i. Conclusions and further research

A

A normel form has been defined for delay

-insensitive process expressions. By showing
hal every process expression c

an be transformed to this normal form using the laws
resented in [7] (most of which have been presented in this paper) we have shown that
hese laws completely characterize the semantics of delay-insensitive processes.

The paper uses a general approach towards proving an algebra to be complete. The
pproach was taken from Roscoe and Hoare in [8]. Actually, the approach gives clues
s to which laws to introduce. The purpose of each law is to make a step towards an
xpression’s normal form.

The last step in the transformation to normal form turned out to be nontrivial.
ally tricky there is the proof that the transformation procedure terminates.
With the proofs of completeness and soundness of the algebra, the way is clear to use
1e algebra for actual delay-insensitive circuit design. In view of the size of correctness
roofs in the algebra a proof editor or proof assistant to show equivalence or refinement
clearly called for. However, for reasons of practicality we need to design more efficient
gorithms, in order to aveid having to reduce all expressions to normal form.

Espe-

Acknowledgments

This research was partially funded by the ESPRIT Basic Research Wor

king Group
225 — ACID-WG and the ESPRIT project EXACT (6143),

EFERENCES

H. M. Groenboom, M. B. Josephs and J. T. Udding.
insensitive algebra. Technical Report CS9108, Groningen
Sci., 1991,

M. Hennessy. Algebraic Theory of Processes.
The MIT Press, Cambridge, Mass., 1988.

M. B. Josephs and J. T. Udding. An algebra for delay-insensitive circuits.
W

Completeness of a delay-
University, Dept. of Comp.

Series in Foundations of Computing.

Report
UCS-86-54, Dept. of Comp. Sci. Washington University, St. Louis, Mo, march 1990,
M. B. Josephs and JI. T. Udding. The design of a deley-insensitive stack. Technical
Report CS9004, Groningen University, Dept. of Comp. Sci., 1990,

M. B. Josephs and J. T. Udding. Delay-insensitive Circuits: an Algebraic Approach
to their Design. In J.C.M. Baeten and J.W. Klop, editors, CONCUR’90 Theories of
Concurrency: Unification and Extension, LNCS 458 pages 342 -
1990.

M. B. Josephs. Receptive Process Theory. To appear in Acta Informatica, 1992 Also
Technical Report, Eindhoven University, Eindhoven, 1990.

P. G. Lucassen and J. T. Udding. A failures model for delay

s-insensitive processes.
In J. van Leeuwen, editor, Proceedings of CSN 91, pp. 405-421, 1991. Also Technical
Report CS9107, Groningen University, Dept. of Comp. Sci. 1991,

366, Springer-Verlag,

A. W. Roscoe and C. A, R. Hoare. The laws of occam programming. Theoretical
Computer Science, 60{2):177-229, 1988,

Asynchronous Design Methodologies (A-28)

S. Furber and M. Edwards (Editors)

Elsevier Science Publishers B.V, (North-Holland) 71
© 1993 IFIP. All rights reserved.

Synthesis of Asynchronous Control Circuits from Symbolic Signal
Transition Graphs

AV, Yakovlev® | A1 Petrov® ! and L.Ya. Rosenblum®
*Department of Computing Science, University of Newcastle upon Tyne, UK,

oJ

Laboratory of Automation Technology, Helsinki Uni versity of Technology, Finland

SNID Inc., Cambridge, MA, USA

Abstract

Signal Transition Graphs (STGs), a labelled version of Petri Nets (PNs), have recently
become popular as a model for asynchronous control circuit synthesis, They are however
unable to define the behaviour of abstract Asynchronous Control Structures (ACSs), whose
components may have multiple outputs and “signals” are multi-valued or symbolic. We
introduce a model, called Symbolic Signal Transition Graph (SSTG), that is a natural
extension of STG in which PN transitions are labelled with the changes of values of
symbolic variables. We present a synthesis procedure and sufficient conditions for the
implementability of the binary expansion (after an appropriate encoding) of an SSTG
specification of an abstract ACS. Two circuit syuthesis examples, a bus interface and a
two-way pipeline channel, illustrate the approach.

Keyword Codes: B.6.1: B.4.2

Keywords: Design Styles; Input/Output Devices

1. INTRODUCTION

As more attention is drawn to system-level VLSI design asynchronous circuits are be-
coming a crucial part of intercomponent interfaces and various control-dominated struc-
tures. The two major tasks in the circuit design are as follows: (i) specifying In a clear,
preferably sufficiently abstract manner, the behaviour of the system; and (ii) implement-
ing this behaviour correctly by an interconnection of primitive components. A num-
_ber of formal specification languages and synthesis methodologies have been proposed

(10,3, 7, 4, 1, 5]. Amongst them, the Signal Transition Graph (STG) model has ac-
quired probably highest interest, due to its simplicity and yet power to clearly define
the major paradigms of asynchronous control circuit hehaviour. An STG is a Petri net
(PN} whose transitions are labelled with the changes of input and output binary sig-
nals. Recently, this model has been generalised so as to avoid overconstraining of the
specification domain [12]). This work has also presented a more general structural model,

'On leave from: Department of Computing Science, Electrical Engineering University, St. Petersburg
197022, Russia.

72

Asynchronous Control Structure (ACS). ACS allows mul

bly non-deterministic hehaviour, as opposed to the traditional model of an Asynchronouns
Logical Circuit (ALC) consisting of single-output components [2]. The corresponding low-
level behavioural model, Arc-Labelled Transition System (ALTS), is thus
of more common State-Transition Diagram (STD). Unlike the I
interpreted in terms of binary vectors huilt on the

ti-output components with possi-

a generalisation
atter, whose states are

set of the ALC’s signals, ALTS allows
symbolic representation of the system’s states, and transitions between states are not nec-

wmm&i%wmmog@ﬁmmg_:_:orm,:mnﬁo% binary signals. Rather, they can stand for the changes
of symbolic states of the abstract no::uo:a:ﬁmo*.;obmm.

Developing the idea of behavioural abstraction further, we defi
level model called Symbolic Signal Transition Graph (SSTG)
cific properties of this model against “ordinary” STG, and present a synthesis technique,
which benefits from the hierarchical representation of circuit behaviour. The latter is
defined in terms of an SSTG and a set of local behavioural clich
variables. Such cliches are represented by the variables’ State Graphs. During synthesis,
these cliches are encoded with binary signals and transformed into local $TGs. The global
SSTG is then refined using fragments of the individual STGs, thereby generating a global
5TG expansion. The major advantage of our approach is in providing sufficient conditions
for implementability of such an expansion without its explicit verification. According to
these conditions, the glohal implementability can he derived from that of the high-level

S5TG specification and those of local behavioural cliches. Building upon stronger and

weaker types of implementahility we suggest an optimisation strategy that can be ap-

plied to gain maximum efficiency from trading off between complexity of the synthesis
process and cost of the implementation logic. We illustrate our technique by two synthe-
sis examples: (1) a simple interface controller for a hus slave, and (ii) a control
for a bi-directional pipeline channel, which can be used in dis
communication networks based on packet swi ching/routing.

ne an appropriate high-
. We demonstrate some spe-

es of individual component

circuit
tributed archtectures with

2. BACKGROUND

2.1. Asynchronous Control Structures

The notion of Asynchronous Contral Structure (ACS) is a generalisation of the “inter-

connection structure” of an asynchronous control circuit. It removes the usual structural

limitation (e.g., [8]) that each component has exactly one output signal., Thus an ACS

can represent an arbitrary interconnection of modules, with the only restriction that no

two modules can drive a single signal. An ACS is a directed multigraph (any pair of
nodes can be connected by more than one arc) whose nodes designate discrete (i.e., finite-
state) components and arcs stand for the interconnections. Every arc is lahelled with
the name of a finite-state varicble from a finite set }° (17 n). For every variable
y €Y, 5 = {°,v', ...y} is called the set of values, or states. We also assume that
for each variable a specific set of allowed changes of values is defined, D¥ ¢ §v % S5Y ie.
D¥ = {(y' —y)i,j € 0,1,...kAi £ j}. An ACS is called a Bin y Asynchronous Control

Structure (BACS) if ¥y : 5% = {0,1}. Hence, for a BACS, the set of allowed changes can
be denoted as ¥ x {+, =}, where “4+” stands for a signal change from 0 to 1, and “="
for a signal change froem 1 to 0.

: 73

The local behaviour of every variable y € 17 is defined by its individual state graph

¥ = (5%, D¥): the nodes stand for the values in 5% and arcs for the changes in D¥. Such
a graph is called local behaviowral cliche. , :

It should be clear that in the normal synthesis process the actual interconnections
between ‘compenents of an ACS can be unknown at the initial mﬁ.m_mm_ .Gr._nr gives the
designer freedom to derive them from a high-level behavioural specification.

2.2. Arc-Labelled Transition Systems N

The semantics of the behaviour of an ACS is described by an Arc-Labelled Transition
System (ALTS), which is a directed graph whose vertices stand for the states ?,m_m 5) and
arcs (set E,F € S x §) for the transitions of the mmmoﬁwnmg. ACS. The transitions are
labelled (by function v : B — A) with the names of actions from alphabet A, é._:nw in
our case is equal to |Ji, D¥. Each action represents a change of value oﬂ a ,.,.w:mZm in
the ACS, and every path in the graph is a valid sequence of such changes in ;,:.m. Thus
the >rﬂm describes the complete allowed behaviour of the associated ACS. z,<;.r .o@nr
state of an ALTS we associate a symbolic vector consisting of the values of the _:nﬂiaﬁi
components. Le., each state is labelled with an element in the cartesian product TTiL, S¥.
Thus, it is more suitable to define an ALTS as (S, E, &), where 6 : § = TThy 5S4, Hvo
labelling of arcs in E by 4 in the original ALTS definition can be derived ?09 6 using
the information about the allowed transitions, i.e. sets D¥. For a BACS with a _mmﬁ
of variables Y we define a Binary (encoded) Transition System, called mﬁw..ﬁ_.m H_.msm_.So:
Diagram (STD), in which each state is encoded with & binary vector consisting of the
values of Boolean variables, i.e. 6: 5 — {0,1}". The i-th component of a state s € S
is denoted as s;. An ALTS is called contradictory if the labelling of w,ﬁmﬁmm.é_:q the ﬁ:.:m
vectors is not injective. Hence, for a non-contradictory ALTS we can identify a state with
its label. .

For every ALTS{STD) arc (s,s") we allow s and s’ to differ in one .m,:g only one compo-
nent, say the i-th. This variable, y,, 15 called eacited in im:w s and its value s; is marked
with a “*" in s. Since there can be several outgoing arcs from mmhﬁ state, a number of
variables can be excited in it. The variables that are not excited in a m.awao are nm:.mm
stable in it. We assume that transitions between the states can have arbifrary M::. finite
delays, and that these delays are associated with the delays o,q ;_n components in ﬁ.wm
modeled ACS (similar to the gate delay model in asynchronous civcuits). We call an AL
initialised if it has an explicit initial state.

1}

2.3. Symbolic Signal Transition Graphs o

An “ordinary” binary Signal Transition Graph (STG) generates an m._|._u as its be-
havioural semantics [12]. The synthesis process beginning b.o._d an STG m_umn_mnm.ﬁ_o: then
implies deriving the Boolean function description of the __.y_.h from the no_.wwﬂuo:%:m m._.;G_
using the existing methods (e.g. [3, 11, G]). These techniques are essentailly based on the
relationship between classes of STG, STD and ALC [12]. -

As a natural extension of “standard” interpretation of STG, giving rise to BACS or
ALC we allow the set of transitions of the underlying PN be labelled with 2,5 n:@.ﬁmmm o:m
values in the associated ACS. This helps to model systems in which :5. “binary image
of abstract symbolic values and states has not yvet been defined, thus leaving the encoding
stage to be a part of synthesis process.

74

Formally, a Symbolic Signal Transition Graph (SSTG) is a triple ¢ = (P,Y,A) where
P = (T, P,F,mg) is a marked Petri Net (PN) (T and P are finite sets of transitions and
places, FF C (T x P) U (P x T) is the flow relation between transitions and places, and
myg is the initial marking), ¥ is a set of finite-state variables, each with an associated
set of values S,y € V', and A T — Uyer ({y} x 8% x §¥) labels each transition of P

with a triple “(variable, ald value, new value)”. An ordinary STG is thus an SSTG whose
labelling function is A : 7 — ¥ x {+,—1.

For an 557G ¢ = (P, Y, A)Y, the reachakil
8§ = ([mo >, E, 8 such that [mo > denotes
each m € [y >, we have 8(m) = &™ wl
the value of y: in marking m.
bounded.

The labelling A must be co

ity graph generated by its PN P is an ALTS
the set of markings reachable from mg. For
here 5™ is & vector of signal values. Let s denote

‘The ALTS of an SSTG is finite if the underlying PN is

sistent, that is for all arcs e = (m.m’) in the ALTS:
o if Aly(e)) = (1, v:,0), then sm — vir and P = o

s = ul.
* otherwise s* = 7',
An SSTG is called walid iff its underlying PN is bounded and it has consistent labelling.

Property 2.1 In « valid 557G, for ali firing sequences of its PN and every component

y €Y, the projection of a sequence onto set DY 15 a sequence of changes allowed by the
behavioural eliche of y.

This property, called Brhavioural Compatibility,
of the global specification is compatible with the al
components. In the “binary case”, a valic
signs of transitions alfernate.

Thus the validity of an S5TG i
finite state semantics,

implies that any sequence of actions
lowed behaviour of all the individual
1 5TG generates only firing sequences where the

s sufficicnt condition for being able to generate consistent
which can further be used for implementation.
An S5TG is said to have a Unique State Coding (USC) problem if its ALTS is con-

tradictory. The USC condition? is necessam for an SSTG to allow deriving its logical
implementation.

2.4. Interface Example: Specification
Let us model the behaviour of an abstract ACS sl

three nodes called bus, register and memory, and a node standing for an interface (“bus
slave”) controller that generates signals to activate/ackno
the data write operation.

hown in Figure 1.(a). It consists of

:dge some control actions for

The set of control variables is 1 = {br,m}, where b, » and m stand for their corre-
sponding destination nodes: bus, register and memory. Variables b and m are assumed
to be binary (states 0 and 1), while » is three-state (0,1 and 2). The interpretation of
the transitions of b is as follows: b+ denotes the resetting of the output acknowledgement
signal, b,, on the bus handshake and subsequent setting of the input request signal (arrival
2Strictly speaking, the USC problem should b lifted to tl

(3, 6], which takes into account the contr
enablings:

1e so-called Complete State Coding problem
adictory states in which only output signals have different

|
W
i

75
r: .
: m.
Bus Register Memory 0-1 2.0
r 3 m+
b r m 1-2 L)

_ " Interface controller
(b)
(a)

brm
b+ m- 0%0 0

10%0
fo _\.\ 1¥1 0%
e 01%0 1*11

1
M 0*2 0% 0 1%
w

120% 0%2%]
12%L Q*01*
o P
L 2 101*

© @

Figure 1. Interface Example: Symbolic Specification

of the new datum), b,, by the bus master; b— mﬁm:m_..m for the setting ol b, and m:_umm@ﬂm:ﬁ
resetting of b,. For m: m+ denotes the setting of the ossu:ﬁ. H.mﬂs.mmﬁ e, and su mw
quent setting of the input acknowledgement, m, (the %EB is written :.;o Sm.Bowwf
m— stands for the resetting of m, and m,. The interpretation of i,.. m.oaf.,.u:_:,m the bu : mﬁ.
register, caters for the following requirement. Our aim is to organise a pipeline w:csmsw
the bus to carry the new datum as soon as possible, when the register has been loade
with the current value. This captures the idea of maximal ?f\mmﬁm:.km:_.ur {concurrency)
between the bus and the memory handshakes, which are assumed to introduce delays
that are relatively larger than that of the register oﬁm;.,io:. ﬂ:_.ip.mﬁgoﬂ.m., ﬁrmmw ?com
delays have least predictable values, and require a speed-independent wgﬂu_ogmnmmio:, o
the controller. Thus, transition (v,0,1) {or r°71) is similar to the meaning Qa.ji. %mmﬁwﬁm
the request v, and receiving the acknowledgement on 7,), ,,,.‘rmﬂ.m..w.m the meaning o,wﬂ =
new. It reflects the situation that the bus, after the reset of b, is ﬂ,mm_nJ,H to ?.,.mz.n the :mm;
datum, so the register control prepares for the arrival of the new mil by _umﬂg:..%u a nor.m. or
itself” into r. State 2 thus has the meaning: “the new datum on .;m bus is different ro_.d
the datum currently stored in the register”. The actual reset of the q,::”a rm.,:amrmrn is
performed by transition r27°. The state graphs for b, m and r are mro.é: in Figure UJ.MMW
The SSTG in Figure 1.(c) specifies the hehaviour of the ACS. A:‘ Wm.e.m:& and has the
property as can be seen from the corresponding ALTS shown in Figure 1.(d).

3. SYNTHESIS APPROACH OUTLINE

We assume that the synthesis process, based on an SSTG as the initial specification,
consists of two stages. The first stage constructs the SSTG for an m._umS..m_nﬁ >ﬁm_. ,H,T_m
result of this stage is an SSTG that is valid and satisfies the USC condition. We call

76

w:ow an S5TG implementable. The second stage, on whicl
18 concerned with binary encoding of each sy
and then deriving a logical (

1 we shall focus our attention,

mbolic variable (unless it is already binary)
unction for each hinary signal

that the binary encoding at the “local” level is more advatageous than the encoding of
the global states of the symbolic ALTS. Tt allows the “local” interpretation of the binary

signals associated with the components of the ACS. The second st
of the following steps:

. For this stage we assume

e of synthesis consists

1 msoomm S,.,m ,i.m.,.,m graph GV of each non-binary (j.e. symbalic) variable ¥ with the
combinations of values of binary variables X — {7, ...,2]}; for binary variables y
their own values can he used.

S

For each variable y and every transition d¥ in DY — ' =) €01, knd # i}
construct a partially ordered set {poset) of changes of the encoding variables in X,
o ?

and then build a corresponding fragment of an STG: we denote this fragment G#*.

o ,] oy -) .
r each variable y construct an STG G¥ from its state graph G¥ and fragments G¢*;

in each such STG transitions are labelled with the changes of variables in Xv.

Construct a binary STG G* from the implementable original SSTG ¢

. o) , by replacing
symbolic transitions in the original SSTG with the G** fragments.

3. Check the implementahility of STG G~ and if necessary correct the G** fragments.

Derive the Boolean functions for each outpul binary variable in [J, XY
J =1

—~1

Construct the output signals from outputs in [Ji=; XY and connect them with the
controlled components in the ACS.

We should now derive the, implementability conditions for STG g,

4. IMPLEMENTABILITY OF BINARY EXPANSION

4.1. Binary Expansion Construction ;

For every variable y € ¥, whose local behaviour is defined by state graph G = (S¥, D¥).
we define a set of binary encoding ignals X% = {x, ,
method will have k > [log|5¥]]. We d
parts, A% and AP as follows:

ot Itis clear that any encoding
efine an eacoding function X, cousisting of two

o A5 5% — {0,1}* is injective;

o AP Dy o 200 - qyel that YV = (51,83) € DV -
Ay = {E0h - %) €4 € bbbl = A2)y 2+, where

-+ ;\:.He\;yu._
C:lywvuﬂ — i y: = 1A »mg =0
* it A= Az,

in which Ay = A%(s,) and A, = A%(sy).

%
|
i

Fi
State Graph STG

SSTG STG

| Partial order)
! STG fragment |

{b)

Figure 2. Binary Expansion at the local (a) and global (1) levels

Therefore AP assigns Lo each arc din G¥ a subset of variables (called fransition subset),
together with the “signs” of their changes, whose values change between s; and s,.

The complete binary expansion of each behavioural cliche also requires defining, for
each d, a partial order over the corresponding transition set AP(d) € X¥. It is obvious
that the optimal, in terms of speed, solution would allow for maximally parallel switching
of all elements 1n each transition subset. This, however, is not always acceptable as
some intermediate states occurring between the main states in S¥ may coincide in their
encodings. This may result in violation of the USC condition for the final STG.

For every poset built on sets AP(d) we can constract a (fragment of) STG,G¥, and
make the following transformation of the state graph G¥ for each y. Each state in GY
forms a PN place and for each arc d we create two auxiliary dummy (not labelled through
A) transitions, between which the STG G* is inserted as shown in Figure 2.(a).

Avoiding unnecessary formalism, we state that by refining each arc d of G¥ in the above
way we can always build a corresponding STG GY. The initial marking of this STG can
be easily found from the knowledge of the value of ¥ in the initial state of the original
SSTG G: the place associated with this state, 53, is assigned with marking m(sg) = 1.

The following property holds due to the above construction and the fact that each
variable has some initial state consistent with the initial marking of G.

Property 4.1 The STG built for each variable’s cliche is consistent and its underlying
PN is a safe free-choice PN3,

This property implies that each local STG is valid.

The transitions of variables in 1" can also be refined at the glohal level, in the original
SSTG G = (P,Y,A) into an STG G* = (P, X, A*), where X is the union-set of all
encoding variable sets X¥. Thus each labelled (with some d) transition t € T in the
underlying PN P = (P, T, F,mg) we substitute with STG G as shown in Figure 2.(b).
The global binary STG satisfies the following.

Proposition 4.1 The global STG expansion of a valid SS5TG is also velid off all the local
cliches’ STG expansions are valid. ’

*The definitions of free-choice, safe etc. Petrl Nets can be found for example in [9].

78

4.2. Implementability Conditions
4.2.1. Strong Implementability

Since validity of an STG is not sufficient for its implementab; ity we nesd to impose
some more restrictions on the STG's of variables in ¥.

For each variable y € V its local STG GY generates an STD S¥ in the usual way. Each
such STD is called the state-transition expansion of the variahle's state graph G¥. Due
to the construction technique, Sv contains all the states that (v has (
corresponding A%), which are called nodal states, plus some
generated as a result of the inferlean
in the transition subsets.

The following sufficiency condition is ¢

encoded by the

extra states, called transient,
ing semantics of the concurrent transi

ons of signals
alled Strong Tmmplementability,

Claim 4.1 The global STG expansion of an implementable SSTG 45 elso implementable
if all the variables’ STG expansions ave implemeniable.

Proof Hint. Due to Proposition 4.1 we need only to check if the USC conditions
holding true for the SSTG and all the local STGs imply the USC for the global STG. This
is easily proven by considering the STD generated by the global STG as a state-transition
expansion of the non-contradictory ALTS, and by the rules we applied for encoding the
symbolic values of the original variables by the combinations of binary signals.

This claim is important since it helps to reduce the problem of checking the global STG’s
implementability to a number of subproblems of smaller
description hierarchy. Unfortunately this approach, despite its algorithmic efficiency, may
be too restrictive. While ens: ng the implementability of each
constrain concurrency of the transitions of vari
local USC viclations can be “compensated” by using the distinguishing capahility of the
combinations of values of the remaining variables, ¥’ Y y. On the other hand, since such
values are also binary encoded. finding a general solution, which would provide sufficient
and necessary conditions, can be algorithmically hard. 1t would thus be desirable to
restrict ourselves with a “softer” approach. Among the distingishing variables we shall
only consider those ones whose values in the states “plagued” by USC violations are stable,
so we can fully benefit from staying at the symbolic leve]

ze, thereby gaining from our

local STG, we may overly
ables in X'¥. It is intuitively clear that some

4.2.2. Weak Implementab lity

i

First, let us formally define the notion of indirectly distinguishable states of a symbolic
variable y. Let S1 C S (92 C 8) he the set of states of the ALTS S = (5, E, §) generated
by the original SSTG G such that in all Lates in S1(52) component y has the same value
w1 (u2). Note that u; and w, are taken with their excitation label (let us call them Sull
values), and if y is excited in some state s in 51 (52) it must be excited in all states in S1
(52). So, if for example y has the value of v, and is excited in S1, wesay u; = vy, It s
clear that S1 M52 = 0. Letsl S1,82 € 52, We denote, by §(s Y\), the vector of values
of all but y components in ¥ associated with a state s €5 Let dif f(s1\y,s2\) denote
the set of variables in ¥\ {y) whose values are stable and different in their labellings
§(s1\ y) and §(s2\ y).

For full values u; and w, of i we construct a characterstic Bool
called Distinction Funciion, such that F(

ean function, F(uy, uy),
wp,we) = 1 if there exists at least one pair of

79

states s1 € 51,52 € §2 (51,52 : s1¥ = g and s2¥ = uy) such that di ff(s1\y,s2\y) £ 0,
therwise F(uy,uz) = 0. .
SWMEW %M.MBM mwv_.oum Implementability does not hold: for some a 5,1@@.5 y €Y its
STG has USC problem, i.e. its assoclated STD S¥ = (¥, E¥, 8Y) is contradictory. Thus,
there is at least one pair of states oy and o, in T¥ such that 6¥(a;) = §¥(a3). Let us call
any such pair of states locally indistinguishable. ﬁ is obvious that for every :On._m._. state
7 in 8Y, & is related to the encoding function A%’, applied to the state graph G, in the
following way: 6%(a) = A% (o). Due to this, the above two states o w.zm .Qm.npbbo.a be
nodal since A3 is injective by construction. Therefore, we have two remaining cases: (1)
o) is transient and oy is nodal, and (2) both g, and g, are transient. . -

Consider only the first case {the case with transient o; and nodal o, is symmetrical).
> can be treated in the same way. .
H.Mwwwnﬂw.wwowwmznios of the local STG, in the generated STD S¥ ﬁ.rm‘w must mm m.m%iﬁﬁ
nodal state, &, which is the nearest nodal predecessor of o1. oy occurs in the w,;_,s& :Hw o
i from the state corresponding to @ to some other :ogm_m?%. By the mvomo e m,:o..:.w. :w
between &% and A" for nodal states, we can uniquely derive the A_qi_ﬁ._mm om\w in Zwm o:mwzm,,d
state graph G¥, v; = (A¥)71(8%(1)) and vy = (A¥)71 (8 (a2)). m_:.mm_ J. E:ﬁ_gmv:mmp_umwﬂ,
nodal predecessor of oy, the latter should correspond to the same sym uo.un, va ﬂ.ﬂu cw__ :
with the # symbol. Thus, our states oy and ¢, are called indirectly distinguishable i
* — u* u..: o o. .
.ﬂmﬂwﬂﬁwo anMsamv‘m,ﬁmmeVS and @, are transient, izw Hm..ﬁ.ﬁm._. candition S.m,:,.wmonw,:w.w 5%0
F(wvi,v3) = 0, where vy is obtained in analogous way, i.e. using the nearest nodal prd
cessor for og.

Claim 4.2 The global STG expansion of an implementable SSTG s also H.SE.W.Sm:SEm if
either all the variables’ STG expansions satisfy USC condition or for cach varieble y ﬁ&o.mm
STG generates the STD with locally indistinguishable states, all such states are pairwise
indirectly distinguishable,

Proof Hint. Any transient state o € ¥ has a unique nearest :oga,w_,mamnmmmm,. .MM.HM&
def f(s1\ y,s2\ y) 1s preserved in any firing sequence «._r.ﬁm Y l_m,_wmmv uwfmﬂm: 3 M::ow_

This condition is called Weak TImplementability. Cio_..w::imﬁ : e/\mﬂ his moH_J on
is only sufficient and could he more relaxed. Eoéw.«@., 3.:,m w.‘.oﬁ._._ﬁ__ :m.<o74m. a ﬂu:.,nhﬁw e
thorough analysis of distinguishability, e.g. by modifying U:#.Emso: E.S MM% . é il
the difference not at the “symholic” level but at the level of binary non._mm of the __m:._.w_wndw
{other than y) variables. The search of that type, éﬁ.: no:,,\nﬁmm E.ew,ﬂ_z _m._ onmHm._‘m
procedure, would no longer benefit from the _dﬂ.mwn_:?; anﬁ.:u.._w: provided uw > :

The above approach suggests two useful strategies for a constrained optimisation:

e Begin with Strong Implementability, 1.e. construct a noB?.:w&\Hon of mﬂm:ﬁﬁ_m.
mentable SSTG and locally implementable STG’s of variables in .M . Then lift some
order constraints at the local cliche level, by allowing up to maximum nw:n::msw
hetween transitions of the encoding variables in AP¥ for all y, until Weak Imple-
mentability no longer holds.

e Begin é?r.gw maximally concurvent local STGs, and while adding new ordering
.no:m?Bwﬁm in AP” for all y, check when Weak Implementability becomes true.

]

80

rir2 - b+ -

~—@—

00 @ @ ¢

{ri+) {ri-r2-} e Hw+lv m+
{r2+}

10 = 11 () @

(a) r2+ = rl- —=r2-

(c)

b+ m- g

_? \.\ A V _1]- @;ﬂ m-

rol ;A

1+
e r
20 v

4 4 ’ S
rl-2 = m+ e rZ2+ = m+t =r2-
(e) (N (8)

Figure 3. Interface Example: S,

4.3. Interface Example: Circuit Synthesis

In this mmnﬂoz we use the above techinique to synthesise two implementations of the
55TG shown in Figure 1.(c) Si

: nce among the variables in Y7 = {b,»,m} only » is non
binary, we have to encode it with aux v signals, »y.ry. The result of encoding
the state graph G (see Figure 1.(1b)) is shown in Figure 3.(a).

| m.mﬂ,m,.yb?olu = {r+} AP0) = {94}, Inorder to satisty Strong Implementability
(it is trivially holds for & and m) we create the following partial order for AP(r3-9) =
T:\.,S.Iw :r1— <1y —. The STG G7 for + is shown in Figure 3.(h). The global binary
STG @* is shown In Figure 3.(c). It is easily seen that this STG is implementable. dm,Ew
one of the existing methods [10. 3, G] {or ordinary STG we obtain the following set 9”1
Boolean functions: b = 7 + 1y, m = + (w4) = by 4 g

an fun =71+ 10 =
W,rm circuit implementing the interface controller component in Figure 1.(a) is shown in
gure 3.(d). The appropriate “request/acknowledgement” pairs of handshake signals are

81

(a)

Data Path

ck Y
Ir # () ek (c)

Figure 4, Two-way Pipeline: Structural View

formed by breaking the interconnections of signals b,1y and m.
If we try to aveid putting 7 — and ry— in sequen

, then the G with concurrent
transitions r,— and 73— will nol be implementable since the STD generated by it will
contain two states labelled with 10. One, nodal state, is reachable from the mitial state,
00, by the firing of r1+. The other, transient state, is reachable from the nodal state 11 if
ry— fires ahead of r;—. Unfortunately, by checking Weak Tmplementability we find thal
these two states are not indirectly distinguishable: the pair of symbolic states labelled as
01*1 and 0271, respectiv in Figure 1.(d) cannot distinguish the above two 10 states
of » by their stable component (here, s = 1). This situation results in the violation of
implementability of the corresponding global binary STG.

As an example where Weak Implementability has its effect, consider the SSTG shown
in Figure 3.(e). This specification is less concurrent at ihe symbolic level than the original
one. However, the violation of the USC condition at the local level (for), which can be
seen from the local STG in Figure 3.(f), does no longer preclude the implementation of
the global binary STG expansion shown in Figure 3.(g). The latter produces the following
logical functions: b= 471 +rgm =mry + 12,71 = Wi + iy, my = nnry + W

5. SYNTHESIS OF TWO-WAY PIPELINE CONTROLLER

In this section we show how SSTG and the above technique can be used to synthesise a
control cireust for a bidirectional pipeline communication chanuel. Such a channel can be
organised in a massively parallel system where the modules communicate through a packet
switching/routing network. We assume that the channel has a data path which allows
data to be transferred in two divections i a time-shaved way. The struct ural description
is shown in Figure 4, where three adjacent cells, (1 — 1)-th, ¢-th and (i + L)-th, are singled
out for convenience. When the pipeline is in the left-to-vight (*—"or “I1”) mode a datum
is shifted into the register (REG) of the i-th cell from its lelt. neighbour cell. This is
controlled by a strobe signal Stry,, using a multiplexor (MUX). When the pipeline is in
the right-to-left (“—" or 11"} mode a datum is shifted from the right neighbour cell, with
the aid of another strobe, Str..

Our goal is to implement the controller of the i-th cell, which will generate the strobe
signals dependmg on the direction mode sel in the controller during special “mode change
sessicns”. Since we assume the pipeline to operate in a totally distributed way, the cells

82

Y > ~

Q00
\)M@/
(i ,Tﬂ_v < i+

(a)

4

i<

|VQ r. y
(i+1)> (i+1) < ;
PRy ~ Ko — P = N
i 1) & 1) #
/W.r T%\ (i u%. A_M.\u_
N el

civf.rc;\fi;.r
N N

(b}

Figure 5. First idea: State Graph (a) and SS5TG (y)

me |

are informed about a particular mode through Che sline. To facilitate this we
arrange that once data i l inator, only this terminator owns the
privilege to transmit data, to stop the tvansmission and Lo hand over the privilege to
the other terminator. The latter. after using the channel in similar way, may send the
privilege back to the firsi terminalor and the process repeats.

Figure 4.(c) shows the basic ACS for svnthesis, in which variables y,_; and yi41 arve
inputs for the 7-th cell while y; 15 the output. which can be used by the neighbouring cells
and the data path of the i-th cell. Thus ¥ = {yi—1,yi, vi41

being senl by o

5.1. First Idea

Since the local cliches of all variables in Y should be of the same type (pipeline regu-

larity), only a generic state graph for just one variable, say y;. is shown in Figure 5.(a).

The variable has four states: S = Aﬂ D. g, _ﬂi, where & f.mu stands for the spacer in the
— («) mode, and D (D) far the data valid state in Lhe — (—) mode.

Corresponding natation is used to model the allowed changes of values of the variable:
B1 S N N S s

The interaction mvolving the three adjacent cells is defined by the SSTG shown in
Figure 5.(b). In this graph the transitions ave labelled with the identifier of the cell
variable and the corresponding value change, taken fromn the variable’s cliche, The initia:

marking is the state in which all the cells ave in the §. the privilege is with the leftmost cell

83

and the latter determines whether to initiate the data transmission or send the privilege
to the other end by changing its state to 5. If the first option is chosen, the leftmost cell
changes to mu and the whole pipeline behaves like an ordinary one-way pipeline until the
leftmost cell, while being in S, decides to hand over the privilege by changing its state
to W The :-th cell, when it accepts W from its left neighbour, also changes from W to W
When the privilege reaches the rightmost cell, the latter begins either transmitting data
or hands the privilege back to its left neighbour. It is easy to see that the behaviour will

now be similar to the above except for the roles of “right” (i +1)

and “left” (¢ — 1) having
been interchanged.

The SSTG is valid (it is consistent and its PN is bounded), however it appears to have
a USC problem, which could be seen from the ALTS generated by the SSTG (due to space
limitation it is not shown here and we leave at as an exercise). This ALTS is contradictory
and has two pairs of different states with the same labelling. For one such pair, the output
variable y; is unable to determine from the state of the other two variables, whether to

Nt =

remain stable (state § § §*)

or become excited (state $5* §). As a consequence, even

our SSTG is not implementable, regardless of the implementability of the local behaviour
of variables.

5.2. Second Idea: Correct Solution

The major problem of our first attempt was in the incapability of variable y; to indicate

(for itself) the fact of the change of the transmission direction. This can be fixed by adding

a pair of new states (one for each direction), ¢ and .mn to the local hehavioural cliches
of the variables in ¥, which would mark the change of the transmission mode. Such a
state can be interpreted as an explicit “privilege” transmitted through the channel. The
cliche’s state graph 1s shown in Figure G.(a). With the pair of new states we have also
obtained the new changes, > 1, > 2, < 1 and < 2, whose meaning should be obvious.

The SSTG satisfying the above cliche is shown in Figure 6.(b). This graph has no USC
problem and, since being valid, i
ALTS as an exercise).

s implementable (the reader may again try to buld its

We proceed further with the binary encoded state graph shown in Figure 6.(c). T

"he set
of encoding variables is X% = {a;. b;, ¢;}. This graph gives vise to the local STG, shown

in Figure 6.(d), which is in this case uniquely built from the state graph since all the
transition sets are singletons, and there is no choice on how to order the hinary signal
changes. The global binary STG can be easily built from the S5TG and the encoded
transitions of variables. For example, (i —1) 7 is substituted w
with a;o9+, (1 — 1) > with bi_y+ and so on. ;

Since the local cliches are also implementable, Claim 4.1 implies that the global STG is
implementable too. Using a standard technicue [10, 3, 6] we obtain the logical impleme-
nation for output signals, a:, b; and ¢;:

h the transition lahelled

i = Gi=10i118 + Gim105416 + @i Tio1 6 + ai-1 8 F G + @ip10i)
by = ai_1¢+ aipbia &+ bin
6 = biaa+ F+Hnﬂ.\~ + e

Using the semantics of the local cliche and state encoding it is now easy to construct

the output strobe signals: Stry, = a;b; and Sir. = a;b;.

Vs
i+ i+

-
e i<l RS

@hea ¥ &N

A} i+ <2 /

W) % (1) #
i<y = W £
v ;

(i+1)>2

GON Gy 7 DN D>

N 4

< G0 # (D% (1) #

¥ ,JUWIp

Sir
ir r Ack

(®) Str

< LOGICAL
CIRCUIT
FOR i-th CELL

d
@ (e)

Figure 6. Correct Solution

The actual interconnection of the abstract ACS in Figure 4.(c)
In order to use signal a; one has to break tl

is shown in Figure 6.(e)
1e output wire from the gate implementing a;,
and connect it to the signal labelled as treq- This signal is used to strobe the AND gates
for Stry, and Str,;. The Ack input produced by the data path logic should be connected
to the other end of the broken wire (@aek)y and then used for the external Hiterconnections
of the i-th cell. It is easily seen from the local STG that signal b; can be directly used at
the ANDs because it is always stable when the cirenit changes the value of ;.

6. CONCLUSIONS

With the proposed synthesis approach, based on a high-level specification language,
Symbolic Signal Transition Graph, we have achieved: (i) a better way of capturing the
system’s abstraction and hierarchy, and (ii) more efficient checking of its implementability
conditions. The circuit designer would maximally benefit from this approach if he/she
would be able to describe the initial idea of the synthesised Asynchronous Control Struc-
ture in an essentially abstract form. The number of components should be kept relatively
small, while their behaviour be specified as a multi-state (not necessarily two-state like
in “ordinary” Signal Transition Graph) graph that is further refinable by binary encod-
ing. The sufficient conditions of the implementability of a binary expansion of the global
specification suggest flexible optimisation strategies.

Acknowledgements:

The authors would like to thank Luciano Lavagno for his useful comments and the
British Royal Society for supporting A. Petrov’s attendance at the Conference.
REFERENCES .

1. K. van Berkel. Handshake circuits: an intermediary between communicating processes
and VLS PhD thesis, Technical University of Eindhoven, 1992,

2. J.A. Brzozowski and C.-J.H. Seger. Advances in asynchronous civcuit theory. Bulletin
of the EATCS, (42), October 1990. (Part 2 in No.43, Feb. 1991).

3. T.A. Chu. Synthests of Self-Timed VLSI Circuits from Graph-theoretic Specifications.
PhD thesis, MIT, 1987.

4. M. Josephs and J.T. Udding. An algebra for delay-insensitive circuits. Technical

5. ML.A. Kishinevsky, A.Y. Kendratyev, and A.R. Taubin. Formal method for self-timed
design. In Proceedings of EDAC'91, pages 197-201, 1991,

6. L. Lavagno, K. Keutzer, and A. Sangiovanmi-Vincentelli. Algorithms for synthesis of
hazard-free asynchronous circuits. In Proceedings of the DAC91. June 1091.

7. A.J. Martin, Synthesis of asynchronous vlsi circuits. In J. Staunstrup (ed.), editor,
Formal Methods for VLSI Design, chapter 6. North Holland. Amsterdam, 1990. IFIP
WG 10.5 Lecture Notes.

8. R.E. Miller. Switching Theory, volume 2 Sequential Circuits and Machines, chap-
ter 10, Wiley-Interscience, New York, 1965.

9. T. Murata. Petrl nets: Properties, analysis and applications. Procecdings of IEEE,
77(4):541-580, April 1989.

10. L.Ya. Rosenblum and A.V. Yakovlev. Signal graphs: from sell-timed to timed ones.
In Proceedings of International Workshop on Trmed Peiri Nets, Torino, Italy, July
1985, pages 199-207. IEEE Computer Society, 1985.

11. V.I. Varshavsky, editor. Self-Timed Control of Concu
Dordrecht, 1990.

12. A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified STG model for

asynchrenous control circuit synthesis. In Proceeds of ICCAD 92, Santa Clara,
CA, November 1902.

Report WUCS-83-54, Dept of CS, Washington University, St Louis, 1989.

i Processes. Kluwer AP,

