Energy drives logic NewcaStle
ﬂﬂ_nﬂ"_HH[hL University

What kind of hardware do we need
for pervasive Al?

Alex Yakovlev

Head of microSystems Group
School of Engineering
Newecastle University
https://www.ncl.ac.uk/engineering/research/eee/microsystems/
http://async.org.uk/

CAIR Al Workshop 7 February 2019

https://www.ncl.ac.uk/engineering/research/eee/microsystems/
http://async.org.uk/

Swarm of devices — Future of ICT

A
Trillions+ Billions+ Billions Millions+ Millions Thousands+

S
= Energy and performance Power and pegi6rmance
0 Energy constrained Energy and performance POWGT
g_ constrained constrained constrained
o

o

©

c

©

-

.

o

a 10kW

>

Trillions of ubiquitous systems (sensors, probes, monitors, actuators, controllers) are
being deployed to operate in myriad of places (organisation, human, body part,
household, offices, pets) using harvested energy or micro-batteries

f{ GO ‘
v/

abudar

2/5/2019 S |

Granularity of intelligence

* Pervasive Intelligence requires reconsidering
many balances:

— Between software and hardware

— Between power and compute

— Between analog and digital

— Between design and fabrication and maintenance

e Granularity of time and energy

Data In

Granularity of intelligence

Power supply

Compute
Function

Time reference

2/5/2019

Data Out

CAIR Al Workshop

Granulation
phenomenon:

Granularity of power
Granularity of time
Granularity of data
Granularity of function

Questions:

Can we granulate
intelligence to minimum?
What is the smallest level at
which we can make cyber-
systems learn — in terms of
power, time, data and
function?

Grand challenge for pervasive hardware Al:

To enable electronic components with an
ability to learn and compute in real-life
environments with real-power and in
real-time

Research Hypothesis:

We should design systems that are energy-
modulated and self-timed, with maximally
distributed learning capabilities

Energy-modulated computing

traditional system
power

clock
supply generatmr time
SOUrce
computational
electronics

activity levels determine power levels

energ'_-.r
SoUrce

vdd § comms
? DP ? 9
idle
r .t L
I fime
I;::::::: long t?reaks '::::::;
clk freqy 1 i ¥
? ? ?

time

energy—-modulated system

=== integrated system |
il power | v

enengy'! Supply ?

mun:e!

vdd

computational
i electronics

power determines activity

comms

activity

- seamless transitions -

r

time

time

Vision for Power-modulated
Future multi-layer system

Multiple layers of the system design can turn on at different power levels
(analogies with living organisms’ nervous systems or underwater life, layers
of different cost labour in resilient economies)

As power goes higher new layers turn on, while the lower layers (“back up”)
remain active

The more active layers the system has the more power resourceful it is

amount of » - active
computation component
—~ A class of
ik functionality
LN

layer 3
layer 2

layer 1

2/5/2019 CAIR Al Workshop 7

Learning Hardware

Conventional structure:
Rewards/

Penalties

Learning part Feedback generator

Weights

Inputs Outputs
Compute part

Most of the operations here are done by using conventional binary
arithmetic, which is not power-adaptive and uses centrally provided
Power and Clocks —hence poor power-proportionality and robustness

2/5/2019 CAIR Al Workshop

Proposed approach

Event-driven, robust to power and timing
fluctuations

Decentralised Tsetlin Automata (TAs) for
learning on demand

Mixed digital-analog compute where elements
are enabled and controlled by individual TAs

Natural approximation in its nature, both in
learning and compute

Asynchronous logic for h/w implementation

Why Tsetlin Automata?

Hypothesis: TAs provide a minimalist (energy-wise and robustness-
wise) way to adaptation
* TAs can act as generators of control signals, naturally enabling:
— Compute function shaping (include/exclude parts of compute)
— Distributed Power and Clock gating
* TAs can be easily implemented in hardware:
— Directly (in digital or mixed signal way)

— Via microprogrammable structures,using transition-output tables in
memory and simple access microcode in h/w

— Can be prototyped in FPGAs and on microcontrollers
 TAs can be made :

— With fixed structure (linear tactics)

— With variable structure or with tunable memory depths

— For stationary and varying environments

Granmo’s Tsetlin Machine Data flow

r
Update/Do _ qﬁ
not update

3.1

Feedback -
generation fs (X)
for TAk)
Penalty/Inaction/ . z
l Reward 2.2 2_'2
R ZG00 NG

Exclude xx

Include xx g

......

xk! y

The idea of Tsetlin Machine:
https://www.dropbox.com/s/usk78fj381k2qrw/Tsetlin Machine 170119.pdf?dI=0

1.1 Tsetlin Automaton TA, decides to
include or exclude variable x, in clause C;
1.2 Value of x, and y in training example
(X, y) sent for generating feedback to TAx
1.3 Training example X sent to each
clause, including C;

2.1 Qutput of clause C; sent for
generating feedback to TA,

2.2 QOutput of all clauses (votes) sent for
summation

% 3.1 Decision on whether to update the TA
of clause C;. Decision is based on fg(X)

and T, and controls whether feedback is
generated for TA,.

3.2 Output of summation, fy(X), sent to
threshold function for classification

4. A penalty/reward/inaction generated
from Feedback Type | (y = 1) or Type |l
(y=0) is sent to TAx

2/5/2019

CAIR Al Workshop

11

https://www.dropbox.com/s/usk78fj381k2qrw/Tsetlin_Machine_170119.pdf?dl=0

Tsetlin Automaton: async design

4-state TA k:
O o o
Cxclg\p/xll 0 x21 0 x22
| J | J
| T
Actionl (Exclude x_k) Action2: Include x_k)

Logic implementation (equations obtained from our tool Workcraft — next slides):

X11=X12’*X21’*X22’+p*A1 X21=X111*X121*X221+p*A1
X12= r*Al + x11'*x12 X22= F*AD + x21"%x22
Al=p*(A2"*x21+x12+A1) + r*(x12+x11) A2=p*(A1"*x11+x22+A2) + r*(x22+x21)

Approximate performance:
* response time can be in the order of 100ps
* energy cost in the order of 100f]) per action
2/5/2019 CAIR Al Workshop 12

Clause and function computation

_-._ilause C_j (X)

* Clause can produce either levels or pulses
 We can use various energy-efficient ways of summing +1’s and -
1 as, or accumulating events (e.g. up and down counters)

Exclude

Include
X k ——

Feedback computation (after logic minimisation)

Reward: R_kj=C_j*Inc_k*Type | Interpretation:

* Wereward TA_kto Include x_k in
Penalty: P_kj=x_k*C_j*Exc_k*Type | + x_k'*C_j*Type Il Cj for Type |
Inaction: | kj=C_j’'+x_k'*Type | + x_k*Type Il * We penalise TA_k to Exclude x_k

when x_k=Cj=1 for Type | or to
make x_k=0 and Cj=1 for Type Il

We assume: * We maintain state for TA_k when
° EXCIUdezNOt(InCIUde); EXC=O/InC=1 Cj=0 or x_k=0 for Type | or x_k=1
* Type | = Not (Type Il); Type |=0/Type lI=1 for Type I

2/5/2019 CAIR Al Workshop 13

Designing the compute part:
mixed analog dlgltal (DATE’19 paper)

PMOS and NMOS act as voltage
divider.

| Rout * Output voltage is inversely

' t . ;
m__4 W proportional to input duty cycle.
JZZF_L -

—] p—

1 I
DC=ON/ON+OFF

The circuit below adds 3 inputs multiplied

Vout, (V)

by 3-bit weights {can be generated by | e e dV taze variat
Tsetlin Automata) obustness to Frequency an oltage variations:
ini . 2.5 T [i ggzggx 01; —a— DC:25% I

DC=7
St 0¥
1.87 N

0.7r

T 5
i -

in2 _ .
s | §ﬂ.6—
_@—0 _@—0 *g‘ l.EEEM 20_5_
in3 21 w22 = S04l

M) 03
0.62 .

0.2r

L L
i e
w3l w32

0.1r

. . o
0 500 1000 1500 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Input frequency, (MHz) Supply voltage vdd, (V)

Workcraft: Toolkit for designing asynchronous circuits

Property editor

Tool controls

][]

1k 1

EEE

Compostion

v Workcraft
File Edit View Utility Help Tools
dfs-all_elements - Dataflow Structure = B4 || vme_stg - Signal Transitiza" B4 || mayevsky_c_el2 - Digital Circuit =
control layer DTACK-
M\ |
- DSr- O -DSw+
D A LDS+- O D+
] | ™ j cl
. c2
LDTACK+ LD S+
[l:l] I 1w D+ LDTACK- LDTACK+
o, - & i s
I]]]_"D_"[D] DTACK+ B-
D5r- LDs- ‘
| o)
D n- -0~ DSw-
M ck on the highlighted transitior|
H \ O
cpogl - Conditional Partial Ordiz" 9 | |xmas-testl - xMAS @ X | policy-test2 - Policy Net = R4

Srco

B-O0-00-0-
h.ﬁ< l:KOﬁl:IﬁC
00—

O—(
%P&mﬁ:i—{l-o

Trace Branch
D-/1 =
DTACK+/1
DSw-
DTACK- 3l
DSr+ DSw+
LDS- D+/1
LDTACK- LDS- =
LDS+ LDTACK-
LDTACK+ LDS+/1
D+ LDTACK+/1
DTACK+ D-/1 -
Signal State
]]
DTACK 0
DSw 1
Dsr ?
LDS 1
LDTACK 1

Editor tools

b]lalll."[©][E/0

Output * rProbIems X r]avascript X rTasks % Workspace [
a|| |[Workspace

INORDER = DSr D5w LDTACK D DTACK LDS cscO; ||| ¢ External

OUTORDER = [D] [DTACK] [LDS] [escO]: cpogl work

[D] = DSr LDTACK cscO' + DSw (cscO + LDTACK'); dfs-all_elements.work

[DTACK] = D' csc0" (D5r" + DSw) + DSw' D: mayevsky c_el2.work *

[LDS] = cscl'; policy-test2.work

[csc0] = DSr' D' (escO + DSw") + LDTACK cscO; vme_stg.work *

wmas-testl.work

Set/reset pins: reset(cscl)

moved from Untitled to !External/xmas-testl.work

correcting open file path...

|

2/5/2019

CAIR Al Workshop

15

Example STG for 4-state Tsetlin Automaton

x12_1 x11_1

@) ®
® O

x12_0 x11_0

x21_1

O
®

x21_0

x22_1

O
®

x22_0

po

r+ P

— P+

x12_1 x11_1 x21_1 x22_1 x12_1 x11_1 é) x21_1 x22_1
A2+ - Al+ A2+

Al+ Al+ A2+
x12_0 x22_0
x12+ X22+

/

x12_1(x11_.1 x21_.1|x22_1

x11-

ANV

mrgRl? x11_

ack+

ack-

po

2/5/2019

\

0 x21.0 ?mrgRAz

ack+

ack-

|

po

Al+ A2+

x11_.0 x21.0

x11.0 x21.0

/
x11+

x12_1 | x11_.1 x21_1

x12-

\(QngAI

x12_0 - x11.0 x21.0

ack+

ack-

|

po
CAIR Al Workshop

\
x21+

/

4
x11-

x11.1 x21_1

x11+

A
jfx21-

x21+

A
x11_1 x21_1|x22_1

14
X22-

mrgPA,Z/ \

x22_C

ack+

ack-

po

16

Newcastle people involved in research on real-power
computing, asynchronous design, approximate
computing and pervasive Al

* Microsystems Group at Engineering:

Dr Alex Bystrov, Dr Andrey Mokhov, Dr Reza Ramezani, Dr Rishad
Shafik, Dr Danil Sokolov, Dr Ahmed Soltan, Dr Fei Xia; PhD
students: Sergey Mileiko, Thanasin Bunnam, Adrian Wheeldon

* Computing Science:

Dr Victor Khomenko, Prof Maciej Koutny

* Academic collaboration:

Prof Steve Furber’s group in The Uni of Manchester
* Industry collaboration:

Temporal Computing and Dialog Semiconductor

Thank you!

More information:

https://www.ncl.ac.uk/engineering/research/eee/microsystems/

http://async.org.uk/

http://workcraft.org

https://blogs.ncl.ac.uk/alexyakovlev/

https://www.ncl.ac.uk/engineering/research/eee/microsystems/
http://async.org.uk/
http://workcraft.org/
https://blogs.ncl.ac.uk/alexyakovlev/

