
causality) from process-based model
(concurrency is explicit but causality implicit)

• Examples: modulo-N counter

17

Refinement at the LPN level

• Examples of refinements:
– Introduction of “silent” events
– Handshake refinement
– Signalling protocol refinement (return-to-zero versus non-return-

to-zero)
– Arbitration refinement

All these refinements must preserve behavioural equivalence
(discussed below) and some other properties at the STG level
(discussed later)

• What is implemented in Petrify and what isn’t (yet)

Structural refinement in LPN

a

a

dum

Structural refinement in LPN

duma

a

dum

Structural refinement in LPN

a

a

dum
dum

b

a

p

b

a

p
dum

Structural refinement in LPN

a

a

dum
dum

a
b

a

p

b

a

p
dum

b
a b

dum

Handshake refinement

a

Let abstract event (action) “ a” be
associated with some port of the
control circuit

E.g.

Buf(n)a= P(ut)

This may lead to the following refinements
at the circuit level

18

Handshake refinement

a

Passive handshake Active handshake

circuit
ar

ak
circuit

ar

ak

Environment
produces (first)

request

Handshake refinement

a

Passive handshake Active handshake

circuit
ar

ak
circuit

ar

ak

Environment
produces (first)

request

Handshake refinement

a

Passive handshake Active handshake

circuit
ar

ak
circuit

ar

ak

Environment
produces (first)

request

Circuit produces
(first) request

Handshake refinement

a

Passive handshake Active handshake

circuit
ar

ak
circuit

ar

ak

Environment
produces (first)

request

Circuit produces
(first) request

Two phase, non-
return-to-zero
(NRZ) protocol

ar ak
ar

ak

Handshake refinement

a

Passive handshake Active handshake

circuit
ar

ak
circuit

ar

ak

Environment
produces (first)

request

Circuit produces
(first) request

Four phase,
return-to-zero
(RTZ) protocol

ar+

ak+

ar-ak-

ar+

ak+ ar-

ak-

Handshake refinement example

P G

Initial LPN:

Buf(1)P(ut)

pr

pa

gr

ga
G(et)

passive h/s active h/s

Two phase (NRZ) protocol:

pr pa

ga

gr

Four phase (RTZ) protocol:

pr+ pa+

pr-

pa-

gr+ ga+

ga+

ga+

Subsequent transformations are possible at STG level –
e.g. re-shuffling of non-critical (resetting) transitions

(discussed later)

19

Arbitration refinement

•Asynchronous circuits often require
elements to resolve conflicts which are
intentionally “ pre-programmed” in
specifications

•These elements are similar to semaphores
(etc.) in concurrent programs

•These elements are different from logical
gates because they involve internally
analogue components

•The LPN model must be refined to
explicitly “ factorise” non-persistent
behavior from the rest of the model – the
latter can be synthesized using logic gates

E.g. Request-Grant-
Done (RGD) arbiter

RGD
arbiter

R1

R2

G1

G2

D

Arbitration refinement
E.g. Request-
Grant-Done

(RGD) arbiter

RGD
arbiter

R1

R2

G1

G2

D p

a b

Arbitration refinement

E.g. Request-Grant-
Done (RGD) arbiter

RGD
arbiter

R1

R2

G1

G2

D p

a b

Assume a and b are circuit
actions that are in conflict

(may disable each other) and
need to be protected

Arbitration refinement

E.g. Request-Grant-
Done (RGD) arbiter

RGD
arbiter

R1

R2

G1

G2

D p

a b

Assume a and b are circuit
actions that are in conflict

(may disable each other) and
need to be protected

R1

G1

a

R2

G2

b

D

me

p

Arbitration refinement

E.g. Request-Grant-
Done (RGD) arbiter

RGD
arbiter

R1

R2

G1

G2

D p

a b

R1

G1

a

R2

G2

b

D

me

p

a and b are protected
now (they are no longer

disabled)

Translation of LPNs to circuits

• After appropriate refinements have been made
one can translate Labelled Petri nets (or Signal
Transition Graphs) into circuits

• Either by syntax-direct translation (discussed
below)

• Or by using Logic Synthesis (discussed later)

20

Why direct translation?

• Direct translation has linear complexity but can
be area inefficient (inherent one-hot encoding)

• Logic synthesis has problems with state space
explosion, repetitive and regular structures (log-
based encoding approach)

Direct Translation of Petri Nets

• Previous work dates back to 70s
• Synthesis into event-based (two-phase) circuits (similar

to Sutherland’s micropipeline control)
– S.Patil, F.Furtek (MIT)

• Synthesis into level-based (4-phase) circuits (similar to
synthesis from one-hot encoded FSMs)
– R. David (’69, translation FSM graphs to CUSA cells)
– L. Hollaar (’82, translation from parallel flowcharts)
– V. Varshavsky et al. (’90,’96, translation from PN into

an interconnection of David Cells)

Synthesis into event-based circuits

• Patil’s translation method for simple PNs
• Furtek’s extension to 1-safe net
• “Pragmatic” extensions to Patil’s set (for non-

simple PNs)
• Examples: modulo-N counter, Lazy ring adapter

Patil’s set of modules

Petri net fragment: Circuit equivalent:

wireplace

marked place inverter

join C C-element

merge XOR

fork fan-out

shared
(conflict) place S

s

switch
Effectively

RGD arbiter

Example

Buf(1)P(ut)

pr

pa

gr

ga
G(et)

passive h/s active h/s

Two phase (NRZ) protocol:

pr pa

ga

gr

Two-phase implementation

(using Patil’s elements):

Environment

C
pr

pa

gr

ga

Environment

Simple Net restriction
Patil’s translation was restricted to (1-safe) Simple Nets

Violation of simplicity: transition t has more than
one input place (p1 and p2) that is input to other

transitions

t

p2p1

21

Extension to Simple Nets

x1

y2

x2

y1

z22

z21

z11

x1

x2

y1 y2

z11

z21

z22

2-by-2 Decision-Wait element

(multi-way Join)

Extension to Simple Nets

x1

y2

x2

y1

z22

z21

z11

x1

x2

y1 y2

z11

z21

z22

(x1 and x2) and (y1 and y2) must pairs of mutually exclusive
events

DW

Problems with C-elements

x1

x2

y

x1 and x2 are mutually
exclusive – so no need

for a S-switch (RGD
arbiter)

C

C

z1

z2

x1

y

x2

z1

z2

Can we just use a pair of C-
elements to implement a 2-by-

1 Decision wait?

Problems with C-elements

x1

x2

y

x1 and x2 are mutually
exclusive – so no need for
a S-switch (RGD arbiter)

C

C

z1

z2

x1

y

x2

z1

z2

Can we just use a pair of C-
elements to implement a 2-by-1

Decision wait?

No.

C-elements can only
synchronise:

rising (0-1) with r ising (0-1) or

falling (1-0) with falling (1-0) but

not rising (0-1) with falling (1-0)

Problems with C-elements

x1

x2

y

x1 and x2 are mutually
exclusive – so no need

for a S-switch (RGD
arbiter)

z1

z2

x2

C

C

x1

y

z1

z2

DW

x1

x2

y

z1

z2

Other useful elements

Select:

Call:

Toggle:

L

L

T

F
In

D

sel

D-

T

F

In

D

F

T

D+

D

D1

R1

R2

D2

R

D2

R1

D1 R

D
call

R2

DW

R1

R2

D1

D2

R

D

In
Out1

Out2

L

L

Out1

Out2

In

22

Direct synthesis example
(modulo-k Up-Down counter)

Modulo k
Up/Down
Counter

Up

Down

inc
inc'
dec'
dec

CNT CNT'

(a) (b)

inc

inc'

dec'

dec

Up

Down

CNTCNT' k-1
k-1

k-1 k-1

k-1

inc

inc'

dec'

dec

Up

Down

Mod-k counter LPN Environment LPN

Direct synthesis example
(modulo-k Up-Down counter)

Up/Down
Counter

Up/Down
Counter

Modulo 2 Modulo k/2
Up1

inc1

Down1

inc1'

dec1'

Up2

Down2

inc2

MUX_2

MUX_2

dec1 dec2

Up1

Down1 dec2'

inc2'

inc

inc'

dec'

dec

a1

a2
b

a1

a2
b

Decomposition (structural view)

Direct synthesis example
(modulo-k Up-Down counter)

CNT1

Ua

DaCounter
Up/Down
Modulo 2

CNT1'

Counter
Up/Down

CNT*CNT*'

Ur*

Dr* Da*

Ua*
Ua1
Uc1

Dc1
Da1

Dr

Ur Ur1

Dr1

Modulo k/2

Ur

Dr

inc

inc'

dec'

dec

CNT1'

Ua

Da

inc

inc'

dec'

dec

CNT1
CNT*'

Ua1

Dc1

Uc1

Da1

CNT*k* k*= k/2-1k* k*

k* k*

structure

LPN

Direct synthesis example
(modulo-k Up-Down counter)

CNT1

Ua

DaCounter
Up/Down
Modulo 2

CNT1'

Counter
Up/Down

CNT*CNT*'

Ur*

Dr* Da*

Ua*
Ua1
Uc1

Dc1
Da1

Dr

Ur Ur1

Dr1

Modulo k/2

Ur

Dr

inc

inc'

dec'

dec

CNT1'

Ua

Da

inc

inc'

dec'

dec

CNT1
CNT*'

Ua1

Dc1

Uc1

Da1

CNT*k* k*= k/2-1k* k*

k* k*

structure

LPN

Direct synthesis example
(modulo-k Up-Down counter)

DW
Ur

Dr

B+

B-

Dc1

Da1

Ua1

Uc1

CNT

Ur

Dr

B+
B-

B+

B+

B-

CNT' CNT

Ur

Dr

Uc1

Dc1

Da1

Ua1 Ua1

Uc1

Dc1

Da1B-

(a)

CNT'

CNT
Merge

(c)

(b)

Toggle 2-by-2 DW

Direct synthesis example
(lazy token ring adapter)

DW

Ring
Adaptor

GR D

Lr

La Ra

Lr = Left-reqR = Request
G = Grant
D = Done

La = Left-ack
Rr = Right-req
Ra = Right-ack

Rr

dum="dummy event"

dum dum

Lr~

La~
Rr~

Ra~

t=1t=0

probe

me R~

G~

D~

(a)

rgd

r1

r2

d1
g1

g2
d2

1
sel

0

R

D

Rr
Lr

La

G

t

if t=0
initially

probe

Ra

(b)

23

Direct synthesis example
(lazy token ring adapter)

DW

Ring
Adaptor

GR D

Lr

La Ra

Lr = Left-reqR = Request
G = Grant
D = Done

La = Left-ack
Rr = Right-req
Ra = Right-ack

Rr

dum="dummy event"

dum dum

Lr~

La~
Rr~

Ra~

t=1t=0

probe

me R~

G~

D~

(a)

rgd

r1

r2

d1
g1

g2
d2

1
sel

0

R

D

Rr
Lr

La

G

t

if t=0
initially

probe

Ra

(b)

Exercise:

Refine this initial LPN
and map it (fragment-
by-fragment) to the
circuit

Synthesis into level-based circuits

• David’s method for asynchronous Finite State
Machines

• Holaar’s extensions to parallel flow charts
• Varshavsky’s method for 1-safe Petri nets:

based on associating places with latches
• Examples: counter, VME bus, butterfly circuit

David’s original approach

a

b

c

d

x1 x’2

x’1

x2 ya

yc

yb

x’2

x1

Fragment of a State
Machine flow graph

CUSA element for
storing state b

Hollaar’s approach

K

L

A

B

K

N

M

L

N

Fragment of a flow-chart
(allows parallelism) One-hot circuit cell

A B

(0) (1)

1
1

(1)

(1)

(0)

(1)

M

Varshavsky’s Approach

p1 p2

p1 p2

(1) (0) (0) (1)

1*
(1)

Operation
Controlled

To Operation

Varshavsky’s Approach

p1 p2

p1 p2

(1) (0) 0->1 1->0

1->0 (1)
To Operation

24

Varshavsky’s Approach

p1 p2

p1 p2
1->0 0->1 0->1 1->0

1->0->1 1*
To Operation

Varshavsky’s Approach

• This method associates places with latches (flip-flops) –
so the state memory (marking) of PN is directly
mimicked in the circuit’s state memory

• Transitions are associated with controlled actions (e.g.
activations of data path units or lower level control blocks
– by using handshake protocols)

• Modelling discrepancy (be careful!):
– in Petri nets removal of a token from pre-places and adding

tokens in post-places is instantaneous (i.e. no intermediate
states)

– in circuits the “move of a token” has a duration and there is an
intermediate state

Translation in brief

This method has been
used for designing control
of a token ring adaptor

[Yakovlev, Varshavsky,
Marakhovsky, Semenov,
IEEE Conf. on
Asynchronous Design
Methodologies, London,
1995

a2- b2- a2+ b2+

a3- b3- a3+
C2+

C1+

dummy
Q1 Q3

b3+

Q6

Q7

Q5
from

Op1

Op2

Op3

Op1

Q1 Q2

Q5

Q4

Op2C1

C2
Q6

Q7Q3

Op3

Op1 1

1

C1C2

Op2

Q4

Q5Q3

Q1 Q2 Q6

(0)

(1) (1)

(0)

(0)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(0)

(0)

(0)
(0)

(1)

(1)

(1)

(1)

(1)(1)

a1 b1 a2 b2

(1)*

(1)
Op3

Q7
(0)

(1)

(1)(1)

(1)

a3 b3
(0)

(1)

(1)

(1)

(1)

(0)

(0)

*

(1)

(1)

(0) (1)

(1)

(1)

(1)

(1)(0)

(1)

(1)

(1)

(1)

(0)

(0) (0)

(1)
(1)
(1)

Cell Implementat ions

&
&

a1- b1- a1+ b1+

(a) (b)

(c)

Direct translation examples

In this work we tried direct translation:

• From STG-refined specification (VME bus controller)
– Worse than logic synthesis

• From a largish abstract specification with high degree of
repetition (mod-6 counter)
– Considerable gain to logic synthesis

• From a small concurrent specification with dense coding
space (“butterfly” circuit)

– Similar or better than logic synthesis

Example 1: VME bus controller

INPUTS: DSr,DSw,LDTACK
OUTPUTS: D,LDS,DTACK

p0

DSr+DSw+

LDS+D+/1

DTACK-

p1

LDTACK+

LDS+/1

D+

DTACK+

DSr-

D-

p2

LDS- DSw-

LDTACK- DTACK+/1

p3 D-/1

LDTACK+/1

DTACK-
DSr+

DSw+

LDS+/1
LDTACK+/1

D+/1req
D+/1ack

DTACK+/1
DSr-

D+/2req

D+/2ack

LDS+/2
LDTACK+/2

D-/2req

D-/2ack

DTACK+/2
DSw-

D-/1ack

D-/1req+

+

+

+

&

&

&

p1

pr1
pr3pr2

pw 1
pw 2

p4

p2

pr4

pw 3
pw 4

LDS-
LDTACK-

10

01 01 01 01

0110

01 01 01 01

1* 1*

(1)

(1)

(1)

(1)

(1)

(1)
(1)

(1) (1) (1) (1) (1)

(1)

(1)(1)

(1)

(1) (1) (1) (1)

(1)

(1) (1) (1)

(1) (1)

&

(1)

(1)(0)
(0)

Result of direct translation (unoptimised):

VME bus controller

D+/2req
D+/2ack

(1)

LDS+/2
LDT ACK+/2

D-/2req
D-/2ack

DT ACK+/2
DSw-

DT ACK+/1
DSr-

D-/1 req
D-/1ack

DTACK-
DSr+

DSw+

LDS+/1
LDT ACK+/1

+
p1

pr1

10

01
(1) (1)

(1) (1)

(1)

(1)

(1)

01

(1)

D+/1req
D+/1ack(1)

&

pr2

pw 1
pw 2

&

LDS-
LDTACK-

01

(1)

p2

+

&

+

(1)

1*

(1)

1*

&

&
+

(1)

(1)

(1)

(1)

(1)

(1)

(1)

&

After DC-optimisation (in the style of Varshavsky et al WODES’96)

25

David Cell library

1
0

1

1

1

1

1

00

p

01

0

1

1

1

1

1

1

p

01

+

p

01

+

01

+
p

+

p

01

&

10

1 1

1

1

10

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

DC1

DC2

DC3

DC4

DC5

DC6

&

p

01

1

1

1

1

0

01

&

&
+

p

DC7

+ 1

1
1
1

1

“Data path” control logic

DTACK+/1(r)

DTACK+/2(w)

DTACK-

DTACK DSr DSw

3 w ire

h/s

DSr-
DSw -

DSr+
DSw +

DTACK+/1(r)

DTACK+/2(w)

DTACK-

DTACK DSr DSw

(1)

(1)

(1)

DSr-

DSw -

DSr+

DSw +

(1)

(1)

(1)

(1)

(1)

(1)

(1) (0) (0)

DTACK- DSR/DSw handshake:

Example of interface with a handshake control (DTACK, DSR/DSW):

Example 2: “Flat” mod-6 Counter

CSP-like Specification:
((p?;q!)5;p?;c!)*

Petri net (5-safe):

p?

c!

q! 5

5

“Flat” mod-6 Counter

Refined (by hand) and optimised (by Petrify) Petri net:

“Flat” mod-6 counter

Result of direct translation (optimised by hand):

David Cells and Timed circuits

(a) Speed-independent (b) With Relative Timing

26

“Flat” mod-6 counter

(a) speed-independent (b) with relative timing

“Butterfly” circuit

a+ a-

b-

dummy

b+

Initial Specification: STG after CSC resolution:

a+

a-

b+

b-

x+

x-

y+

y-

z+

z-

“Butterfly” circuit

x

y z

(0)

(0) (0)

(0)

a

0* 0*

b

(0)

(1)

(1)

(1)(1) (1)

Speed-independent logic synthesis solution:

“Butterfly” circuit

a+

b+ &

&

b-

a-
1*

1*

(10)

(10)

(01)

(01)

(01)

(1)

(1)

(1)

(1) (1)

(0)

(0)

(1) (1)

(1)

(1)

(1)

Speed-independent DC-circuit:

“Butterfly” circuit

DC-circuit with aggressive use of timing assumptions:

(1)

(1)

(1)

(1)

(1)

(0)

(0)

(0) (1)

(1)

pa1 pa1n

pb1 pb1n

(0) (1)

a an
pa2 pa2n

p pn

ta1

tb1

(0) (1)

pb2 pb2n

b bn

1*

1*

(1)

Conclusion on direct synthesis

• Direct synthesis allows to implement practically any
bounded labelled Petri net specification (suitably
interpreted and refined to the level of signals)

• Direct synthesis produces control circuits that are
structurally “homomorphic” to Petri nets (translation
complexity is low)

• Direct synthesis is not affected by state explosion, so
large controllers or prototypes can be constructed at low
cost

• Larger size of direct translation circuits does not however
mean less speed

• New synthesis methods will combine direct translation
with logic synthesis

27

Hardware and Petri Nets:
Verification of Asynchronous
Circuits using Partial Order

Techniques

Alex Yakovlev
Univ. Newcastle upon Tyne

Advanced Course on Petri nets,

Eichstätt, 24-26 Sept, 2003

Outline

• Representing Petri net semantics with
occurrence nets (unfoldings)

• Unfolding (finite) prefix construction
• Analysis of asynchronous circuits
• Problems with efficient unfolding

Approaches to PN analysis

• Reachable state space:

– Direct or symbolic representation
– Full or reduced state space (e.g. stubborn set

method)
in both cases knowledge of Petri net structural relations
(e.g. conflicts) helps efficiency

• Unfolding the Petri net graph into an acyclic branching
graph (occurrence net), with partial ordering between
events and conditions and:
– Considering a finite prefix of the unfolding which

covers all reachable states and contains enough
information for properties to be verified

Occurrence nets

p1

p5p3

t2

t5 t6

t1

t4t3

p7p6

t7

p2 p4

Petri net Occurrence net
Min-place

p1

p5p3

t2

t5 t6

t1

t4t3

p2 p4

p6

t7

p7 p7

t7

p6

p5p3

t5 t6t4t3

p2 p4

p7 p7

p6

t2t1

p1

p6

p5p3

t2

t5 t6

t1

t4t3

p2 p4

p7 p7

p1

… … … …

Occurrence nets
• The occurrence net of a PN N is a labelled (with

names of the places and transitions of N) net (possibly
infinite!) which is:
– Acyclic
– Contains no backward conflicts (1)
– No transition is in self-conflict (2)
– No twin transitions (3)
– Finitely preceded (4)

p6

t5t3

(1)

t1

t

p1

t2

(2)
t7

p6 p7

t7

(3)
t

p1 p2

infinite set

(4)

NO!
NO!

NO! NO!

Relations in occurrence nets
p1

p5p3

t2

t5 t6

t1

t4t3

p2 p4

p6

t7

p7 p7

t7

p6

p5p3

t5 t6t4t3

p2 p4

p7 p7

p6

t2t1

p1

p6

p5p3

t2

t5 t6

t1

t4t3

p2 p4

p7 p7

p1

conflict

precedence

concurrency

28

Unfolding of a PN
• The unfolding of Petri net N is a maximal

labelled occurrence net (up to
isomorphism) that preserves:
– one-to-one correspondence (bijection)

between the predecessors and successors of
transitions with those in the original net

– bijection between min places and the initial
marking elements (which is multi-set)

p7p6

t7

p7’p6’

t7’

net N unfolding N’ net N

p’ p’’p

unfolding N’

Unfolding construction
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1

and so on …

Unfolding construction
p1

p5p3

t2

t5 t6

t1

t4t3

p2 p4

p6

t7

p7 p7

t7

p6

p5p3

t5 t6t4t3

p2 p4

p7 p7

p6

t2t1

p1

p6

p5p3

t2

t5 t6

t1

t4t3

p2 p4

p7 p7

p1

… … … …

p1

p5p3

t2

t5 t6

t1

t4t3

p7p6

t7

p2 p4

Petri net
Unfolding

Petri net and its unfolding
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1

marking cut

Petri net and its unfolding
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1

marking cut

Petri net and its unfolding
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1

marking cut

29

Petri net and its unfolding
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1PN transition and its
instance in unfolding

Petri net and its unfolding
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1

Prehistory (local
configuration) of the
transition instance

Final cut of prehistory and its
marking (final state)

Petri net and its unfolding
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1

Prehistory (local
configuration of the
transition instance)

Final cut of prehistory and its
marking (final state)

Truncation of unfolding

• At some point of unfolding the process begins to
repeat parts of the net that have already been
instantiated

• In many cases this also repeats the markings in
the form of cuts

• The process can be stopped in every such
situation

• Transitions which generate repeated cuts are
called cut-off points or simply cut-offs

• The unfolding truncated by cut-off is called prefix

Cutoff transitions
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1
Cut-offs

Cutoff transitions
p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7

p1

t7

p1
Cut-offs

pre-history
of t7’

30

Prefix Construction Algorithm
Proc Build prefix (N =<P,T,F,M0>)

Initialise N’ with instances of places in M0
Initialise Queue with instances of t enabled at M0
while Queue is not empty do

Pull t’ from Queue
if t’ is not cutoff then do

Add t’ and succ(t’) to N’
for each t in T do

Find unused set of mutually concurrent
instances of pred(t)

if such set exists then do
Add t’ to Queue in order of its prehistory size

end do
end do

end do
return N’

end proc

Cut-off definition

• A newly built transition instance t1’ in the
unfolding is a cut-off point if there exists another
instance t2’ (of possibly another transition)
whose:
– Final cut maps to the same marking is the final cut of

t1’, and
– The size of prehistory (local configuration) of t2’ is

strictly greater than that of t1’

[McMillan, 1992]
• Initial marking and its min-cut are associated with an

imaginary “bottom” instance (so we can cut-off on t7 in
our example)

Finite prefix
p1

t1

p3p2 p5

t2

p4

t3

p6

t4

p7

t5

p6

t6

p7

t7 t7

p1

p3

t5 t6

t1

t4t3

p7p6

t7

p2 p5

t2

p4

For a bounded PN the finite prefix
of its unfolding contains all
reachable markings

[K. McMillan]

Complexity issues

• The prefix covers all reachable markings of the original
net but the process of prefix construction does not visit
all these markings

• Only those markings (sometimes called Basic Markings)
are visited that are associated with the final cuts of the
local configurations of the transition instances

• These markings are analogous to primes in an algebraic
lattice

• The (time) complexity of the algorithm is therefore
proportional to the size of the unfolding prefix

• For highly concurrent nets this gives a significant gain in
efficiency compared to methods based on the
reachability graph

Size of Prefix

a1 a2 an…

b

The size of the prefix for this net is
O(n) – same as that of the original net
while the size of the reachability graph
is O(2n)

This is however not always true and
the size depends on:

•the structure and class of the net, and

•initial marking

Size of Prefix

a1 a2

b2b1

c2c1

a1 a2

b1 b2

c1 c2 c1 c2

b2b1

c2c1c2c1

cut-off points

p1

p2

p3

p4

p1

p2 p2

p3 p3 p3 p3

p4

31

Size of Prefix

a1 a2

b2b1

c2c1

a1 a2

b1 b2

c1 c2 c1 c2

b2b1

c2c1c2c1

p1

p2

p3

p4

p1

p2 p2

p3 p3 p3 p3

p4

Redundant
part

Size of Prefix

a

b

c

1

3

2

4

a

b

c

1

3

2

4

2

a

b

c

3

4

2 11 2

Cut-offs

However this part is
redundant

Non-1-safe net

Cut-off Criteria

• McMillan’s cutoff criterion, based on the size of
pre-history, can be too strong

• A weaker criterion, based only on the matching
of the final cuts, was proposed by Esparza,
Vogler, and Römer
– It uses a total (lexicographical) order on the transition

set (when putting them into Queue)
– It can be only applied to 1-safe nets because for non-

1-safe nets such a total order cannot be established
(main reason auto-concurrency of instances of the
same transition!)

• Unfolding k-safe nets can produce a lot of
redundancy

Property analysis

• A model-checker to verify a CTL formula (defined on
place literals) has been built (Esparza) within the PEP
tool (Hildesheim/Oldenburg)

• Various standard properties, such as k-boundedness, 1-
safeness, persistency, liveness, deadlock freedom have
special algorithms, e.g.:
– Check for 1-safeness is a special case of auto-concurrency

(whether a pair of place instances exist that are mutually
concurrent – can be done in polynomial time)

– Similar is a check for persistency of some transition (analysis of
whether it is in immediate conflict with another transition)

– Check for deadlock is exponential (McMillan) – involves
enumeration of configurations (non-basic markings), however
efficient linear-algebraic techniques have recently been found by
Khomenko and Koutny (CONCUR’2000)

STG Unfolding

• Unfolding an interpreted Petri net, such as a
Signal Transition Graph, requires keeping track
of the interpretation – each transition is a
change of state of a signal, hence each marking
is associated with a binary state

• The prefix of an STG must not only “cover” the
STG in the Petri net (reachable markings) sense
but must also be complete for analysing the
implementability of the STG, namely:
consistency, output-persistency and Complete
State Coding

STG Unfolding

a+ b+

c+ c+

d+

d-

p1

p2 p3

p4

p5

p1

p2 p3

p4

p5

STG Uninterpreted
PN Reachability
Graph

Binary-coded
STG Reach. Graph
(State Graph)

p1(0000)
abcd

p2(1000)
a+

p3(0100)
b+

c+ c+
p4(1010) p4(0110)

p5(1011)

d+
d+

p5(0111)

a+ b+

c+ c+

p1

p2 p3

d+

d-

p4

p5

STG unfold.
prefix

d+

d-

p4

p5

32

STG Unfolding

a+ b+

c+ c+

d+

d-

p1

p2 p3

p4

p5

p1

p2 p3

p4

p5

STG Uninterpreted
PN Reachability
Graph

Binary-coded
STG Reach. Graph
(State Graph)

p1(0000)
abcd

p2(1000)
a+

p3(0100)
b+

c+ c+
p4(1010) p4(0110)

p5(1011)

d+
d+

p5(0111)

a+ b+

c+ c+

p1

p2 p3

d+

d-

p4

p5

STG unfold.
prefix

Not like that!

Consistency and Signal
Deadlock

p1

a+

a- b-

b+

b+ b-

p3p2

p4

p5

p6
p2p4

p1p4

p2p5

p1p5p3p4

p3p5

a-

a+

b+

b+
b+

b+ b+

b-

p1p6

p2p6 p3p6

a+ b+ b-

b-

b-

b-

STG PN Reach.
Graph

STG State
Graph

p1p6(00)

p2p6(10) p3p6(01)

a+ b+ b-

ab

a-

p1p4(00)
a+

p2p4(10)

b+

p2p5(11)
b-

p3p4(01)

b+
b+

p1p5(01)

b-

Signal deadlock
wr t b+ (coding
consistency
violation)

Signal Deadlock and Autoconcurrency

p1

a+

a- b-

b+

b+ b-

p3p2

p4

p5

p6

STG STG State
Graph

p1p6(00)

p2p6(10) p3p6(01)

a+ b+ b-

ab

a-

p1p4(00)
a+

p2p4(10)

b+

p2p5(11)
b-

p3p4(01)

b+
b+

p1p5(01)

b-

Signal deadlock
wr t b+ (coding
consistency
violation)

STG
Prefix

p1

a+

a-

b+

b+

b-

b+

p3p2

p4

p5

p6

a+

p1

b-p2

p2

b-
Autoconcurrency
wrt b+

Verifying STG implementability

• Consistency – by detecting signal
deadlock via autoconcurrency between
transitions labelled with the same signal
(a* || a*, where a* is a+ or a-)

• Output persistency – by detecting conflict
relation between output signal transition a*
and another signal transition b*

• Complete State Coding is less trivial –
requires special theory of binary covers on
unfolding segments (Kondratyev et.al.)

Experimental results (from
Semenov)

Name States Versify PUNT
Verif.only Total Trans. Places Time

c-elem 64 0.01 0.11 7 12 0.07
chu172 768 0.02 0.26 13 14 0.11
espinalt-bad 15360 0.07 0.74 13 17 0.12
espinalt-good 27648 0.1 0.83 25 30 0.17
fair-arb-sg 1280 0.09 0.8 32 33 0.51
josepm 45056 0.7 0.72 21 29 0.12
master-read3.45E+07 0.39 7.4 51 78 0.37
t1 618496 2.65 8.97 67 104 2.87
irred.no1token 41472 0.19 0.93 6 10 0.07
… … … … … … …
TOTAL 4.37 26.98 6.13

Example with inconsistent STG: PUNT quickly
detects a signal deadlock “ on the fly” while Versify
builds the state space and then detects inconsistent
state coding

Analysis of Circuit Petri Nets

Event-driven elements Petri net equivalents

C

Muller C-
element

Toggle

33

Analysis of Circuit Petri Nets

• Petri net models built for event-based and
level-based elements, together with the
models of the environment can be
analysed using the STG unfolding prefix

• The possibility of hazards is verified by
checking either 1-safeness (for event-
based) or persistency (for level-based)
violations

Experimental results (from
Kondratyev)

example #stages #places #trans #states BDD Prefix
peak size final size time #places #trans time

philosoph 20 140 100 2.20E+13 none 3091 10 140 100 1
philosoph 40 280 200 2.90E+19 none 251839 455 280 200 1
philosoph 50 350 250 too many none 1870847 >4hrs 350 250 1
philosoph 60 420 300 too many none none none 420 300 1
muller-pipe 30 120 60 6.00E+07 7897 4784 132 490 240 1
muller-pipe 45 180 90 6.90E+11 23590 10634 740 1035 510 2
muller-pipe 60 240 120 8.40E+15 53446 18788 3210 1780 880 4
dme-arbiter 20 81 80 2.20E+07 1688 1688 11 81 80 1
dme-arbiter 40 161 160 4.50E+13 6568 6568 101 161 160 1
dme-arbiter 60 241 240 7.00E+19 14648 14648 342 241 240 1

Circuit Petri Nets

Level-driven elements Petri net equivalents

NAND gate

x(=1)

y(=1)

z(=0)

NOT gate

x(=1) y(=0) x=0

x=1
y=0

y=1

b

x=0

x=1z=0

z=1
y=0

y=1

Self-loops in
ordinary P/T nets

Circuit Petri nets

I2-

C1+

I2+

C1-

C1=1 C1=0

n_Ain/Rin

y1

I2=1 C2- I1-

n_y2
C2+

I2=0

Rout

I1+C2=1

I1=0

I1=1

C2=0

Rin

En

y1
Rout

I2 C2

C1

I1

y2

n_Aout

n_Ain

C1: y1 = Rin {y2} + y1(Rin + n_Aout + y2)

C2: n_y2 = y1 (n_Aout + n_y2)

I1: n_Ain = y1'

I1: Rout = y2' or Rout = delay (n_y2)

The meaning of
these numerous
self-loop arcs is
however different
from self-loops
(which take a
token and put it
back)

These should be
test or read arcs
(without
consuming a
token)

From the viewpoint of analysis we can disregard this semantic discrepancy (it
does not affect reachability graph properties!) and use ordinary PN unfolding
prefix for analysis, BUT …

Unfolding Nets with Read Arcs

t1

p1 p2

p

t2

p4p3

...

...

PN with self-
loops

p4’

...

p1’ p2’

p’

t2’t1’

p3’
t2’’ t1’’

p4’’ p3’’

p’’ p’’’

...

......

Unfolding with
self-loops

Combinator ial
explosion due to
splitting the self-loops

p1 p2

p

t2

p4p3

...

...

Unfolding with
read arcs

Unfolding k-safe nets

• How to cope with k-safe (k>1) nets and their redundancy
• Such nets are extremely useful in modelling various

hardware components with:
– Buffers of finite capacity
– Counters of finite modulo count

• McMillan’s cutoff condition is too strong (already much
redundancy)

• EVR’s condition is too weak – cannot be applied to k-
safe nets

Proposed solution: introduce total order on tokens,
e.g. by applying FIFO discipline of their arrival-
departure (work with F. Alamsyah et al.)

34

Unfolding k-safe Nets

k

.

.

.

ct1xct1

cp1

xcp1

xcpn

ctn

cpn

xctn

f

e

xpp

pp

xptptn consumers

k-size buffer

Example: producer-consumer

Unfolding k-safe Nets
p1

f

ep2 ppx

pp

ctctx pt ptx
Consider the case:

n=1 consumer

k=2-place buffer

Three techniques have been studied (by F. Alamsyah):

(1) Direct prefix using McMillan’s cutoff cr iter ion

(2) Unfolding the explicitly refined (with FIFO buffers) 1-
safe net (using EVR cutoff cr iter ion)

(3) Unfolding the or iginal, unrefined net with FIFO
semantics

Unfolding k-safe Nets

n consumers

k-size buffer

.

.

.

ct1xct1

cp1

xcp1

xcpn

ctn

cpn

xctn

xpp

pp

xpt

pt

f2

xf1

ft1

f1
xf

xf2

fk

xf(k-1)

ft(k-1)

f(k-1)

xfk

e1

xe2

et1

e2

xe1

e(k-1)

xek

et(k-1)

ek

xe(k-1)

• • •

• • •

• • •

• • •

Approach (2) for refining FIFO places into 1-safe subnets

Unfolding k-safe Nets
(1) Direct unfolding prefix (using McMillan’s cutoff)

Unfolding k-safe Nets
(2) Unfolding the explicitly
refined (with FIFO
buffers) 1-safe net (using
EVR’s cutoff)

Unfolding k-safe Nets
(3) Unfolding the or iginal,

unrefined net with
FIFO semantics

35

Unfolding k-safe Nets

k-bounded net with Mcmillan's
unfolding

safe nets using ERV's algorithm

size Original Unfolding
(t/p)

time(
s)

Original Unfolding
(t/p)

time(s
)

2 6/8 184/317 0.05 8/14 29/68 0.03

3 6/8 1098/1896 0.84 10/18 46/105 0.10

4 6/8 6944/11911 21.46 12/22 67/150 0.28

5 6/8 - - 14/26 92/203 0.74

6 6/8 - - 16/30 121/264 1.84

7 6/8 - - 18/34 154/333 4.25

8 6/8 - - 20/38 191/410

Buffer

8.74

Unfolding k-safe Nets
Buffer safe nets using ERV's algorithm FIFO-unfolding with McMillan's

size Original Unfolding
(t/p)

time(
s)

Original Unfolding
(t/p)

time(s
)

2 8/14 29/68 0.03 6/8 41/69 0.010

3 10/18 46/105 0.10 6/8 41/68 0.010

4 12/22 67/150 0.28 6/8 51/84 0.020

5 14/26 92/203 0.74 6/8 61/100 0.020

6 16/30 121/264 1.84 6/8 71/116 0.040

7 18/34 154/333 4.25 6/8 81/132 0.050

8 20/38 191/410 8.74 6/8 91/148 0.060

Conclusion

• Unfolding can be very efficient where a lot of
concurrency and little choice involved

• However unfolding may be very inefficient - can be
“excessively resolving” (e.g. individualise tokens in k-
safe nets or split self-loops) and thus spawn too many
branches in history

• Other forms of unfolding can be studied (e.g. non-
aggressive unfolding of places – building DAGs instead
of branching processes)

• Unfoldings have also been used to analyse nets with
time annotation and for synthesis of circuits but these
are hot research topics – Haway the lads!

Hardware and Petri Nets:
Performance Analysis

Alex Yakovlev
Univ. Newcastle upon Tyne

Advanced Course on Petri nets,

Eichstätt, 24-26 Sept, 2003

Outline

• Performance analysis of asynchronous circuits:
a motivating example

• Delay types in asynchronous designs
• Main approaches: Deterministic vs Probablistic
• Generalised Timed PNs and Stochastic PNs
• Application examples
• Open problems

Performance issues in async
design

• No global clocking does not mean async designers
needn’t care about timing!

• Knowledge of timing in async design helps to construct
circuits with higher performance and smaller size

• Performance of async circuits depends on:
1) delay distribution of datapath components
2) overhead of completion detection
3) its micro-architecture and control flow

• Our focus is on 3) , where behavioural modelling with
Petri nets can be applied

• Important tradeoff: degree of concurrency (adds speed)
vs control complexity (reduces speed and increases
size)

36

Performance issues in async
design

Data
path

Control

Completion
detection

star t done

Environ-
ment 1

Environ-
ment 2

req1

ack1

req2

ack2

Performance issues in async
design

Data
path

Control

Completion
detection

star t done

Environ-
ment 1

Environ-
ment 2

delay1

delay3
req1

ack1

req2

ack2

delay2

Concurrency vs Complexity

req1+ star t+ done+ req2+ ack2+ ack1+

req1- star t- done- req2- ack2- ack1-

Control flow schedule:

req1

ack1

star t done

req2

ack2

Control circuit implementation:

Concurrency vs Complexity

req1+ star t+ done+ req2+ ack2+ ack1+

req1- star t- done- req2- ack2- ack1-

Control flow schedule:

req1

ack1

star t done

req2

ack2

Control circuit implementation:

No concurrency!

Zero complexity!

Control circuit
adds minimum
delay!

Concurrency vs Complexity

req1+ star t+ done+ req2+ ack2+ ack1+

req1- star t- done- req2- ack2- ack1-

Control flow schedule:

req1

ack1

star t done req2

ack2

Control circuit implementation:

Total cycle time: 2(delay1+delay2+delay3)

delay1 delay2

delay3

Concurrency vs Complexity

req1+ star t+ done+ req2+ ack2+ ack1+

req1- star t- done- req2- ack2- ack1-

Another schedule:

req1

ack1

star t done
req2

ack2

Control circuit implementation:

C

37

Concurrency vs Complexity

req1+ star t+ done+ req2+ ack2+ ack1+

req1- star t- done- req2- ack2- ack1-

Another schedule:

req1

ack1

star t done
req2

ack2

Control circuit implementation:

C

Concurrency between environments

It costs control additional logic and
extra delay

Concurrency vs Complexity

req1+ star t+ done+ req2+ ack2+ ack1+

req1- star t- done- req2- ack2- ack1-

Another schedule:

req1

ack1

star t done
req2

ack2

Control circuit implementation:

C
delay1

delay3

delay2

Total cycle time: 2(max(delay1,delay2)+delay3 + delayC)

Delays in async design
Data path delays are introduced by: operational blocks (e.g
adders, comparators, shifters, multiplexers etc.) and their
completion logic, buffer registers, switches, buses etc.

delay

Data
path

These delays are usually distr ibuted in a way specific to the unit’s
function and data domain, e.g. delay in a r ipple-carry adder is
dependent on the length of the carry chain (can vary from from 1 to N,
dependent on the values of operands), with the mean at log(N)

pdf

1 2 3 4 50 delay (units)

Delays in async design
Control logic delays are introduced by logic gates (with good
discrete behavioural approx.) and wires (often taken as
negligible in the past, but now this is too optimistic)

Gate (switching) delays are usually taken as either deterministic or
distr ibuted uniformly or nor mally around some mean with small
deviation.

For greater accuracy inherent gate delay may sometimes be seen
dependent on the state (say transition 0-1 on x may take longer when
a=b=1 and c goes 0-1 than when a goes 0-1 when b=c=1)

pdf

0.1 0.2 0.3 0.4 0.50 delay (ns)

a
b
c

x

Delays in async design
Control delays may also be introduced by non-logic (internally
analogue) components, such as arbiters and synchronisers
which may exhibit meta-stable nondeterministic behaviour

req1

req2

grant1

arbiter grant2

arbiter
delay (d)

interval between
requests (W)

cr itical
interval

req1

req2
W

grant1

grant2

d

Arbiter delay is state-dependent, it is exponentially
distributed if both inputs arrive with a very short
(less than critical interval) – This effect may often be
ignored in average performance (but not in hard-
real time!) analyses due to low frequency of meta-
stable condition

Region with meta-
stability

meta-stability inside
arbiter

Delays in async design
Environment delays may be introduced by:

• some known or par tially known design components, like data
path elements or controllers at the same level of abstraction
(with deterministic or data specific pdf/pmf), or

• unknown par ts of the system, which can be treated as
“ clients” (exponential distr ibution is often a good
approximation)

38

Performance issues in async
design

Data
path

Control

Completion
detection

star t done

Environ-
ment 1

Environ-
ment 2

req1

ack1

req2

ack2

Performance parameters

Asynchronous circuits are often characterised by:

• average response/cycle time or throughput wrt some
critical interfaces (e.g. throughput/cycle time at the
req1/ack1 interface)

• latency between a pair of critical signals or parts (e.g.
latency between req1 and req2)

These could be obtained through computation of time
separation of events (TSEs)

At higher levels, they can be characterised by average
resource utilisation (e.g. useful for estimating power
consumption) or quantitative “versions” of system
behaviour properties, e.g. fairness, freshness

Main approaches to perf. analysis

Two methodologically different approaches:
• Deterministic (delay information known in advance),

sometimes the element of unknown is represented by
delay intervals. Performance values are computed
precisely (even if within lower/upper bounds or by
average values). Good for hard-real time systems or for
detailed, low level circuit designs where absolute
performance parameters are important

• Probabilistic (delay information defined by distribution
functions, standard or arbitrary pmf). Performance is
estimated only approximately, mostly to assess and
compare alternative design solutions at early stages of
system design, where relative performance factors are
needed. They may also be useful for guiding synthesis

Deterministic approach
• Timed Petri nets - early models by Ramchandani (MIT-TR, 1974) and

Ramamoorthy&Ho (IEEE Trans SE1980)
Key result (for marked graphs):

A polynomial algorithm for verification of 0≥− kk TCN
(based on Floyd algorithm); see also Nielsen&Kishinevsky(DAC’94)

Method can also be used for safe persistent nets but proved NP-complete
for general nets

condition

Proof based on:

(1) No. of tokens in every
cycle of an MG is
constant (Commoner
et al)

(2) All transitions in an
MG have the same
cycle time

net thein cycles ofnumber

k cycle in tokensofnumber total

k cycle in ns transitioof timesexecution of sum

bound (lower) timecycle average

where

,...,2,1:max

−
−
−
−

�
�
�

�
�
� ==

q

N

T

C

qk
N

T
C

k

k

k

k

Deterministic cycle time

user

up1

dn1

up2

dn2

req1 req2

ack1 ack2

Safe-persistent net

mod2 mod2

up1dn1 up2 dn2

req1 req2

ack1 ack2
Equivalent marked graph

user

up1

user

dn1

user user

up1 dn1

up2 dn2

Critical cycle:

C= 4user+2up1+2dn1=8

Pipeline counter
(frequency divider)

Average response cycle to user: R= 2user+up1+dn1=4
(Remains constant regardless of the number of stages!)

Deterministic cycle time

user

up1

dn1

up2

dn2

req1
req2

ack

Normal sequential counter

Critical cycle:

C= 4user+2up1+2dn1+up2+dn2=10

Average response cycle to user:

C= 10/4= 2.5 (depends on the number of stages)

Exercise: “unfold” this safe-
persistent net into a marked
graph and check its cycle
time

39

Deterministic cycle time
Exercise 1:

Find the average cycle time for the r ing of five Muller C-elements with
inver ters (assume each gate to have a delay of 1 unit)

C

C
C

C

C

a1

b1
a2

b2

b4

b3

b5

a3

a4a5

Initial state:

ai=1, i=1,…,5

bj=0, j=1,…,4

b5=1

b1=0 is enabled

Deterministic Cycle time

Data
path

Control

Completion
detection

star t done

Environ-
ment 1

Environ-
ment 2

req1

ack1

req2

ack2

Deterministic cycle time

req1+

x+ star t+ done+

ack1-

req2+ ack2+

req1-

x-

star t-
ack1+

done- req2-

ack2-

C
req1

ack1

req2

ack2

x

star t done

Exercise 2:

Estimate the effect of additional decoupling between Environments 1 and 2 due to
“flag (CSC) signal” x (by finding the critical cycle time using the assumption that
delays in the environment are larger in the setting phase than in the resetting and
much larger than the gate delay) and observe the trade-off between concurrency and
complexity

STG:

Circuit

implementation:

Probabilistic approach

Sources of non-determinism:
1) Environment may offer choice (e.g. Read/Write

modes in VME bus interface, instruction decoding in
a CPU) => probabilistic choice b/w transitions (cf.
frequencies in TPNs)

2) Data path or environment delays may have
stochastic nature (e.g. delay distribution in carry-
chain, or user think time distribution)

3) Gate delays may be modelled using specific
pdf/pmf’s to allow for uncertainty in low-level
implementation (layout and technology parameter
variations)

2) and 3) => firing time distributions in Stochastic Petri
nets (SPNs)

Generalised TPNs(GTPNs)

• Probabilistic choice was introduced in TPN by Zuberek
(CompArchSymp80), Razouk&Phelps
(ParallelProcConf84), and in GTPN by Holliday&Vernon
(IEEE Trans SE-13,87)

• GTPN transitions have deterministic durations (though
can be made state-dependent and with discrete
geometric distribution)

• Analysis of GTPN models is based on:
– (1) constructing the reachability graph with transition

probabilities (due to choice with frequencies) between
markings, generating a discrete time Markov chain
(DTMC), and

– (2) computing performance measures from DTMC
analysis

GTPN

p2p3

p1

t1(1,0.3)

t3(p2*2+3,1.0)

t2(0,0.7)

duration frequency

(p1,p3)()

(p3)(t1,1.0) (p3)(t2,0.0)

(p2,p3)()

()(t3,5)

0.3 0.7

marking

transitions
with their
remaining
firing times

1 0

0

5

Time in
state

analysis) MCfrom (obtained state in being

 ofy probabilit stationary)(where

)()(
)()(

)(

,1

i

i

nk

kk

ii
i

S

S

SSeTimeInStat

SSeTimeInStat
SRTime

−

=
�
=

π

π
π

Relative
Time in
State:

40

Generalised Stochastic PNs

• Transitions with probabilistic (continuous) firing time were introduced
in Stochastic Petri nets (SPNs)by Molloy (IEEE TC-31,82) and in
GSPN by Marsan, Balbo&Conte (ACM TCS-2,84)

• Firing time can either be zero (immediate transitions) or exponential
distributed (for Markovian properties of the reachability graph);
Immed. transitions have higher priority

• More extensions have been introduced later leading to Generally
Distributed Timed Transitions SPNs (GDTT-SPN) – see Marsan,
Bobbio&Donatelli’s tutorial in Adv.Lectures 98

• Analysis of GSPN based on:
– (1) constructing a reachability graph with transition rates, thus

generating a continnuous time Markov Chain, and
– (2) computing performance measures from CTMC analysis

GSPN
p1

p2

T1(µ)

p4p3

T2(λ1)

t3(β)t2 (α)

T3(λ2)

Exp-pdf time
transitions

Weighted
immediate
transitions

p1

p3

p2

p4

T1(µ)

t2 (α) t3(β)

T2(λ1) T3(λ2)

tangible
marking

vanishing
marking

p1

p3 p4

λ1 λ2
µα/(α+β) µβ/(α+β)

Tangible reach graph
(CTMC):

Comparison b/w GTPN and GSPN

Extended SPN (ESPN) can have
arb. holding times but at the cost of
restricted reach graphs

Arbitrary non-negative reals plus
geometric holding times

Firing
durations

Discrete-time SPNs can have large
state spaces when deterministic
holding times are used

Due to inherent complexity of
deterministic delays, their state
space is larger

Complexity

Probabilities/rates are assigned
according to competing transition
delays for non-immediate
transitions

Probabilities are assigned
according to transitions
frequencies independent of
transition delays

Probability/
rate
assignment

Dynamic (competing transition
delays – transition which fires first
wins conflict). Good to model races
and arbitration in hardware

Static (conflicts resolved before
firing – using firing frequencies).

Good to model free
(environment) choice

Conflict
resolution

GSPNGTPNModelling
/Analysis
Feature

What is needed for async hardware?

Asynchronous circuit modelling requires:
• both deterministic and stochastic delay

modelling,
• stochastic static (“free-choice”) and

dynamic (with races) conflict resolution
• competing (with races) transitions with

deterministic timing
Any idea of a tractable model with these

features?

Recent application examples

These are examples of using PNs in analytic and simulation environments:
• Use of unfoldings (tool PUNT) and SPNs (tool UltraSan) for performance

estimation of a CPU designed with PNs (Semenov,etal, IEEEMicro,1997)
• Multi-processor, multi-threaded architecture modelling using TPNs

(Zuberek, HWPN’99)
• Response time (average bounds) analysis using STPNs and Monte-Carlo,

for Instruction length Decoder; developed tool PET (Xie&Beerel, HWPN’99)

• Analysis of data flow architectures using tool ExSpect (Witlox etal,
HWPN’99)

• Modelling and analysis of memory systems using tool CodeSign (Gries,
HWPN’99)

• Superscalar processor modelling and analysis using tool Design/CPN
(Burns,etal,J.ofRT,2000)

• SPN modelling and quantification of fairness in arbiter analysis using tool
GreatSPN (Madalinski,etal,UKPEW’00)

Conclusions

• Asynchronous circuits, whether speed-independent or
with timing assumptions/constraints, require flexible and
efficient techniques for performance analysis

• The delay models cover both main types: deterministic,
stochastic (with different pdf/pmf’s) and must allow for
races; conflicts both static and dynamic

• Clearly two different levels of abstraction need to be
covered – logic circuit (STG) level and abstract
behaviour (LPN) level; those often have different types of
properties to analyse

• The number of async IP cores (for Systems-on-Chip) are
on the increase in the near future, so big help from
performance analysis is urgently needed to evaluate
these new core developments

41

References(1)
Asynchronous Hardware - Performance Analysis:
• S.M. Burns, Performance analysis and optimisation of asynchronous circuits, PhD

thesis, Caltech, Dec. 1990.

• M.R. Greenstreet, and K. Steiglitz, Bubbles can make self-timed pipelines fast,
Journal of signal processing, 2(3), pp. 139-148.

• J. Gunawardena, Timing analysis of digital circuits and the theory of min-max
functions, Proc. ACM Int. Symp. On Timing Issues in the Spec. and Synth. of
Digital Syst (TAU), 1993.

• H. Hulgaard and S.M Burns Bounded delay timing analysis of a class of CSP
programs with choice, Proc. Int. Symp. On Adv. Res. In Async. Cir. and Syst,
(ASYNC’94), pp. 2-11.

• C.Nielsen and M. Kishinevsky, Performance analysis based on timing simulation,
Proc. Design Automation Conference (DAC’94).

• T. Lee, A general approach to performance analysis and optimization of
asynchronous circuits, PhD thesis, Caltech, 1995.

• J. Ebergen and R. Berks, Response time of asynchronous linear pipelines, Proc.
Of IEEE, 87(2), pp. 308-318.

References(2)
Timed and Generalised Timed Petri nets:
• C. Ramchandani, Analysis of asynchronous concurrent systems by Petri nets, MAC TR-

120, MIT, Feb. 1974
• C.V. Ramamoorthy and G.S. Ho, Performance evaluation of asynchronous concurrent

systems using Petri nets, IEEE Trans. Soft. Eng., SE-6(5), Sept. 1980, pp. 440-449.
• W.M. Zuberek, Timed Petri nets and preliminary performance evaluation, 7th Ann. Symp.

On Comput. Architecture, 1980, pp. 88- 96.
• W.M. Zuberek, Timed Petri nets – definitions, properties and applications, Microelectronics

and Reliability (Special Issue on Petri nets and Related Graph Models), 31(4), pp. 627-
644, 1991.

• R.R. Razouk and C.V. Phelps, Performance analysis using timed Petri nets, Proc. 1984
Int. Conf. Parallel Processing, Aug. 1984, pp. 126-129.

• M.A. Holliday and M. K. Vernon, A generalised timed Petri net model for performance
analysis, IEEE Trans. Soft. Eng., SE-13(12), Dec. 1987, pp. 1297-1310.

Stochastic and Generalised Stochastic Petri nets
• M. K. Molloy, Performance analysis using stochastic Petri nets, IEEE Trans. Comp., C-

31(9), Sep. 1982, pp.913-917.
• M.A. Marsan, G. Balbo, and G. Conte, A class of generalized stochastic Petri nets, ACM

Trans. Comput. Syst. Vol. 2, pp. 93-122, May 1984.
• M. A. Marsan, A. Bobbio, and S. Donatelli. Petri nets in performance analysis: an

introduction, In: Lectures on Petri nets I: Basic Models, LNCS 1491, Springer Verlag, 1998.

References(3)
• R. R. Razouk, The use of Petri nets for modelling pipelined processors, Proc. 25th ACM/IEEE

Design Automation Conference (DAC’88), pp. 548-553.
• A. Semenov, A.M. Koelmans, L. Lloyd, and A. Yakovlev, Designing an asynchronous

processor using Petri nets, IEEE Micro, March/April 1997, pp. 54-64.
• A. Yakovlev, L. Gomes and L. Lavagno, editors: Hardware Design and Petri nets, Kluwer

AP,Boston-Dordrecht, 2000, part V, Architecture Modelling and Performance Analysis:
– A. Xie and P. A. Beerel, Performance analysis of asynchronous circuits and systems

using Stochastic Timed Petri nets, pp. 239-268
– B.R.T.M. Witlox, P. van der Wolf, E.H.L. Aarts and W.M.P van der Aalst, Performance

analysis of dataflow architectures using Timed Coloured Petri nets, pp. 269-290.
– M. Gries, Modeling a memory subsystem with Petri nets: a case study, pp. 291-310.
– W. M. Zuberek, Performance modelling of multithreaded distributed memory

architectures, pp. 311- 331.
• F.Burns, A.M. Koelmans, and A. Yakovlev, WCET analysis of superscalar processors using

simulation with Coloured Petri nets, Real-Time Syst., Int. J. of Time-Crit. Comp. Syst.,
18(2/3), May 2000, Kluwer AP,pp.275-288

• A. Madalinski, A. Bystrov and A. Yakovlev, Statistical fairness of ordered arbiters, accepted
for UKPEW, Durham, U.K., July 2000

