
Design Automation for
Analog-Mixed Signal Circuits
with Asynchronous Control

Vladimir Dubikhin(*), Victor Khomenko (*),
Andrey Mokhov(*), Chris Myers (**),
Danil Sokolov(*), Alex Yakovlev (*)

(*)Newcastle University, UK
(**)The University of Utah, USA

Contact: Alex.Yakovlev@ncl.ac.uk
async.org.uk; workcraft.org

• Introduction:
– Motivation, Challenges, Shortcomings of commercial

flows
• Part 1. A4A: Asynchronous design for analogue electronics

– Basics of asynchronous design
– Design flow for A4A: formal specification, circuit

synthesis, verification
– Examples: multiphase buck, SRAM, ADC

<Break>
• Part 2. AMS design with asynchronous control

– Analogue verification with LEMA
– Co-optimization flow: Workcraft and LEMA
– Examples: C-element, Buck

• Part 3. Workcraft tools demo
• Discussion

Agenda

• Analog and Mixed Signal (AMS) design becomes
more complex:

• More functionality

• Move to deep submicron after all!

– According to Andrew Talbot from Intel, recently
speaking at the AMS workshop at RAL, “transistors
are very fast switches, netlists are huge, parasitics
are phenomenally difficult to estimate, passives
don’t follow Moore’s law, reliability is a brand new
landscape”

Motivation

• There is a strong drive for having more digital parts in AMS
• Analog and digital are often intertwined
• Asynchronous design appears good for little digital

–> A4A project (EPSRC, Dialog supports)

Emergence of “little digital”

• Efficient implementation of power converters is
paramount

– Extending battery life for mobile gadgets

– Reducing energy bill for PCs and data centres (5%
and 3% of global electricity production,
respectively)

• Need for responsive and reliable control circuits –
little digital

– Millions of control decisions per second for years

– A wrong decision may permanently damage the
circuit

Motivation: power electronics context

• Poor EDA support

– Mostly supports flow from schematic capture;
lacks flow from behavioural capture

– Synthesis from behavioural (RTL) is optimized for
data processing logic and supports only
synchronous – big digital

– Manual and ad hoc solutions are prone to errors
and hard to verify (weeks of simulations)

• Big challenge is EDA for asynchronous (hence our
A4A project)

• What do the Industrial gurus say?

Motivation: EDA support is a challenge

• “...analog has to budget five or six respins. Silicon has become
the validation vehicle for analog, and that’s a problem.”

Sandipan Bhanot, CEO of Knowlent

• “If the digital designers did verification the way analog
designers do verification, no chip would ever tape out.”

Sandipan Bhanot, CEO of Knowlent

• “...problems are being solved because we have very good
analog engineers. But in the future, if we want to improve
time-to-market we will have to improve the tools.”

James Lin, VP at National Semiconductor

(Source “Why is analog so difficult?” – DACezine, January 2008)

Industry quotes

• If digital parts don’t use clock, they are normally
designed by hand and require massive simulations:

– E.g. analogue designers cannot afford simulating
power converters from start-up; Instead they
force it into known state

– More specifically: 50 us of Spectre simulation
time takes approx. 10 hours using 8 CPU cores

– Hence they can only verify cherry-picked corners
of digital functionality

(from Dialog Semiconductor, 2016)

Analog design in digital context is hard

Intel’s advice:

Intel’s advice on AMS Design

But, how?

We must use Behavioural capture and drive
verification from behavioural domain!

(Source: Intel’s talk about Holistic AMS design in Ultra-DSM at
the May 2016 NMI event on AMS)

Source: Damian Roberts, AMS Workshop, RAL, April 2016

View from Synopsys

• Asynchronous design offers many advantages for AMS
control

• Challenges:

– It requires behavioural capture and synthesis but
commercial EDA tools don’t support it

– Verification of asynchronous designs as part of AMS

– How to provide non-invasiveness with existing
design practices – we need to work with SVA and
SPICE simulation traces

Towards Async Design for Analog

Buck example

STG Specification of buck controller

Synchronous design

Asynchronous design

Simulation results

Simulation results: Comparison

• Needs to be to a large extent monolithic

• Has inputs that need to be sanitised

• Can have lots of timing assumptions for bounded
delay implementation where solving coding and
TM problems can be an issue

• I/O response times (constrained or optimised)
drive the design and sign-off

• Different types of (de)compositions needed
rather than (or not just) handshake ones

Specifics of Async Design for Bucks

A4A: Asynchronous design for
Analogue electronics

Victor Khomenko, Andrey Mokhov,

Danil Sokolov, Alex Yakovlev

Newcastle University, UK

async.org.uk

• Key Asynchronous Design Principles

• (Some of the) Models for Asynchronous Design

• Asynchronous control logic synthesis from Signal
Transition Graphs

• Complete state coding (CSC) resolution

• Formal verification of asynchronous circuits

• Under the Bonnet of Workcraft tools

• Advanced Topic: Logic Synthesis and
Implementation Styles in Asynchronous Circuits
Design

Outline

Asynchronous Behaviour

• Synchronous vs Asynchronous behaviour in general terms,
examples:

– Orchestra playing with vs without a conductor

– Party of people having a set menu vs a la carte

• Synchronous means all parts of the system acting globally in
tact, even if some or all part ‘do nothing’

• Asynchronous means parts of the system act on demand
rather than on global clock tick

• Acting in computation and communication is, generally,
changing the system state

• Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.

Key Principles of Asynchronous

Circuit Design

Key Principles of Asynchronous Design

• Asynchronous handshaking

• Delay-insensitive encoding

• Completion detection

• Causal acknowledgment (aka indication or
indicatability)

• Strong and weak causality (full indication and early
evaluation)

• “Time comparison” (synchronisation, arbitration)

Why and what is handshaking?

Mutual Synchronisation is via Handshake

Synchronous clocking

How we
think

What we
design

Asynchronous handshaking

What we
design

How we
think

Handshake latch
Handshake CL”Channel” or ”Link”

Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

Transition Signalling (NRZ or 2-phase)

One cycle

req

ack

req

One cycle

req

ack

One cycle

ack

(a) (b)

Why and what is delay-insensitive coding?

Data Token = (Data Value, Validity Flag)

Bundled Data

req

ack

Data

One cycle

req

ack

Data

Return to Zero:

Non-Return-to-Zero

One cycle

req

ack

Data

One cycle

DI encoded data (Dual-Rail)

ack

Data.0

One cycle

Data.1

ack

Data.0Data.1

Logical 1
Logical 0

One cycle

NULL (spacer) NULL

cycle

Data.1

ack

Data.0
Logical 1

Logical 0

cycle cycle

Logical 1 Logical 1

cycle

RTZ:

NRZ:NRZ coding leads to
complex logic
implementation;
special ways to track
odd and even phases
and logic values are
needed, such as
LEDR

DI codes (1-of-n and m-of-n)

• 1-of-4:

– 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:

– 1100, 1010, 1001, 0110, 0101, 0011 – total 6 combinations
(cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:

– 111000, 110100, …, 000111 – total 20 combinations (can
encode 4 bits + 4 control tokens)

• 2-of-7:

– 1100000, 1010000, …, 0000011 – total 21 combinations (4
bits + 5 control tokens)

Why and what is completion detection?

Signalling that the Transients are over

Bundled-data logic blocks

Single-rail logic

•
•
•

•
•
•

delaystart done

Conventional logic + matched delay

Completion
is implicit:
by done
signal

The delay must
scale with the worst
case delay path,
So … not really self-
timed

True completion detection

Dual-rail
logic

•
•
•

•
•
•

C done

Completion detection tree

Completion
detection for one
dual-rail bit

C

•
•
•

Multi-input C-
element

The Muller C element

C

A

B
Z

A B Z+

0 0 0

0 1 Z

1 0 Z

1 1 1

Vdd

Gnd

A

A

A

AB

B

B

B

Z

Z

Z

[van Berkel 91]

Static Logic

Implementation

C

C-element: Other implementations

A

A

B

B

Gnd

Vdd

Z

A

A

B

B

Gnd

Vdd

Z

Weak inverter

Quasi-StaticDynamic

Why and what is causal acknowledgment?

Every signal event must be acknowledged
by another event

Causal acknowledgment

a(0)

b(0)
c(0)

x1 (1)

x2 (1)

x3(1)

C-element implementation using simple gates

a+

b+

x1- c+

x2-

x1+

c-

x3-

a+

b+

a-

b-

c+ c-

a-

b- x2+

x3+

Unack’ed transitions x2-
and x3- may cause a
hazard on output c

However, under Fundamental
Mode (slow environment) the
circuit is safe

Principle of causal acknowledgement

a(0)

b(0)

c(0)
x1(1)

x4(0)

x2(0)

x3(1)

a+

b+

a-

b-

c+ c-

C-element implementation using simple gates

a-

b-

x4- x3+ x2- c-

a+

b+

x1- x2+
x3- x1+ c+

x4+

Each transition is
causally ack’ed,
hence no hazards
can appear

Why and what are strong and weak causality ?

Degree of necessity of precedence of some events for
other events

Strong Causality

• Petri net transitions synchronising as rendez-vous

A

C

B

• Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 transitions)

A B C+

0 0 0
0 1 C
1 0 C
1 1 1

Strong precedence

A

B
CC

Weak Causality

• Petri net transitions communicating via places

A

C

B

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)

B(1->0)

C(0)
A(0->1)

B(0->1)

C(1)

Weak precedence

Full indication versus Early Evaluation

A.t

A.f

B.t

B.f

C.t

C.f

Dual-rail AND gate
with “early propagation”

Allows outputs to be produced from NULL
to Codeword only when some (required)
inputs have transitioned from NULL to
Codeword (similar for Codeword to NULL)

C

C

C

C

B.t

A.t
C.t

C.f

A.t

A.f

A.f

B.f

B.t

B.f

Dual-rail AND gate
with full input
acknowledgement

Why and what is timing comparison?

Telling if some event happened before
another event

Synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer

Decides which clock
cycle to use for the

input data

 Asynchronous
arbiter

Decides the order of
inputs

Metastability is....

Not being able to decide…

Q

Q

Clock

D

tin

tin -> 0

D

Clock

Request

Processor Clock

Set-up time violated

Typical responses

• We assume all starting points are equally probable
• Most are a long way from the “balance point”
• A few are very close and take a long time to resolve

Clock

Q Output

Clock

D Q
#1

Q Trigger

Synchronizer

• t is time allowed for the Q to change between CLK a and CLK b

•  is the recovery time constant, usually the gain-bandwidth of the circuit

• Tw is the “metastability window” (aperture around clock edge in which
the capture of data edge causes a delay that is greater than normal
propagation delay of the FF)

•  and Tw depend on the circuit

• We assume that all values of tin are equally probable

D Q D Q

CLK a

VALID

#1 #2

dcw

t

ffT

e
MTBF

..

/


CLK b

Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with
metastability resolver can be built similarly

Metastability
resolver

• Understanding metastability is becoming very important as
analogue and digital domains get closer, and timing
uncertainty and PVT variations increase

• Arbitration and synchronization are increasing their
importance due to many-core, timing domains, NoCs, GALS

• Design automation for metastability and synchronization is
turning from research to practice (Blendix)

Importance of Timing Comparison

Pros…

• People have always been excited by asynchronous design, and motivated by:

– Higher performance (work on average not worst case delays)

– Lower power consumption (automatic fine-grain “clock” gating;

automatic instantaneous stand-by at arbitrary granularity in time and
function; distributed localized control; more architectural
options/freedom; more freedom to scale the supply voltage)

– Modularity (Timing is at interfaces)

– Lower EMI and smoother Idd (the local “clocks” tend to tick at

random points in time)

– Low sensitivity to PVT variations (timing based on matched delays

or even delay insensitive)

– Secure chips (white noise current spectrum)

– Plus, … a lot of scope and fun for research (there are many unexplored
paths in this forest!)

• So why have async designers been often “crucified” in the past?

– Overhead (area, speed, power)

• Control and handshaking

• Dual-rail and completion detection costs

– Hard to design
• yes and no, ... It’s different – there are very many styles and variants

to go and one can easily get confused which is better

– Very few **practical** CAD tools (but many academic tools)

• Tools are quite specific to particular design styles and design niches;
hence don’ t cover the whole spectrum

• Complexity of timing and performance models

• Difficulty with sign-off (for particular frequency requirements)

• ... But the situation is improving

– Hard to Test
• Possible, but not as mature as sync

… Cons

(Some) Models for Asynchronous

Circuit Design

Models and techniques for asynchronous design

• Models:

– Delay model (inertial, pure, gate delay, wire delay, bounded and
unbounded delays)

– Models of environment (fundamental mode, input-output)

– Models of switching behaviour (state-based, event-based, hybrid)

• RTL level:

– Data and control paths separate (data flow graphs, FSMs, Signal
Transition Graphs, Synchronised Transitions)

– Pipeline based (Combinational logic plus registers and latch controllers,
e.g. micropipelines, gate-level pipelining)

– Process-based (CSP-like, Balsa, Haste, Communicating Hardware
Processes)

• High-level models

– Flow graphs (Marked graphs, extended MGs), Petri nets, Markov
Chains

– Behavioural HDLs (C, SystemC)

Gate vs wire delay models

• Gate delay model: delays in gates, no delays in wires

• Wire delay model: delays in gates and wires

Delay models for async. circuits

• Bounded delays (BD): realistic for gates and wires.

– Technology mapping is easy, verification is difficult

• Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

– Technology mapping is more difficult, verification
is easy

• Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.

– DI class (built out of basic gates) is almost empty

• Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).

– In practice it is the same as speed independent

BD

SI  QDI

DI

37

Control Logic

• Control specification based on Petri
nets (Signal Transition graphs)

Control specification

A+

B+

A-

B-

A

B

A input

B output

Timing DiagramSignal Transition Graph

(STG)

Control specification

A+

B+

A-

B-

A B

Control specification

A+

B-

A-

B+

A B

Control specification

A+

C-

A-

C+
A

C

B+

B- B

CC

Control specification

A+

C-

A-

C+

B+

B-

CCC

A

B

VME bus example using Petri nets

Device

LDS

LDTACK

D

DSr

DSw

DTACK

VME Bus
Controller

Data

Transceiver

Bus
DSr

LDS

LDTACK

D

DTACK

Read Cycle

STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller

Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-

Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

Workcraft tool

• Workcraft is a software package for graphical edit, analysis,
synthesis and visualisation of asynchronous circuit behaviour

• Petrify plus a few other tools are part of it as plug-ins

• It is based in Java tools

• Can be downloaded from
http://workcraft.org/wiki/doku.php?id=download

• And installed in 10 minutes.

• There is a simple to use tutorial for that

Some references
• General Async Design: J. Sparsø and S.B. Furber, editors. Principles of

Asynchronous Circuit Design, Kluwer Academic Publishers, 2001. (electronic

version of a tutorial based on this book can be found on:

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.p

df

• Async Control Synthesis: J. Cortadella, M. Kishinevsky, A. Kondratyev,

L. Lavagno, and A. Yakovlev. Logic Synthesis of Asynchronous Controllers

and Interfaces. Springer-Verlag, 2002. (Petrify software can be downloaded

from: http://www.lsi.upc.edu/~jordicf/petrify/)

• Arbiters and Synchronizers: D.J. Kinniment, Synchronization and

Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on arbitration

and synchronization from ASYNC/NOCS 2008 can be found:

http://async.org.uk/async2008/async-nocs-slides/Tutorial-Monday/Kinniment-

ASYNC-2008-Tutorial.pdf)

• Asynchronous on-chip interconnect: John Bainbridge, Asynchronous

System-on-Chip Interconnect, BCS Distinguished Dissertations, Springer-

Verlag, 2002 (electronic version of the PhD thesis can be found on:

http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbridge00_phd.php)

49

Asynchronous Control Logic

Synthesis from STGs: Basics

x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x

y

z

xyz-example: Specification

x

y

z

x+

x-

y+

y-

z+

z-

Token flow

x+

x-

y+

y-

z+

z-

xyz

000
x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph

x z x y  ()

y z x 

z x y z  

Next-state functions

xyz

000
x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

x

z

y

Complex Gate netlist

x z x y  ()

y z x 

z x y z  

Circuit synthesis

• Goal:

– Derive a hazard-free circuit
under a given delay model and
mode of operation

Speed independence

• Delay model

– Unbounded gate / environment delays

– Certain wire delays shorter than certain paths in the
circuit

• Conditions for implementability:

– Consistency

– Complete State Coding

– Output-Persistency

Implementability conditions

• Consistency

– Rising and falling transitions of each signal alternate in
any trace

• Complete state coding (CSC)

– Next-state functions correctly defined

• Output-Persistency

– No event can be disabled by another event (unless they
are both inputs)

Implementability conditions

• Consistency + CSC + output-persistency

• There exists a speed-independent circuit that implements
the behavior of the STG

(under the assumption that ay Boolean function can
be implemented with one complex gate)

Persistency

100 000 001
a- c+

b+ b+

a

c
b

a

c

b

is this a pulse ?

Speed independence  glitch-free output behaviour under any delay

Complete State Coding (CSC)

Conflict Resolution

Example: VME Bus Controller

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+

Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr-dtack+d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

Idea: Insert csc+ into the core and csc- outside the core to break
the balance

Note: Cannot delay inputs!

Conflict core

Example: Resolving the conflict

lds-d- ldtack- ldtack+

dsr- dtack+ d+

dtack- dsr+ lds+csc+

csc-

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

001000

ldtack- ldtack- ldtack-

000000 100000

lds- lds- lds-

011000 010000 110000

lds+

ldtack+

d+

dtack+dsr-

d-

011100 010100 110100

011111 111111 110111

110101

100101

011110

csc+

csc-

100001

M’’ M’

Core map

Core1
Core2 A1

A2
A3

Core3

• Cores often overlap

• High-density areas are good candidates for signal
insertion

• Analogy with topographic maps

csc-

Example: core map

csc+

Concurrency reduction

Introduces a new arc in the STG: a  b

Note: Must not delay inputs, i.e. b cannot be an input!

Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.g. if there is an
arc a+  b+ then a-  b- is preferred

Used for resolving CSC conflicts and circuit simplification

‘Drag’ some events into the core to break the balance:

Example: Resolving the conflict

lds-

d-

ldtack-

ldtack+ dsr-dtack+d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

May be problematic!

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

Relative timing assumptions
• “This event will happen faster than that one”

• Break speed-independence, and generally problematic

• Similar to concurrency reductions, but the introduced arcs are
special, in particular they don’t trigger signals

• Can “delay” inputs

lds-

d-

ldtack-

ldtack+ dsr-dtack+d+

dtack-

dsr+ lds+ lds+

dsr+

Code(conf’)=10110 Code(conf’’)=10110

Example: Resolving the conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

Comparison of the methods
• Signal insertions – paracetamol

  behaviour is preserved

  inserted signals have to be implemented

• Concurrency reductions – antibiotic

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  change the behaviour: need to be careful if input  output (even indirectly) –
this puts a new assumption on the environment!

  can introduce deadlocks: Circuit: a b & Environment: b  a

• Timing assumptions – surgery

  no new signals

  reduced state graph and so more don’t-cares in minimisation tables

  break speed-independence

  require deep understanding of theory and the circuit’s behaviour

  introduce layout constraints, and need extensive validation

  fragile due to variability (manufacturing, temperature, voltage, etc.)

Formal Verification of

Asynchronous Circuits

TWO kinds of verification

1. Verification of the STG specification

– there is no circuit yet, just an STG specification

– check if the STG makes sense

– check if the STG can be implemented as an SI circuit

2. Verification of the circuit

– given a gate-level implementation of a circuit and
an STG modelling the behaviour of the
environment, check if the circuit is correct

Verification of STG specification

Standard PN properties:

• boundedness / safeness – a digital circuit has finitely
many reachable states

• deadlock-freeness

• various custom reachability properties, e.g. mutual
exclusion

Verification of STG specification

Consistency: in each execution, the rising and falling
edges of each signal must alternate, always starting from
the same edge – reduces to a reachability property

Intuition: at any reachable state the value of each signal
is binary

Verification of STG specification
Output-persistency: an enabled output must not be disabled by
another signal firing first

Intuition: disabling and enabled output can lead to a non-digital
pulse on the corresponding gate output

input / input choices: no OP violation, usually appear due to
abstraction of the environment

input / output choices: OP violation, very problematic –
usually a mistake

output / output choices: OP violation,
usually due to arbitration;
implementable using a mutex – can be
‘factored out’ into the environment to
ensure OP

Verification of STG specification
Complete State Coding (CSC): If two reachable states have the
same values of all signals then they should enable the same
outputs; two states violating this property are said to be in CSC
conflict

Intuition: the circuit can only ‘see’ the signal values (not the
tokens in the STG!), and these should be sufficient to determine
which outputs to produce

Implementability property – CSC conflicts do not indicate that the
STG is wrong; they can be resolved automatically

Example: CSC conflict

dtack- dsr+

dtack- dsr+

dtack- dsr+

00100

ldtack- ldtack- ldtack-

00000

10000

lds- lds- lds-

01100 01000 11000

lds+

ldtack+

d+

dtack+dsr-
d-

01110 01010 11010

01111 11111 11011

11010

10010

M’’ M’

Verification of the circuit
Converting a gate-level circuit to an STG:
• Represent each signal s by two places, ps=0 and ps=1; exactly one

of them is marked at any time, representing the current value of s

• Since there is no information about the environment’s behaviour,
it is taken to be the most general (i.e., it can always change the
value of any input); this is modelled for each input signal i by
adding transitions pi=0i+pi=1 and pi=1i−pi=0

• For each output o with the next-state function [o]=E, compute
the set and reset functions [o]=E|o=0 and [o]=E|o=1 as
minimised DNF

• For each term m of the set function, add a transition po=0o+
po=1, and for each literal s (resp. s) in m, connect o+ to ps=1
(resp. ps=0) by a read arc; a similar process is used to define the
transitions o− using the reset function

Example: modelling a C-element

• This PN has more behaviour than the
specification of C-element

• Not output-persistent: after in1+ in2+ the
output out+ can be disabled by in1- or
in2-, i.e. there is a hazard

• This is because the circuit (and thus this
STG) lacks information about the
environment’s behaviour!

• The circuit works correctly in an
environment that fulfils the original
contract

[out] = out·(in1 + in2) + in1·in2
[out] = 0·(in1 + in2) + in1·in2 = in1·in2
[out] = (1·(in1 + in2) + in1·in2) =
(in1 + in2 + in1·in2) = (in1 + in2) =
in1·in2

Gate-level modelling: Verification
Gate-level circuit has no information about its
environment, so naïve verification will always reveal
hazards in any non-trivial circuit with inputs. Hence
need to supply the environment’s behaviour during
verification: Assuming the environment fulfils the
contract, the circuit must:
• be free from hazards: no output can be disabled by another

signal (except in mutex)

• conform to its environment, i.e. never produce an unexpected
output – the circuit must fulfil its contract too

• be deadlock-free

• etc.

Gate-level modelling: Verification
Problem: how to restrict the behaviour of the circuit by the
behaviour of the environment to verify the properties?

Idea: use parallel composition! First, convert the circuit into an
STG and then compose the latter with the mirror (i.e. inputs and
outputs are swapped) of the original STG spec:

|

mirror

Parallel composition
• Idea: Fuse transitions from different STGs that have the same

label (if STGs have several transitions with the same label, fuse
each such transition in STG1 with each such transition in STG2)

• Example:

| =

Example: C-element
Can a C-element be implemented by the following circuits?

long wire

isochronic fork

fork

Under the Bonnet of Workcraft

PUNF – parallel unfolder

• Tool for building Petri net unfoldings

• Utilises multiple processor cores

• Unfoldings alleviate the state space explosion
problem – the number of reachable states is
generally exponential in the size of the
specification

• Works very well for asynchronous circuits due to
high concurrency and small number of choices –
an ideal case for unfoldings

MPSAT – verification and synthesis

• Uses PUNF-generated prefixes as an input –
completely avoids state graph

• Employs a SAT solver for efficiency

• Verifies many relevant properties, like deadlocks,
CSC, etc.

• Supports REACH – a language to specify custom
properties

• Synthesis: CSC resolution, deriving complex-gate,
gC, stdC implementations, logic decomposition

PCOMP – parallel composition

• Composes several STGs, optionally hiding the
internal communication, e.g.:

– to compose several modules into one

– to compose a circuit with its environment for
verification

Logic Synthesis and

Implementation Styles in

Asynchronous Circuits Design

Speed-independence assumptions

• Gates/latches are atomic (so no internal hazards)

• Gate delays are positive and finite, but variable and
unbounded

• Wire delays are negligible (SI)

• Alternatively, [some] wire forks are isochronic (QDI), i.e.
wire delays can be added to gate delays

F
instant

evaluator

delay

…

SI decomposition

G

…

H1

Hk

…
…

delay

delay

delay

F
instant

evaluator

delay

…

Hazards can be introduced
due to these delays!

Gates & latches

• Good citizens: unate gates/latches, e.g. BUFFER, AND,
OR, NAND, NOR, AND-OR, OR-AND, C-element, SR-
latch, RS-latch

– Output inverters (‘bubbles’) can be used liberally,
e.g. NAND, NOR, as the invertor’s delay can be
added to the gate’s delay

– Input inverters are suspect as they introduce
delays, but in practice are ok if the wire between
the inverter and the gate is short

• Suspects: binate gates, e.g. XOR, NXOR, MUX, D-latch
– may have internal hazards, but may still be useful

Logic synthesis

• Encoding (CSC) conflicts must be resolved first

• Several kinds of implementation can then be derived
automatically:

– complex-gate (CG)

– generalised C-element (gC)

– standard-C implementation (stdC)

• Can mix implementation styles on per-signal basis

• Logic decomposition may still be required if the gates
are too complex

Example: complex-gate synthesis
Code Nxtc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
1
0
0
1
1
1
-

Eqn (a+c)b+d¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

)()()(sOutsCodesNxt zzz 
a
b

(a+c)b+d¯ cd

The size of this Boolean expression
is not limited!

Support, triggers and context
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

a
b (a+c)b+d¯ cd

Signals that are the inputs of
the gate producing a signal
form its support, e.g. the
support of c is {a,b,c,d}.
Supports are not unique in
general.

Signals whose occurrence can
immediately enable a signal are
called its triggers, e.g. the
triggers of c are {b,d}. Triggers
are unique, and are always in
the support.

Signals in the support which are
not triggers are called the context,
e.g. the context of c is {a,c}.
Context is not unique in general.

support = triggers + context

Example: gC implementation
Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

Eqn ab+d b¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101









































otherwise

1)(if0

1)(if1

)(

otherwise

0)(if0

1)(if1

)(sNxt

sOut

sResetsNxt

sOut

sSet z

z

zz

z

z

a
b
d

ab+d¯

cС

b b

+

–
Implemented as pull-up and pull-down networks of transistors
and a ‘keeper’; assumed to be atomic

Example: stdC implementation
b+ a+

b-

d- c+

0100

c+ c- b+

0000

1000

a- d+

0110
0010

1100

1110 1111 1101

Code Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

1
0
0
-
0
0
-
-
1
-

0
-
-
0
1
-
0
0
0
-

‘Monotonic cover’

constraints

Eqn abc+d b̄¯

b b

cС

a
b
d

ab+d¯

hazard due to a
new delay ¯

b b

cС

a
b
d

abc+d¯ ¯

Logic Decomposition

• Often complex-gates are too complex to be mapped to a gate
library, and so logic decomposition is required

• Cannot naïvely break up complex-gates – this is likely to
introduce hazards (at least, timing assumptions are required)

• Decomposition is one of the most difficult tasks – no
guarantee that automatic decomposition will succeed

• Manual changes in the STG may be required:

– identify the most complex gates

– try some concurrency reductions

– try to decompose your circuit into smaller blocks

– ‘be creative’

Design examples:

SRAM, buck, ADC
Andrey Mokhov, Alex Yakovlev

Danil Sokolov, Victor Khomenko

Newcastle University, UK
async.org.uk; workcraft.org

Bit cell

Conventional 6T SRAM

Reading: precharge bit lines, assert WL, sense bit line changes

Write driverBit cell

Conventional 6T SRAM

Writing: set data lines, assert WL and WE, wait for a while…

Problem: how long to wait?

SRAM 6T cell delays are difficult to match accurately

– When Vdd = 1V, SRAM read delay is ≈50 inverters

– When Vdd = 190mV, SRAM read delay is ≈158 inverters

– Read and write delays scale differently with Vdd

Conventional solutions

– Use different delay lines for different ranges of Vdd

– Duplicate an SRAM line to act as a reference delay line

– Need voltage references, costly in area and energy

Asynchronous solution with completion detection

– Speed-independent, free from voltage references

– Developed by A. Baz et al. (PATMOS 2010, JOLPE 2011)

Problem: how long to wait?

Bit cell with CDBit cell

Low-level completion detection

True completion detection both for reading and writing

Too costly!

Write driverBit cell

Back to conventional 6T SRAM

Idea 1: completion detection is possible when the bit is flipped

Idea 2: read before writing to check if the bit will be flipped

Specification: read scenario

Specification: write scenario

Read Write

Specification: composing scenarios

Asynchronous SRAM controller

We will design a provably correct implementation in Part II

Hand made, hence not guaranteed to be speed-independent

Tolerating variable voltage supply

Tolerating variable voltage supply

Low voltage, slow response High voltage, fast response

Trading energy for performance

Specification: read scenario

Modelling bit line signals B0 and B1

Adding bit line signals to read scenario

First step: how do we

implement bit_lines_11?

Adding bit line signals to read scenario

Next step: implement

bit_lines_01_or_10?

Adding bit line signals to read scenario

Not done: bit line signals

may change when Rr=0

Memory is inherently asynchronous

– Read & write completion can be reliably detected

– Conventional synchronous ‘handcuffs’ (matching
delay lines) are clumsy and costly

Typical ‘little digital’ control, fully supported by

Workcraft design, synthesis and verification flow

Ongoing and future work – you can contribute!

– Integrate asynchronous SRAM into a real system

– Opportunity for new memory architectures

Summary

Multiphase Buck Converter

Motivation

A2D D2A

IP cores (big digital)

level shifters

sensorssynchronisers

sanitisers

power
converters

control for analog layer (little digital)

slow fast local

infrastructure

digital

analog

sensor/timing/energy

time bands

Legend:

design automation
scope for

• Analog and digital electronics are becoming more intertwined

• Analog domain becomes more complex and itself needs digital control

Power electronics context

• Efficient implementation of power converters is paramount

• Extending the battery life of mobile gadgets
• Reducing the energy bill for PCs and data centres

(5% and 3% of global electricity production respectively)

• Need for responsive and reliable control circuitry

• Millions of control decisions per second for years
• An incorrect decision may permanently damage the circuit

• Need for EDA (little digital vs big digital design flow)

• RTL flow is optimised for synchronous data processing
• Ad hoc asynchronous solutions are prone to errors

and cannot be verified

Synchronous vs asynchronous control

• Synchronous control

Conventional RTL design flow

Slow response (defined by the clock period)

Power consumed even when idle

Non-negligible probability of a synchronisation failure

• Asynchronous control

Prompt response (delay of few gates)

No dynamic power consumption when inactive

Non-conventional methodology and tool support

Basic buck converter

V_nmos

V_pmos

I_0

R
_
lo

a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

zc

gn_ack

gp

gn

over-current

zero-crossing

analog
buck

digital
control

V_refunder-voltage Operating modes

• Under-voltage (UV)
• Over-current (OC)
• Zero-crossing (ZC)

UV UV OC

I_max

current no ZC late ZC

OC

early ZC

PMOS OFF

ZC

PM
O
S O

FF

N
M
O
S O

N

NMOS OFF

ZC

NM
O
S O

FF

PM
O
S

O
N

N
M
O
S

O
FF

N
M
O
S O

N

PM
O
S O

FF

PM
O
S O

N

UV OC

timeN
M
O
S

O
FF

PM
O
S

O
N

I_0

Synchronous design

. module control (clk, nrst, oc, uv, zc, gp_ack, gn_ack, gp, gn);

. input clk, nrst, uv, oc, zc, gp_ack, gn_ack;

. output reg gp, gn;

. always @(posedge clk or negedge nrst) begin

. if (nrst == 0) begin

. gp <= 0; gn <= 1;

. end else case ({gp_ack, gn_ack})

. 2’b00: if (uv == 1) gp <= 1;

. else if (oc == 1) gn <= 1;

. 2’b10: if (oc == 1) gp <= 0;

. 2’b01: if (uv == 1 || zc == 1) gn <= 0;

. endcase

. end

. endmodule

.

RB

CK

D Q

SB

CK

D Q gn

gp

gp_ack

oc

gn_ack

uv

zc

nrst

clk

• If clock is slow, the control is unresponsive to the buck changes

• If clock is fast, it burns energy when the buck is inactive

Asynchronous design

• STG specification

• Speed-independent implementation

Multiphase buck converter

R
_
lo

a
d

V_nmos

V_pmos

V_nmos

V_pmos

analog
buck

PMOS

NMOS

PMOS[N]

NMOS[N]

digital

oc

zc

ocN

uv

zcN

gn_ackN

gn_ack

gp

gp_ack

gn

gp_ackN

gpN

gnN

hl

over-current

I_0 (I_neg)

I_max (I_0)

I_max (I_0)

I_0 (I_neg)

V_ref

zero-crossing

under-voltage

V_minhigh-load

V_maxover-voltage

ov
b
a
s
ic

 c
o
n
v
e
rt

e
r

control

m
u
lt

ip
h
a
s
e
 c

o
n
v
e
rt

e
r

• Activation of phases

• Sequential
• May overlap

• More operating modes

• High-load (HL)
• Over-voltage (OV)

• Transistor min ON times

• PMIN for PMOS
• NMIN for NMOS
• PMIN+PEXT for

PMOS at first cycle

Synchronous design

• Two clocks: phase activation (slow) and sampling (fast)
• Conventional RTL design flow for phase control
• Need for multiple synchronizers (grey boxes)

Asynchronous design

• Token ring architecture, no need for phase activation clock
• No need for synchronisers
• A4A design flow for phase control

A4A design flow

informal design intent

(waveforms, phase diagrams)

architectural decomposition

and component formalisation

formal specification of components

(signal transition graph)

logic synthesis & technology mapping

(Petrify, Punf, MPSat)

verification report

(violation traces)

reachability report

(hazard traces)

signoff report

(timing violations)

speed-independent components

(Verilog netlist)

system integration

(Workcraft)

little digital asynchronous controller

(Verilog netlist)

sanity check

(Punf, MPSat)

functional verification

(PComp, Punf, MPSat)

design concepts

timing verification

(PrimeTime)

gate library

A2A interfaces

specification and synthesis verification

and validation

libraries and

design guidelines

manual effort

offline testing features

and place & route

conventional
design flow

A2A components

• Interface analog world of dirty signals

• Provide hazard-free sanitised digital signals

• Basic A2A components

• WAIT / WAIT0 – wait for analog input to become high / low and

latch it until explicit release signal

• RWAIT / RWAIT0 – modification of WAIT / WAIT0 with a possibility

to persistently cancel the waiting request

• WAIT01 / WAIT10 – wait for a rising / falling edge

• Advanced A2A components

• WAIT2 – combination of WAIT and WAIT0 to wait for high and low

input values, one after the other.

• WAITX – arbitrate between two non-persistent analog inputs

• WAITX2 – behaves as WAITX in the rising phase and
as WAIT0 in the falling phase

WAIT element

• Interface • STG specification

• ME-based solution • Gate-level implementation

can be removed

Asynchronous phase control

Design of asynchronous components

• Token control

• STG specification

• Speed-independent implementation

Simulation setup

• Verilog-A model of the 4-phase buck

• Control implemented in TSMC 90nm

• AMS simulation in CADENCE NC-VERILOG

• Synchronous design

• Phase activation clock – 5MHz

• Clocked FSM-based control – 100MHz, 333MHz, 666MHz, 1GHz

• Sampling and synchronisation

• Asynchronous design

• Phase activation – token ring with 200ns timer (= 5MHz)

• Event-driven control (input-output mode)

• Waiting rather than sampling (A2A components)

Simulation waveforms
sy

nc
hr

on
ou

s 0.43V

0 1 2 3 4 5 6 7 8 9 10

phase_clk

fsm_clk

V_load (V)

hl

uv

ov

act

TIME (s)

3

2

1

0

3.3V

I_coil (A) 0

0.2

0.1

-0.1

0.24A

startup normal load high load normal load

p
h
a
s
e

as
yn

ch
ro

xn
ou

s

I_coil (A) 0

0.2

0.1

-0.1

0.21A

V_load (V)

hl

uv

ov

get & !pass

3

2

1

0

3.3V

startup normal load high load normal load

0.36V

p
h
a
s
e

Reaction time

Controller HL UV OV OC ZC

(ns) (ns) (ns) (ns) (ns)

100MHz 25.00 25.00 25.00 25.00 25.00

333MHz 7.50 7.50 7.50 7.50 7.50

666MHz 3.75 3.75 3.75 3.75 3.75

1GHz 2.50 2.50 2.50 2.50 2.50

ASYNC 1.87 1.02 1.18 0.75 0.31

Improvement
over 333MHz

4x 7x 6x 10x 24x

Peak current

3.1

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700 100MHz

333MHz

666MHz

1GHz

ASYNC

Coil inductance (H)

P
e

a
k
 c

u
rr

e
n

t
(m

A
)

Conclusions

• Design flow is automated to large extent

• Library of A2A components
• Automatic logic synthesis
• Formal verification at the STG and circuit levels

• Benefits of asynchronous multiphase buck controller

• Reliable, no synchronisation failures
• Quick response time (few gate delays)
• Reaction time can be traded off for smaller coils
• Lower voltage ripple and peak current

Asynchronous ADC

Sampling schemes

• Synchronous

ADC

Ts

• Asynchronous

AADC

A. Ogweno, P. Degenaar, V. Khomenko and A. Yakovlev: “A fixed window level crossing ADC with
activity dependent power dissipation” , accepted for NEWCAS-2016.

ADC design

Vin
Vramp

rise

Vpulse

fall

Vchange

refn

refp

refm

t2 t3 t4 t5 t6t1

Asynchronous controller

• STG specification • Speed-independent implementation

outn-

outp- req+

req+

outp+

outn+

req-

req-

ack-

ack+

ack-

p1 p2 p3

ack

ack

req

outn

outp

req

r � � � t

ramp_en

Vpulse

http://workcraft.org/

What is WORKCRAFT?

• Framework for interpreted graph models

• Interoperability between different abstraction levels
• Consistency for users; convenience for developers

• Elaborate graphical user interface

• Visual editing, analysis, and simulation
• Easy access to common operations
• Possibility to script specialised actions

• Interface to back-end tools for synthesis and verification

• Reuse of established theory and tools (PETRIFY, MPSAT, PUNF)
• Command log for debugging and scripting

Why to use WORKCRAFT?

• Availability

• Open-source front-end and plugins
• Permissive freeware licenses for back-end tools
• Frequent releases (4-6 per year)
• Specialised tutorials and online training materials

• Extendibility

• Plugins for new formalisms
• Import, export and converter plugins
• Interface to back-end tools

• Usability

• Elaborated GUI developed with much user feedback

• Portability

• Distributions for Windows, Linux, and OS X

Supported graph models

Conditional Partial

Order Graph

Digital Circuit

Dataflow Structure

xMAS Circuit

lossless translation lossy translation synthesis

Directed Graph

Finate State

Machine

Finate State

Transducer

Signal Transition

Graph
Petri Net

Structured

Occurrence Net

Policy Net

Digital Timing

Diagram

abstract behaviour signal semantics structural information

Supported features

Design flow

• Import: ASTG, Verilog
• Export: ASTG, Verilog, SVG/Dot/PDF/EPS
• Convert: synthesis or translation
• Verify: reachability analysis (REACH predicates, SVA-like invariants)
• Visualise: CSC conflict cores, circuit initialisation, bottleneck

Design flow: Asynchronous circuits

1. Specification of desired circuit behaviour with an STG model

2. Verification of the STG model

(a) Standard implementability properties:
consistency, deadlock freeness, output persistency

(b) Design–specific custom properties

3. Resolution of complete state coding (CSC) conflicts

4. Circuit synthesis in one of the supported design styles

5. Manual tweaking and optimisation of the circuit

6. Verification of circuit against the initial specification

(a) Synthesis tools are complicated and may have bugs
(b) Manual editing is error-prone

7. Exporting the circuit as a Verilog netlist for conventional EDA backend

What is hidden from the user?

Verification that the circuit conforms to its specification

1. Circuit is converted to an equivalent STG – circuit STG

2. Internal signal transitions in the environment STG (contract between

the circuit and its environment) are replaced by dummies

3. Circuit STG and environment STG are composed by PCOMP

back-end

4. Conformation property is expressed in REACH language

5. Composed STG is unfolded by calling PUNF back-end

6. Unfolding prefix and REACH expression are passed to MPSAT

back-end

7. Verification results are parsed by the front-end

8. Violation trace is projected to the circuit for simulation and debugging

Circuit Petri nets as assembly language

Circuit Petri nets: Dataflow pipelines

WORKCRAFT live demo

Circuit Petri nets: xMAS circuits

A Workflow for the Design of Mixed-signal
Systems with Asynchronous Control

Vladimir Dubikhin, Danil Sokolov, Alex Yakovlev, Chris J. Myers

AMS Trends & Challenges

• Tighter reliability margins

• Concurrent analog and digital analysis

• Short development cycle

Challenges

• Technology scaling

• Multiple power and time domains

• Analog and digital integration

Trends

• Internet of Things

• Mobile computing

• Automotive electronics

Key Drivers

Based on slide from DAC2014 by ANSYS

What this means for AMS?

Based on slide from ISQED2013 by Mentor Graphics

● Achieving better verification of analog
and digital blocks

• Verifying the increasing amount of digital
logic in analog designs

• Creating a higher level of abstraction for
analog and mixed signal blocks

• Automating the manual custom design
steps

• Adopting circuit analytics that tell why
and where the circuit is failing to perform

Why Asynchronous Logic?

• Insensitive to delays
• Robust to process-voltage-temperature
• Average case performance
• Low power consumption and EMI

Why Asynchronous Logic?

• Insensitive to delays
• Robust to process-voltage-temperature
• Average case performance
• Low power consumption and EMI
• Incompatible with commercial EDA tools

Workcraft

● Modeling with signal transition graphs (STG)
● Formal verification of STG models
● Logic synthesis of asynchronous circuits

Available at http://workcraft.org/

Why Formal Verification?

• Increased robustness of the system
• Abstract modeling
• Reduced need for conventional simulation

Why Formal Verification?

• Increased robustness of the system
• Abstract modeling
• Reduced need for conventional simulation
• Limited tool support

LEMA

● Modeling with labeled Petri nets(LPN)
● Automatic model generation
● Property expression and checking
● Model extraction as SystemVerilog netlist

Available at http://async.ece.utah.edu/LEMA/

LEMA Tool Flow

Labeled Petri Nets (LPNs)

• Composed of a Petri net and
labels operating on continuous
variables and Boolean signals.

• Label types are:
– Enablings
– Delay bounds
– Boolean assignments
– Value assignments
– Rate assignments

LPN Model Generation

• Build abstract models of the circuit using:
– Simulation traces.
– Thresholds on the design variables.
– A property to verify.

1. Assign data
to bins

2. Generate rates
for binned data

3. Detect discrete
multi-valued

variables

4. Generate
model

Switched Capacitor
Integrator Circuit

Simulation Trace

Data Binning

• Each data point is assigned a bin based upon thresholds.
• Each bin represents an operating region of the system.

Data Binning

Data Binning

Data Binning

Data Binning

Rate Calculation

• Rates are calculated for each eligible data point in each bin.
• Low pass filtering smooths edge effects and transitory pulses.
• Minimum and maximum rates are tabulated for each bin.

(−652−−1000)/(15.0−0.51)=23.93mV /μs

V out 00
, =[23,24]

Rate Calculation

(−608−−913)/(18.0−3.52)=21.06mV /μs

V out 00
, =[21,24]

Rate Calculation

No rate calculated.

V out00
, =[19,24]

Rate Calculation

Final rate calculations after C2=27pF .

V out00
, =[17,24]

Rate Calculation

DMV Variables

• Stable signals are handled differently to aid
efficiency.

• Stability is determined by:
– Remaining constant within an epsilon

value for a specified time.
– Total percent of the entire signal marked

stable.
• Delay is calculated for each constant value.
• Min/max delay and constant values are

extracted.

Generating an LPN

Initial values={V out=−1000mV ,V in=−1000mV , fail=F} ; Initial rates={V in
, =0,V out00

, =[17,24]}

Property Language
• delay(d) - wait for d time units.
• wait(b) - wait until boolean expression, b, becomes

true.
• waitPosedge(b) - wait for a positive edge on b.
• wait(b, d) - wait at most d time units for b to become

true.
• assert(b, d) - ensure that b remains true for d time

units.
• assertUntil(b1, b2) - ensure that b1 remains true

until b2 is true.
• if-else - statement for selections.
• always(conditionsList){statements} - continue to

execute statements until one of the signals in the list
of variables condistionsList changes, then break out.

LEMA DEMO

C-element Example

R1C1? R2C2

R1C1<R2C2

C-element Example

R1C1<R2C2

C-element Example

R1C1<R2C2

C-element Example

AMS verification workflow

Buck converter

control

Th_nmos

Th_pmos

buck

V_ref

R
_l

o
a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

gn_ack

gp

gn

over-current (oc)

under-voltage (uv)

Model generation example

gp_ack = false
gp = false
gp_gate = 10000
gp_gate_rate = 0

Initial conditions:
gp_gate_rate

gp_gate_rate

gp_gate_rate

gp_gate_rate gp_gate_rate

gp_gate_rate

0

1

gp

0

1
gp

_a
ck

0

5

10

1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235

P
M

O
S

vo
lta

ge

V

ns

Optimized specification
● Concurrency reduction

● Scenario elimination

Verification challenges

• Modules partitioning – trade-off between
model’s accuracy and verification speed

• False positives – dealing with verification false fail
states due to overapporximation

• Properties expression – models properties
expressed via non-standard language

