Newcastle TH FU

Q) Lniversity UNI \{J ETF;S F[l TY

Design Automation for
Analog-Mixed Signal Circuits
with Asynchronous Control

Vladimir Dubikhin(*), Victor Khomenko (*),
Andrey Mokhov(*), Chris Myers (**),
Danil Sokolov(*), Alex Yakovlev (*)

(¥)Newcastle University, UK
(**)The University of Utah, USA
Contact: Alex.Yakovlev@ncl.ac.uk
async.org.uk; workcraft.org

 |Introduction:

— :c\lllotivation, Challenges, Shortcomings of commercial
OWS

* Part 1. A4A: Asynchronous design for analogue electronics
— Basics of asynchronous design

— Desiﬁn flow for A4A: formal specification, circuit
synthesis, verification

— Examples: multiphase buck, SRAM, ADC
<Break>
* Part 2. AMS design with asynchronous control
— Analogue verification with LEMA
— Co-optimization flow: Workcraft and LEMA
— Examples: C-element, Buck
* Part 3. Workcraft tools demo
* Discussion

* Analog and Mixed Signal (AMS) design becomes
more complex:

* More functionality
* Move to deep submicron after all!

— According to Andrew Talbot from Intel, recently
speaking at the AMS workshop at RAL, “transistors
are very fast switches, netlists are huge, parasitics
are phenomenally difficult to estimate, passives
don’t follow Moore’s law, reliability is a brand new
landscape”

Emergence of “little digital”

IP core |P core

conventional (big digital) (big digital)
RTL synthesis -

—™ ADC ,EEFISDF_. _SEHSDF_. * DAC [—*

] S
analogue 1 level shifters/ | ° ¥
synchronisers
i poWer power
components v e _power
: r . i
W W

ad hoc | - ' - ——
control for analogue layer (little digital
manual design / ogue layer (gital)
L]

requires formalisation and design automation
..
digital analogue | Imelenargy A4l scope
| Infrastructure ;

* There is a strong drive for having more digital parts in AMS
* Analog and digital are often intertwined
* Asynchronous design appears good for little digital

—> A4A project (EPSRC, Dialog supports)

Motivation: power electronics context

* Efficient implementation of power converters is
paramount

— Extending battery life for mobile gadgets

— Reducing energy bill for PCs and data centres (5%
and 3% of global electricity production,
respectively)

* Need for responsive and reliable control circuits —
little digital

— Millions of control decisions per second for years

— A wrong decision may permanently damage the
circuit

Motivation: EDA support is a challenge

* Poor EDA support

— Mostly supports flow from schematic capture;
lacks flow from behavioural capture

— Synthesis from behavioural (RTL) is optimized for
data processing logic and supports only
synchronous — big digital

— Manual and ad hoc solutions are prone to errors
and hard to verify (weeks of simulations)

* Big challenge is EDA for asynchronous (hence our
A4A project)

 What do the Industrial gurus say?

Industry quotes

e “..analog has to budget five or six respins. Silicon has become
the validation vehicle for analog, and that’s a problem.”

Sandipan Bhanot, CEO of Knowlent

* “If the digital designers did verification the way analog
designers do verification, no chip would ever tape out.”

Sandipan Bhanot, CEO of Knowlent

e “..problems are being solved because we have very good
analog engineers. But in the future, if we want to improve
time-to-market we will have to improve the tools.”

James Lin, VP at National Semiconductor
(Source “Why is analog so difficult?” — DACezine, January 2008)

Analog design in digital context is hard

 If digital parts don’t use clock, they are normally
designed by hand and require massive simulations:

— E.g. analogue designers cannot afford simulating
power converters from start-up; Instead they
force it into known state

— More specifically: 50 us of Spectre simulation
time takes approx. 10 hours using 8 CPU cores

— Hence they can only verify cherry-picked corners
of digital functionality

(from Dialog Semiconductor, 2016)

Intel’s advice on AMS Design

Intel’s advice:

= Partition the Design to separate Analog and Digital
— Give digital circuits to digital tools
— Give analog circuits to analog tools

— Do not pollute the hierarchy with logic gates or analog components!

(Source: Intel’s talk about Holistic AMS design in Ultra-DSM at
the May 2016 NMI event on AMS)

But, how?

We must use Behavioural capture and drive
verification from behavioural domain!

View from Synopsys

Analysis and Debug

Data mining

DeSign Data Brgirmpon - /[Statistical charts]
Testbench Setup , :

Simulation
Management

-

.

e e = 2 e) o [o, i s S > :
:‘. . g e 1o 2431 14 M4 008 > - gt . 5 *
LS = bl S L :
T — I I = e — S f 0|
e ;‘"":' = ey |33 : L7 3 e aer }1”
c\ti\\ \i\
- il
/i)
. ~ yd /
[Multi-parameter charts - 7 -

Comprehensive data mining with advanced

statistical and multi-parameter charting

Source: Damian Roberts, AMS Workshop, RAL, April 2016

Towards Async Design for Analog

* Asynchronous design offers many advantages for AMS
control

Challenges:

— It requires behavioural capture and synthesis but
commercial EDA tools don’t support it

— Verification of asynchronous designs as part of AMS

— How to provide non-invasiveness with existing
design practices — we need to work with SVA and
SPICE simulation traces

Buck example

over-current (oc)

101 _max
N
S|—=Thpemos | ________
™ i T | buck!
- 1
control l l
|
gp_ack gp[—* . [i
1 1
L ' PMOS :
R R e -
—| ¢ ' NMOS | o
gn_ack gn —»[> » H: m— |:|E
‘ | Te
| 1
/1 l = =

“J+—CTh _nmos

zero-crossing (zc) \N+«—V_0

e e,
under-voltage (uv) N+—oV_ref

STG Specification of buck controller

Synchronous design

» Iwo clocks: phase activation (~5MHz) and sampling (~100MHz)

© Easy to design (RTL synthesis flow)

@ Response time is of the order of clock period

@ Power consumed even when idle

@ Non-negligible probability of a synchronisation failure

» Manual ad hoc design to alleviate the disadvantages
@ Verification by exhaustive simulation

Asynchronous design

Event-driven control decisions
© Prompt response (a delay of few gates)

© No dynamic power consumption when the buck is inactive

© Other well known advantages
@ Insufficient methodology and tool support

Our goals

Formal specification of power control behaviour

Reuse of existing synthesis methods

Formal verification of the obtained circuits

Demonstrate new advantages for power regulation

(power efficiency, smaller coils, ripple and transient response)

Simulation results

10,0010 a0 40,0000

I T R TR TR ..LLl.l.Ll.l.J.ilJ.J.Jl.lJ.JLl.lll.l.l.J.J.l.J.J.l..ll.lt.l.ll..l.Ll.l.l.ill.l.Jl.lJ.JLLlJl.l

== v
=+ =
i STAGE3

— -l o Blow

ol -

LA LEEOETT YR LI I UL LA EHPEP TN EDErLd
TLTLTLTL AT LT I A A A Ay I

%
>
o
-
O

<
O
-
=
o

LAY RO O3 s | | | W | m{ W[
[LANTLANURANAAMTILATLR

ElS}I’ﬂChI’DﬂDUS

Simulation results: Comparison

» Verilog-A model of the 3-phase buck

» Control implemented in TSMC 90nm

e AMS simulation in CADENCE NC-VERILOG
e Synchronous design

Phase activation clock — 5 MHz
Clocked FSM-based control — 100 MHz
Sampling and synchronisation

» Asynchronous design

Phase activation - token ring with 200 ns timer (= 5 MHz)
Event-driven control (input-output mode)
Waiting rather than sampling (A2A components)

Specifics of Async Design for Bucks

* Needs to be to a large extent monolithic
* Has inputs that need to be sanitised

e Can have lots of timing assumptions for bounded
delay implementation where solving coding and
TM problems can be an issue

* 1/0 response times (constrained or optimised)
drive the design and sign-off

 Different types of (de)compositions needed
rather than (or not just) handshake ones

Newcastle
Q) niversity

A4A: Asynchronous design for
Analogue electronics

Victor Khomenko, Andrey Mokhoy,
Danil Sokolov, Alex Yakovlev

Newcastle University, UK
async.org.uk

* Key Asynchronous Design Principles
* (Some of the) Models for Asynchronous Design

* Asynchronous control logic synthesis from Signal
Transition Graphs

* Complete state coding (CSC) resolution
* Formal verification of asynchronous circuits
* Under the Bonnet of Workcraft tools

 Advanced Topic: Logic Synthesis and
Implementation Styles in Asynchronous Circuits
Design

Asynchronous Behaviour

* Synchronous vs Asynchronous behaviour in general terms,
examples:

— Orchestra playing with vs without a conductor
— Party of people having a set menu vs a la carte

* Synchronous means all parts of the system acting globally in
tact, even if some or all part ‘do nothing’

* Asynchronous means parts of the system act on demand
rather than on global clock tick

* Acting in computation and communication is, generally,
changing the system state

* Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.

Key Principles of Asynchronous
Circuit Design

Key Principles of Asynchronous Design

* Asynchronous handshaking
* Delay-insensitive encoding
 Completion detection

e Causal acknowledgment (aka indication or
indicatability)

e Strong and weak causality (full indication and early
evaluation)

* “Time comparison” (synchronisation, arbitration)

Why and what is handshaking?

Mutual Synchronisation is via Handshake

Synchronous clocking

CLK

Howwe —im [sz@: F:amj
think (@)

1 K
| Al
. I
I clock gate signal - . e
What we

v Y Y Y

design
: e jo@: R3H4j
(b)

Asynchronous handshaking

What we
design

How we
think

CTL CTL —~

~ CTL

GCL4 R4 j
- -

[Req |
v ¥
LN L ™
R1 [Daia) R2 j CL3
- 7 -

R3

i?ﬁ@ﬁ

"Channel” or "Link”

/

=
(d)

Handshake CL

Handshake latch

Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

S R Vo N Vo
ack ack / \ /_
One cycle
(a) 5 (b)
Transition Signalling (NRZ or 2-phase)
ack s e U B o

i Onecycle i Onecycle

>

Why and what is delay-insensitive coding

o
Ol
100
ol1010

1001010
01010010
100100I10l
olololool00
0010101010010

1001010100100l

Data Token = (Data Value, Validity Flag)

Bundled Data

Data

>

req

ack

Return to Zero:

ata 4 S<{lD<_ >
“« T U
ack -/ _ /T

One cycle

Non-Returh-to-Zero

pata 4K A< @ >
ack H2ns N N o

i Onecycle : Onecycle

DI encoded data (Dual-Rail)

Data.O
Data.1l

\ 4

\ 4

ack

'

NRZ coding leads to
complex logic
implementation;
special ways to track

odd and even phases
and logic values are
needed, such as
LEDR

RTZ: NULL (spacer) : NULL
—— P
Data.0 —Hogical 0
{ogical 1 : ' :

Data.l 4/_\ 5 :

_Onecycle : oOnecycle

[Dl Ll]

NRZ:

Data.0 @.ogical 0 _
:Logical :Logical 1i-Logical 1
Data.1 5 % M

ack

_cyclei cycle i cycle i cycle

e

-
L] L)

DI codes (1-of-n and m-of-n)

1-of-4:
— 0001=> 00, 0010=>01, 0100=>10, 1000=>11
2-of-4:
— 1100, 1010, 1001, 0110, 0101, 0011 — total 6 combinations
(cf. 2-bit dual-rail = 4 comb.)
3-of-6:
— 111000, 110100, ..., 000111 - total 20 combinations (can
encode 4 bits + 4 control tokens)
2-of-7:
— 1100000, 1010000, ..., 0000011 — total 21 combinations (4
bits + 5 control tokens)

Why and what is completion detection?

Signalling that the Transients are over

Bundled-data logic blocks

— . Completion

— . is implicit:

—!| Single-rail logic by done

— L signal

—_— N The delay must
scale with the worst

start o delay . done case delay path,
w

So ... not really self-
timed

Conventional logic + matched delay

True completion detection

Completion

—_ / detection for one

. > dual-rail bit
—
—

> Multi-input C-

> element
_» .
—_ Dual-rall __done

: logic ~| [B
—_— . . . _D\
— . N j/@—
) AN AN Y

Completion detection tree

The Muller C element

Vdd
A A— B—
C —Z L
B— T
Z
C B A 7
I >0— ~Z
A B | 7 B — , A—
0O 0|0 L . .
Static Logic
0 1| Z A Implementation
1 0| Z
1 111 A B— [van Berkel 91]

Gnd

C-element: Other implementations

1|

{>0;

Dynamic

Weak Inverter

<

{>O__Z

Quasi-Static

Why and what is causal acknowledgment?

‘ny

A, T

Every signal event must be acknowledged
by another event

Causal acknowledgment

D
— >¢2(1‘, }‘f

a- k------ 5 x1+

a+ x1- S| c+

X2+

b+

X3+

Unack’ed transitions x2-
and x3- may cause a
hazard on output ¢

However, under Fundamental
Mode (slow environment) the
circuit is safe

Principle of causal acknowledgement

x1(1)
a(0)

b(0)

)y

x4(0)

x2

x3(1)

c(0)

at

b+

C-element implementation using simple gates

a+

x1- X2+

b+

>){ x4- S| X3+

\\ X3_
‘__\—g X4+)E

x1+

X2-

Each transition is
causally ack’ed,
hence no hazards
can appear

Why and what are strong and weak causality ?

CORRELATION :
DOES NOT IMPLY DAV
CAUSATION. Y

Degree of necessity of precedence of some events for
other events

Strong Causality

* Petri net transitions synchronising as rendez-vous

Strong precedence

@

e Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 transitions)

@ -
k

A B| C
A e) 0 ol 0
. P) 0 1| C
1 o] ¢
1 1] 1

Weak Causality

* Petri net transitions communicating via places

‘o
O

Weak precedence

e

e Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

C(0) C(1)
A(1->0) :} A(0->1) >
B(1->0) | B(0->1)

Full indication versus Early Evaluation

At —
At Dual-rail AND gate
| E)— with full input
i': iy acknowledgement
B:t __|¢ D_
A.f
o
Bf ——

At —} it Dual-rail AND gate
Bt —— ' with “early propagation”

Allows outputs to be produced from NULL
Cf to Codeword only when some (required)

B.f inputs have transitioned from NULL to

Codeword (similar for Codeword to NULL)

A.f

Why and what is timing comparison?

Telling if some event happened before
another event

Synchronizers and arbiters

Input
® Synchronizer

Decides which clock
cycle to use for the

input data

Input 1
® Asynchronous
arbiter

Decides the order of
inputs

Input 2

Metastability is....

Set-up time violated

D
Request Q ﬁ
—>| |[&—
Atm —
— Q

Processor Clock
Clock

At,->0 Not being able to decide...

Typical responses

Q Trigger
58 ‘/ Q Output
iﬁ
Clock Clock
\ Y - +
<

 We assume all starting points are equally probable
* Most are a long way from the “balance point”
A few are very close and take a long time to resolve

Synchronizer

* t is time allowed for the Q to change between CLK a and CLK b

T is the recovery time constant, usually the gain-bandwidth of the circuit

* T, is the “metastability window” (aperture around clock edge in which
the capture of data edge causes a delay that is greater than normal
propagation delay of the FF)

* 7and T, depend on the circuit
* We assume that all values of At are equally probable

MTBF =

CLK b W- " C

CLK a

Two-way arbiter (Mutual exclusion element)

Basic arbitration element: Mutex (due to Seitz, 1979)

Metastability
resolver (0)

reql (1) ack2
4_Da ‘TI L

o> all

(0) lil -

req2 (1)

ackl

(0)

An asynchronous data latch with
metastability resolver can be built similarly

Importance of Timing Comparison

Understanding metastability is becoming very important as
analogue and digital domains get closer, and timing
uncertainty and PVT variations increase

Arbitration and synchronization are increasing their
importance due to many-core, timing domains, NoCs, GALS

Design automation for metastability and synchronization is
turning from research to practice (Blendix)

People have always been excited by asynchronous design, and motivated by:

— Higher performance (work on average not worst case delays)

— Lower power consumption (automatic fine-grain “clock” gating;
automatic instantaneous stand-by at arbitrary granularity in time and
function; distributed localized control; more architectural
options/freedom; more freedom to scale the supply voltage)

— Modularity (Timing is at interfaces)

— Lower EMI and smoother Idd (the local “clocks” tend to tick at
random points in time)

— Low sensitivity to PVT variations (timing based on matched delays
or even delay insensitive)

— Secure chips (white noise current spectrum)

— Plus, ... a lot of scope and fun for research (there are many unexplored
paths in this forest!)

... cons

* So why have async designers been often “crucified” in the past?
— Overhead (area, speed, power)
e Control and handshaking
e Dual-rail and completion detection costs
— Hard to design

* yes and no, ... It’s different — there are very many styles and variants
to go and one can easily get confused which is better

— Very few **practical** CAD tools (but many academic tools)

* Tools are quite specific to particular design styles and design niches;
hence don’ t cover the whole spectrum

* Complexity of timing and performance models

* Difficulty with sign-off (for particular frequency requirements)
e ... But the situation is improving

— Hard to Test

* Possible, but not as mature as sync

(Some) Models for Asynchronous
Circuit Design

Models and techniques for asynchronous design

e Models:

— Delay model (inertial, pure, gate delay, wire delay, bounded and
unbounded delays)

— Models of environment (fundamental mode, input-output)
— Models of switching behaviour (state-based, event-based, hybrid)
 RTLlevel:

— Data and control paths separate (data flow graphs, FSMs, Signal
Transition Graphs, Synchronised Transitions)

— Pipeline based (Combinational logic plus registers and latch controllers,
e.g. micropipelines, gate-level pipelining)

— Process-based (CSP-like, Balsa, Haste, Communicating Hardware
Processes)

* High-level models

— Flow graphs (Marked graphs, extended MGs), Petri nets, Markov
Chains

— Behavioural HDLs (C, System()

Gate vs wire delay models

* Gate delay model: delays in gates, no delays in wires

D=

* Wire delay model: delays in gates and wires

.—-—

Delay models for async. circuits

* Bounded delays (BD): realistic for gates and wires.
— Technology mapping is easy, verification is difficult

e Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

— Technology mapping is more difficult, verification
Is easy

* Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.

— DI class (built out of basic gates) is almost empty

* Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).

— In practice it is the same as speed independent

37

Control Logic

* Control specification based on Petri
nets (Signal Transition graphs)

Control specification

Signal Transition Graph

.
i i

A-
K Il A input

B output

Timing Diagram

Control specification

F*A+
!

Control specification

-
! P
A-

rA{ /B+x
C+

: / \B_ :
/L

A—>\

B——

rA{ /B+x
C+ A_'\

¢t At | B

)

VME bus example using Petri nets

Bus

DSr
DSw
DTACK

Data

ransceiver

[

VME Bus
Controller

Device

LDTACK

i

D

—y

DTACK

Read Cycle

STG for the READ cycle

’K DSr+ «—@ DTACK«j

LDS+ — LDTACK+ —» — DTACK+— DSr- —

kf LDTACK-< LDS- J

DSr —-| VME Bus LDS >

Controller

LDTACK
DTACK «— «

Choice: Read and Write cycles

DTACK-

DTACK+ D-

i

DSr+

f LDS+ D+
LDTACK?W /‘/» LDS+

D+ LDTACK- LDTACK- LDTACK+ DTACK-

!

r- LDS- LDS- DTACK+

SN

Choice: Read and Write cycles

DTACK-
DSr+ : DSw+
l /\C‘/_\
LDS+ //’_\\\\\\ D+
LDTACK+ LDS+
LDTAC K' v
D+ LDTACK+
DTACK+ D-
LDS- l

Dfp /I\ DTTCK+
D- L) DSw-

Workcraft tool

 Workcraft is a software package for graphical edit, analysis,
synthesis and visualisation of asynchronous circuit behaviour

* Petrify plus a few other tools are part of it as plug-ins
* Itis based in Java tools

e Can be downloaded from
http://workcraft.org/wiki/doku.php?id=download

e And installed in 10 minutes.

* There is a simple to use tutorial for that

Some references

 General Async Design: J. Sparsg and S.B. Furber, editors. Principles of
Asynchronous Circuit Design, Kluwer Academic Publishers, 2001. (electronic
version of a tutorial based on this book can be found on:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/855/pdf/imm855.p
df

« Async Control Synthesis: J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. Logic Synthesis of Asynchronous Controllers
and Interfaces. Springer-Verlag, 2002. (Petrify software can be downloaded
from: http://www.lsi.upc.edu/~jordicf/petrify/)

« Arbiters and Synchronizers: D.J. Kinniment, Synchronization and
Arbitration in Digital Systems, Wiley and Sons, 2007 (a tutorial on arbitration
and synchronization from ASYNC/NOCS 2008 can be found:
http://async.org.uk/async2008/async-nocs-slides/Tutorial-Monday/Kinniment-
ASYNC-2008-Tutorial.pdf)

« Asynchronous on-chip interconnect: John Bainbridge, Asynchronous
System-on-Chip Interconnect, BCS Distinguished Dissertations, Springer-
Verlag, 2002 (electronic version of the PhD thesis can be found on:
http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbridge00 phd.php)

49

Asynchronous Control Logic
Synthesis from STGs: Basics

Xyz-example: Specification

X
X —
y
Z

Z+ — X -

x+/ y+ \z-
SN

Signal Transition Graph (STG)

Token flow

y /T \ /

State graph

Z+ @ X-

| 3

X+ —@—

Se

y

o
+ @

e

y_

Z_

Xyz
> 000
|+
2 N
101 110
V y& A/z+
001 111
AN
011

\z_

010

Next-state functions

X=7-(x+Y)]
y=17+X|
Z=X+Y-7

XyZ
> 000
|x*
2 N
101 110
V y& A/z+
001 111
N A
011

\z_

010

Complex Gate netlist

Circuit synthesis

e Goal:

— Derive a hazard-free circuit
under a given delay model and
mode of operation

Speed independence

* Delay model
— Unbounded gate / environment delays

— Certain wire delays shorter than certain paths in the
circuit

* Conditions for implementability:
— Consistency
— Complete State Coding
— Output-Persistency

Implementability conditions

* Consistency

— Rising and falling transitions of each signal alternate in
any trace

 Complete state coding (CSC)
— Next-state functions correctly defined

* Output-Persistency

— No event can be disabled by another event (unless they
are both inputs)

Implementability conditions

* Consistency + CSC + output-persistency

* There exists a speed-independent circuit that implements
the behavior of the STG

(under the assumption that ay Boolean function can
be implemented with one complex gate)

Persistency

100 —2— 000 = 001
|b+ |b+

a L
c S

b /\/
\, is this a pulse ?

Speed independence = glitch-free output behaviour under any delay

Complete State Coding (CSC)
Conflict Resolution

Example: VME Bus Controller

/dtack— @~ dsr+ | —] 1ds+

d- F—|ds- —{ Idtack- |dtack+

dsr- fe— dtack+ |= d+|‘

Example: CSC conflict

dtack- dsr+ 10000
>@

00100 } 00000 1§
|ds+
|dtack- |dtack- |dtack-
dtack- dsr+
)) 10010
01100 § 01000)% 11000)?
|ds- |ds- |ds- |dtack+
dtack- dsr+ 5
\)C)0
01110 01010 M M
d+
dsr- dtack+ 5
€ O-=

01111 11111 11011

o
—
Y
c
O
&
()
i e
o
oT0)
=
=
@)
(7))
Q
oc

Example

Conflict core

- -
xxxxx
LY

DOOODN IO
e
7%
f.,

X\

N
=2

N,

200
5 o5

N

N\

__________________k,_____________.

|
|
|
f
|
|

|dtack+

|dtack-

|ds-

10110

1 Code(conf”’)=

Code(conf’)=10110

|
|
J

Idea: Insert csc+ into the core and csc- outside the core to break

the balance

Note: Cannot delay inputs!

Example: Resolving the conflict

dtack- @1 dsr+

- —||ds- b——

CSC-

—> CSC+

—>1 [ds+

.

1

|dtack-

|dtack+

~<—] dsr- |=

dtack+

] d+

1

Example: Resolving the conflict

- + +
dtack co dsr .o cSsC

O
001000 ® 000000 §100000 1100001
|dtack- |dtack- |dtack- |ds+
dtack- dsr+ ¢
\ \ O
011000 § 010000)% 110000"1’ 100101
|ds- |ds- |ds- |dtack+
dtack- dsr+
) >0 - 0
011100 | 010100 '110100)
J- M’ d+ M
CSC- dsr- dtack+
66 -0 = Q=

011110 011111 111111 110111

* Cores often overlap

* High-density areas are good candidates for signal
insertion

* Analogy with topographic maps

core,
ore,

mAl
A2
A3

Core,

Example: core map

Concurrency reduction

Introduces a new arcinthe STG:a—> b
Note: Must not delay inputs, i.e. b cannot be an input!
Note: Changes the behaviour, impacts the environment!

Heuristic: Try not to introduce new triggers of b, e.g. if there is an
arc a+ — b+ then a- — b- is preferred

Used for resolving CSC conflicts and circuit simplification
‘Drag’ some events into the core to break the balance:

ik
nel
st
o -
\i\.
“\.\.\.“
I EEEY
—_— —_— —_— —_— —_— —_— —_—
- RN AT

1/%!”% %
i

_
_
_
_
_ fx/wr,
_ N
O | N o
O | A —
Q ! L2 5
I N —
i - T .
oy | =0 =
oo N gl
om | , A..?/ Inhw\
> “ /N,M,,/ m
O I NN |/”,I L |m
2 [
| | 2
oc _ _ o s
() | I &
Q _ T m
Q. | _ n 1
| I N m.ll
m | I O cC
(0 _ _ 9
X | , + o
LL] I | = .m
| | go O

May be problematic!

—— o e o = = = = =

Example: Resolving the conflict

dtack—)' dsr+ _ 10000

00100 ¥ {00000
|ds+
|dtack- |dtack- |dtack-
11100 (A’ dtack-)(i dsr+)(A) 10010
01000 11000
Ids- |dtack+
Y
>0 (@)
01110 Q M’
d+
dsr- dtack+ ¥
O-= O

01111 11111 11011

Relative timing assumptions

* “This event will happen faster than that one”
 Break speed-independence, and generally problematic

e Similar to concurrency reductions, but the introduced arcs are
special, in particular they don’t trigger signals

e Can “delay” inputs

|
f;#é A 5/4 ¢
|
|
|
|

: . % ,..": I
—_——
Code(conf’’)=10110 : |ds- k| Idtack- i/

Example: Resolving the conflict

dtack- dsr+ 10000
>@

00100 ¢

A 00000 A
|ds+
|dtack- |dtack- |dtack-
dtack- dsr+
)) >0 10010
01100 § 01000)% 11000 |
|ds- |ds- |ds- |dtack+

dsr+ 5
>0— — — = =>0

d+

dsr- dtack+
Sr O ac 5

01111 11111 11011

Comparison of the methods

* Signal insertions — paracetamol

= © behaviour is preserved
= @ inserted signals have to be implemented
e Concurrency reductions — antibiotic
= © no new signals
= © reduced state graph and so more don’t-cares in minimisation tables

= @® change the behaviour: need to be careful if input > output (even indirectly) -
this puts a new assumption on the environment!

= @ can introduce deadlocks: Circuit: a > b & Environment: b — a
e Timing assumptions — surgery
= © no new signals
= © reduced state graph and so more don’t-cares in minimisation tables
= @ break speed-independence
= @ require deep understanding of theory and the circuit’s behaviour
= @ introduce layout constraints, and need extensive validation
= @ fragile due to variability (manufacturing, temperature, voltage, etc.)

Formal Verification of
Asynchronous Circuits

TWO kinds of verification

1. Verification of the STG specification

— there is no circuit yet, just an STG specification

— check if the STG makes sense

— check if the STG can be implemented as an Sl circuit
2. Verification of the circuit

— given a gate-level implementation of a circuit and
an STG modelling the behaviour of the
environment, check if the circuit is correct

Verification of STG specification

Standard PN properties:

* boundedness / safeness — a digital circuit has finitely
many reachable states

 deadlock-freeness

e various custom reachability properties, e.g. mutual
exclusion

Verification of STG specification

Consistency: in each execution, the rising and falling
edges of each signal must alternate, always starting from
the same edge — reduces to a reachability property

Intuition: at any reachable state the value of each signal
is binary

Verification of STG specification

Output-persistency: an enabled output must not be disabled by
another signal firing first

Intuition: disabling and enabled output can lead to a non-digital
pulse on the corresponding gate output

Q input / input choices: no OP violation, usually appear due to
abstraction of the environment

(X input / output choices: OP violation, very problematic -
usually a mistake

; ! \

= output / output choices: OP violation, |, g1+ - g1-

usually due to arbitration;

implementable using a mutex — can be ©<\
‘factored out’ into the environment to r2+ g2+ r2-——=g2-
ensure OP l |

&

Verification of STG specification

Complete State Coding (CSC): If two reachable states have the
same values of all signals then they should enable the same
outputs; two states violating this property are said to be in CSC
conflict

Intuition: the circuit can only ‘see’ the signal values (not the
tokens in the STG!), and these should be sufficient to determine
which outputs to produce

Implementability property — CSC conflicts do not indicate that the
STG is wrong; they can be resolved automatically

It'© okay not
Le okdy.

Example: CSC conflict

dtack- dsr+ 10000
>@

00100 } 00000 1§
|ds+
|dtack- |dtack- |dtack-
dtack- dsr+
)) 10010
01100 § 01000)% 11000)?
|ds- |ds- |ds- |dtack+
dtack- dsr+ 5
\)C)0
01110 01010 M M
d+
dsr- dtack+ 5
€ O-=

01111 11111 11011

Verification of the circuit

Converting a gate-level circuit to an STG:

Represent each signal s by two places, p._, and p._,; exactly one
of them is marked at any time, representing the current value of s

Since there is no information about the environment’s behaviour,
it is taken to be the most general (i.e., it can always change the
value of any input); this is modelled for each input signal i by
adding transitions p,_,—i+—p,_; and p,_.;—>i-—p._,

For each output o with the next-state function [o]=E, compute

the set and reset functions [0 T]=E | o-0 @nd [o¢]=—.E|o=1 as
minimised DNF

For each term m of the set function, add a transition p,_,—~o0+—
P,-1, and for each literal s (resp. —s) in m, connect o+ to p,_,
(resp. p..o) by a read arc; a similar process is used to define the
transitions o— using the reset function

Example: modelling a C-element

[out] = out:(in1 +in2) +inl-in2

éu [outT] = 0-(inl +in2) + inl-in2 = inl1-in2
in1D-= ' _> [outi] =—(1:(in1+in2) +inl:in2) =
0= = —(in1+in2+inl:in2) =—=(in1 +in2) =
20—~ —in1-—in2

in1=0

* This PN has more behaviour than the
specification of C-element

* Not output-persistent: after in1+ in2+ the
output out+ can be disabled by inl- or
in2-, i.e. there is a hazard

* This is because the circuit (and thus this
STG) lacks information about the
environment’s behaviour!

* The circuit works correctly in an
environment that fulfils the original
contract

in2=0

Gate-level modelling: Verification

Gate-level circuit has no information about its
environment, so naive verification will always reveal
hazards in any non-trivial circuit with inputs. Hence
need to supply the environment’s behaviour during
verification: Assuming the environment fulfils the
contract, the circuit must:

* be free from hazards: no output can be disabled by another
signal (except in mutex)

* conform to its environment, i.e. never produce an unexpected
output — the circuit must fulfil its contract too

 be deadlock-free
* etc.

Gate-level modelling: Verification

Problem: how to restrict the behaviour of the circuit by the
behaviour of the environment to verify the properties?

ldea: use parallel composition! First, convert the circuit into an
STG and then compose the latter with the mirror (i.e. inputs and
outputs are swapped) of the original STG spec:

®
in;+ in1-
out+ out-
| ///’ \\\\. ///’
in2+ in2-
: o

Parallel composition

* |dea: Fuse transitions from different STGs that have the same
label (if STGs have several transitions with the same label, fuse
each such transition in STG, with each such transition in STG,)

 Example:

Example: C-element

Can a C-element be implemented by the following circuits?

In1D ——{1—
" }D— out
T F%——D__D
fisochronic fork
o DD
F%__D—@—Bout

N1 -——=[1—
-
long wire

Under the Bonnet of Workcraft

PUNF — parallel unfolder

* Tool for building Petri net unfoldings
e Utilises multiple processor cores

* Unfoldings alleviate the state space explosion
problem — the number of reachable states is
generally exponential in the size of the
specification

 Works very well for asynchronous circuits due to
high concurrency and small number of choices —
an ideal case for unfoldings

MPSAT - verification and synthesis

* Uses PUNF-generated prefixes as an input —
completely avoids state graph

 Employs a SAT solver for efficiency

* Verifies many relevant properties, like deadlocks,
CS(C, etc.

e Supports REACH — a language to specify custom
properties

* Synthesis: CSC resolution, deriving complex-gate,
gC, stdC implementations, logic decomposition

PCOMP - parallel composition

 Composes several STGs, optionally hiding the
internal communication, e.g.:

— to compose several modules into one

— to compose a circuit with its environment for
verification

Logic Synthesis and
Implementation Styles in
Asynchronous Circuits Design

Speed-independence assumptions

Gates/latches are atomic (so no internal hazards)

————————————————

I
.o 1
. : instant

I

|
—| evaluator I
!

Gate delays are positive and finite, but variable and
unbounded

Wire delays are negligible (SI)

Alternatively, [some] wire forks are isochronic (QDI), i.e.
wire delays can be added to gate delays

S| decomposition

[
o | |
[

evaluator
\
\\ ’/
Hazards can be introduced
due to these delays!
____________ /’_____________s\

|') I
M ety) :
____________ 4 \ /

Gates & latches

e Good citizens: unate gates/latches, e.g. BUFFER, AND,
OR, NAND, NOR, AND-OR, OR-AND, C-element, SR-
latch, RS-latch

— Output inverters (‘bubbles’) can be used liberally,
e.g. NAND, NOR, as the invertor’s delay can be
added to the gate’s delay

— Input inverters are suspect as they introduce
delays, but in practice are ok if the wire between
the inverter and the gate is short

e Suspects: binate gates, e.g. XOR, NXOR, MUX, D-latch
— may have internal hazards, but may still be useful

Logic synthesis

* Encoding (CSC) conflicts must be resolved first

e Several kinds of implementation can then be derived
automatically:

— complex-gate (CG)
— generalised C-element (gC)
— standard-C implementation (stdC)
* Can mix implementation styles on per-signal basis

* Logic decomposition may still be required if the gates
are too complex

Example: complex-gate synthesis

o< b+ o a+)01000
0100 } 0000
c+ C- b+
0110 o—o 4 ¢ 1100
A 0010
a- d+
O d- o< c+ g
1110 1111 1101

Nxt (s) =Code (s) @0ut (s) §:

The size of this Boolean expression
is not limited!

Code

2
»%
ﬂ

0100
0000
1000
0110
0010
1100
1110
1111
1101
else

Il PR HROOKROOHR

Eqgn

(a+c)b+d

(a+c)b{§>—

Support, triggers and context

O °)01000
0100 N a— \\
4 0000 h— _
d__(a+c)bﬁj/ C
c+ C- b+
] b- 7 Signals that are the inputs of
0110 Q) >0 0 1100 the gate producing a signal
0010 form its support, e.g. the
support of cis {a,b,c,d}.
a- (l d+ Supports are not unique in
q } general.
- -
O-= O-= S O
1110 1111 1101
Signals whose occurrence can Signals in the support which are
immediately enable a signal are not triggers are called the context,
called its triggers, e.g. the e.g. the context of cis {a,c}.
triggers of c are {b,d}. Triggers Context is not unique in general.
are unique, and are always in support = triggers + context

the support.

Example: g€C implementation

O< b+ ° a+t)01000 Code | Set_| Reset_
0100 4 0000 0100 | 1 0
0000 | O -
) 1000 | O -
c+ C b+ 0110 | - 0
V b- } 0010 | O 1
0110 © >0 01100 |1100]| O -
A 0010 1110 | - 0
1111 | - 0
3- d+ 1101 | 1 0
else - -
b—d o & =
Eqgn |ab+d| b
1110 1111 1101 i
1 if Out,, (s)=1 1 if Out, (s)=1 =
b_

Set,(s)=<0 if Nxt,(s)=0 Reset,(s)=<0 if Nxt,(s)=1 4 —

— otherwise - otherwise

Implemented as pull-up and pull-down networks of transistors b —
and a ‘keeper’; assumed to be atomic

Example: stdC implementation

O—2" o— " o0 Code | Set. |Reset,
0100 4 0000 0100 | 1 0
0000 0 -
1000 0 -
+ - +
¢ ¢ b 0110 - 0
0010 0 1
0110 O—2 =4 $1100 1100| o -
A 0010 1110 | - 0
1111 - 0
3- d+ 1101 | 1 0
else - -
O-= d- Q<= ct !) ‘Monotonic cover’
1110 1111 1101 constraints
. hazard due to a o _
a— new delay — Egn | abc+d b
b= 2 _labc+d
C d —C
b — b— b

Logic Decomposition

e Often complex-gates are too complex to be mapped to a gate
library, and so logic decomposition is required

e Cannot naively break up complex-gates — this is likely to
introduce hazards (at least, timing assumptions are required)

* Decomposition is one of the most difficult tasks — no
guarantee that automatic decomposition will succeed
* Manual changes in the STG may be required:
— identify the most complex gates
— try some concurrency reductions
— try to decompose your circuit into smaller blocks
— ‘be creative’

Newcastle
Q) Lniversity

Design examples:
SRAM, buck, ADC

Andrey Mokhov, Alex Yakovlev
Danil Sokolov, Victor Khomenko

Newcastle University, UK
async.org.uk; workcraft.org

Conventional 6T SRAM

1, QbL

BL BLb

Bit cell

Reading: precharge bit lines, assert WL, sense bit line changes

Conventional 6T SRAM

Lo S

Bit cell Write driver

Writing: set data lines, assert WL and WE, wait for a while...

Problem: how long to wait?

Number of Inverters to track

g SRAM delay

2 g
= EReading
> 90

o

g 40 | i

Z 0.1 0.3 0.5 0.7 0.9

vdd(V)

Problem: how long to wait?

SRAM 6T cell delays are difficult to match accurately
— When V,4 = 1V, SRAM read delay is =50 inverters
— When V,4 = 190mV, SRAM read delay is =158 inverters
— Read and write delays scale differently with V

Conventional solutions
— Use different delay lines for different ranges of V
— Duplicate an SRAM line to act as a reference delay line
— Need voltage references, costly in area and energy

Asynchronous solution with completion detection

— Speed-independent, free from voltage references
— Developed by A. Baz et al. (PATMOS 2010, JOLPE 2011)

Low-level completion detection

WL ’ —T— DO L
1 Q Qb—L FI_IT o<
ol z T == ey {m
——a
Bit cell j> Bit cell with CD

True completion detection both for reading and writing

Too costly!

Back to conventional 6T SRAM

— I ﬂ bF

Lo o
._,_‘_Tz

Bit cell Write driver

Idea 1: completion detection is possible when the bit is flipped
Idea 2: read before writing to check if the bit will be flipped

Specification: read scenario

—_—— e e ===y,

r""%""?mhargeﬁ;
Pre- . _phase |

|

bit_lines_11 i

O
o
qV)
C
Q
O
U
Q
)
T
=

Specification

Specification: composing scenarios

Asynchronous SRAM controller

x4 3 BL |
o——¢
ST 1 l 2 5 6 Wa
|_ WE
) *— DB Jr

) ‘)} xl 22 =
| - . + PreCharge
13)

WL

Hand made, hence not guaranteed to be speed-independent

We will design a provably correct implementation in Part Il

Tolerating variable voltage supply

> 3 Vdd

1.25{ /WREq
= 7 -~
$ | WReq
1_25: JFrec arge
= 7
= \ Precharge | |
L3aT7w
S B | WL [1
i:%gzmﬁlﬁ
= — WriteEnable i
1 i _
1Z§§:?WT*C_E
.] WACck
1357 rRen
=] RReq ——
[32 7RAMR]
s RAck | |
135 Daral
= Data
€50 7Dara bar
E 3 4{_/_’-1 Data_bar \

1000 /EL
: — BL | =
-200.01 L
1000 /BL_bar
] - == 1 | _
. BL bar —
~500.0 T T — T T
1.0 1.25 1.5 1.75 2.0
—_— tirme {us)

Tolerating variable voltage supply

Self-Timed SRAM under variable vdd

T WReq

J Frecliarge

riteEnable

ata

J/Data_bar

1.0

1.1 1.2 1.3
time {us)

Low voltage, slow response

1.40 1.5 1.6

——

High voltage, fast response

Trading energy for performance

Energy consumption during writing Energy consumption during reading
7.0E-12 6.0E-12
6.0E-12 5.0E-12 v
1
5.0E-12 '
4.0E-12 .
3 4.0E-12 = '
% B 3012
£ 3.0E-12 2
7] w
2.0E-12
2.0E-12
1.0E-12 1.0E-12
0.0E+00 0.0E+00
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
vdd(v) vdd(V)
—Writing one - - Writing zero —Reading one - - Reading zero
Access time during writing
1.E-05 1.E-05
1.E-06 1.E-06
= <
b a
<+ 1E-07 - < 1E-07
£ E
[(=
1.E-08 1.E-08
1.E-09 1.E-09
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
vdd(V) vdd(V)
—Writing one - - Writing zero

—Reading one - - Reading zero

Specification: read scenario

—_—— e e ===y,

r""%""?mhargeﬁ;
Pre- . _phase |

|

bit_lines_11 i

Modelling bit line signals BO and B1

BO+ B1+

BO- B1-

Adding bit line signals to read scenario

—-— -

Ra °® - Rr+
. "_J{" ‘Precharge |
| i Pre- phase
we :
l ! | : BO+ B1+
| | 'bit_lines_11 |
i Rr- 7F€e§eftj| i l i + BO_is_0 @/ BO_is_1 B1_is_0 ©// \ B1 is 1
4 Iphase] " Pre+ \ \
“““ I‘““““ BO- B1-
l WL+
Ra+ bit_lines_01_or_10 First Step° how do we

Implement bit_lines_117

Adding bit line signals to read scenario

|

BO+ B1+

recharge BO is 0 @// \\O BOis 1 B1is0 @// \\() B is 1
ase \ / \ /

BO- B1-

‘ phase Pre+

WL+ phase

Next step: implement
bit lines 01 or 107

Ra+

bit_lines 01 or 10

Adding bit line signals to read scenario

@/BO+ @/B +\
\BO>Q >/ R
doneM_/
Not done: bit line signals

may change when Rr=0

Memory is inherently asynchronous
— Read & write completion can be reliably detected

— Conventional synchronous ‘handcuffs’ (matching
delay lines) are clumsy and costly

Typical ‘little digital’ control, fully supported by
Workcraft design, synthesis and verification flow

Ongoing and future work — you can contribute!
— Integrate asynchronous SRAM into a real system
— Opportunity for new memory architectures

Multiphase Buck Converter

Motivation

IP cores (big digital
> (big digital) » Legend:

rT - -~ - -~ (Ievel shifters} R

|
|
| : digital
| A2D > (synchronisers) Csensors) —> D2A |
A I
|
| 4 1 A | e N
: power ! analog
| converters |
| S] | [S
] § y ' sensor/timing/energy
’ ' N | infrastructure |
, sanitisers ... | | =TT T T T - - --T-oo-
v | slow vi T fast vi IocalVv ¢ time bands
control for analog layer (little digital) ~scope for
design automation

e Analog and digital electronics are becoming more intertwined
e Analog domain becomes more complex and itself needs digital control

Power electronics context

o Efficient implementation of power converters is paramount

Extending the battery life of mobile gadgets
Reducing the energy bill for PCs and data centres
(5% and 3% of global electricity production respectively)

e Need for responsive and reliable control circuitry

Millions of control decisions per second for years
An incorrect decision may permanently damage the circuit

o Need for EDA (little digital vs big digital design flow)

RTL flow is optimised for synchronous data processing
Ad hoc asynchronous solutions are prone to errors
and cannot be verified

Synchronous vs asynchronous control

e Synchronous control

© Conventional RTL design flow
® Slow response (defined by the clock period)
@ Power consumed even when idle

® Non-negligible probability of a synchronisation failure
e Asynchronous control

© Prompt response (delay of few gates)
© No dynamic power consumption when inactive

@ Non-conventional methodology and tool support

Basic buck converter

UNAErVORage (fe—o v.ref Operating modes
X over-current A« o
 mos - e Under-voltage (UV)
op sk o G : e Over-current (OC)
ap —>|><:1>—o(§ e Zero-crossing (ZC)
»oc digital ' PMOS |
control '
> uv
> z¢ 'NMOS
T
an_ack e — [oy mos. +
zero-crossing\:—OI 0
ULl no ZC late ZC early ZC
|_max | : :

PMOS OFF |
NMOS OFF |

Synchronous design

module control (clk, nrst, oc, uv, zc, gp_ack, gn_ack, gp, gn);

input clk, nrst, uv, oc, zc, gp_ack, gn_ack;

output reg gp, gn;

always @(posedge clk or negedge nrst) begin nrst

r---—-—--- - - - - - - --------=-.-.=-.=-=-=-°- -~ _I
- L . |

if (nrst == 0) begin gp_ack 42 :

-0 _1- E' RB

gp <=0;gn <= 1; gn_ack [| —{p QT I> 9p

end else case ({gp_ack, gn_ack}) ! CK :
|
|

i [
2'b00: if (uv == 1) gp <= 1; oc e }
|
else if (oc == 1) gn <= 1; w S |
|
2b10: if (0c == 1) gp <= 0; e [5 l
|
|

2b01: if (uv==1]|zc==1)gn<=0;

|
| L 1D Q gn
endcase ! CK |
end | |
|
|

|
endmodule ___________________________q____j

e If clock is slow, the control is unresponsive to the buck changes
e If clock is fast, it burns energy when the buck is inactive

Asynchronous design

e STG specification

e Speed-independent implementation

gn_ack
0C p—| ap

uv p—e

gp_ack b
ZC D } :: N

Multiphase buck converter

under-voltage re 1 . i
o= ‘ e Activation of phases
over-current I_max (I_0)
t gp_acke— oV | s Sequential
T gpﬂp;l._O(*bue 7 May overlap
digital PMOS =
control S
Mos l <| @ e More operating modes
gn|—» QI o) i
2 1 [I= High-load (HL)
n_ack ~ = =
r. an-ock o amos | Over-voltage (OV)
i zero-crossing N+—0I_0 (I_neg)
! /j—OI_max (1_0) O .))
gp_ack e —Jio" P ¢ e Transistor min ON times
>| ocN G>)
gpN Hp;l»—o1 c PMIN for PMOS
ot o NMIN for NMOS
&
o I g PMIN+PEXT for
L e = PMOS at first cycle
|_> JLEE O V_nmos - g
j—oI_O(I_neg)
over—voltagejﬂ‘ V_max e

Synchronous design

SYNC_PHASE_CTRL

oclb—]ij o oc gp D gpl
zclp i o zZC gp_ack 0 |I—<dAgp ackl
hilo—i o . hl 1
uv p i o ® uv gn Dgnl
ovpb—]j o . ov 4% gn_ack 0 |I—<dgn ackl
|

°
°
SYNC_PHASE_CTRL ®

ocNpb—]j o ocC gp D gpN
zcN p i O zc gp_ack 0 j|—3agp ackN
hi N
PHASE_ACTIVATOR
uv agn D gnN
actl & _
phase clk b— act : ov © gn_ack 0 |I—<gn_ackN
- [J
actN !

e Two clocks: phase activation (slow) and sampling (fast)
e Conventional RTL design flow for phase control
e Need for multiple synchronizers (grey boxes)

Asynchronous design

————|E>o~————————I ASYNC_PHASE_CTRL

oclp oc *g gp —> gpl
zclp zc gp_ack dgp_ackl
hl hi 1
uv p ® uv 0 gnf—>Dgnl
oV D ° ov & gn_ack —Aagn_ackl
o |
® | ASYNC_PHASE_CTRL
ocN D oc *g gp —D gpN
zcN p zc gp_ack a1 gp_ackN
hi N
uv 0 gnf—>D gnN
ov & gn_ack —agn_ackN
|

e Token ring architecture, no need for phase activation clock

e No need for synchronisers

e A4A design flow for phase control

A4A design flow

librariesand ! specification and synthesis verification
design guidelines : : and validation
: informal design intent !
(waveforms, phase diagrams)

: v . ___manual effort
_ ! architectural decomposition o/‘//_
design concepts [and component formalisation |

formal specification of components) | sanity check
(signal transition graph) l (Punf, MPSat)

_|logic synthesis & technology mapping \ verification report \

I Iibraru g (Petrify, Punf, MPSat) (violation traces)
speed-independent components . | functional verification
(Verilog netlist) . |(PComp, Punf, MPSat)

A 4

v I A4
_ | system integration reachability report
A2A mterfacy (Workcraft) (hazard traces)

. y l
. (little digital asynchronous controller . timing verification
l (Verilog netlist) : (PrimeTime)

conventional : v

design flow ﬂ\\o offline testing features signoff report
! and place & route (timing violations)

A2A components

e Interface analog world of dirty signals
e Provide hazard-free sanitised digital signals
e Basic A2A components

WAIT / WAITO — walit for analog input to become high / low and
latch it until explicit release signal

RWAIT / RWAITO — modification of WAIT / WAITO with a possibility
to persistently cancel the waiting request

WAITO01 / WAIT10 — wait for a rising / falling edge

e Advanced A2A components

WAIT2 - combination of WAIT and WAITO to wait for high and low
input values, one after the other.

WAITX - arbitrate between two non-persistent analog inputs

WAITX2 — behaves as WAITX in the rising phase and
as WAITO in the falling phase

WAIT element

e Interface

— sig san —

WAIT

— ctrl

e ME-based solution

sigb—drl gl
ME
ctrib——r2 g2

—> San

e STG specification

Sig-

1 >

sig+

san+ ctrl-

E

|

/
ctrl+-——e—sSsan-

e Gate-level implementation

sigD—C

ctrl D—

D san

Asynchronous phase control

hil ov uv
T v v PMIN_TIMER PEXT_TIMER
|==== | ----
| |
ISy ' ! I
) e ©, o ©
WAIT ({ [(
53
¢ T B g 2
san ext
3 %‘, — sig WAITO1 EXT_DELAY_CTRL
— — “u v ctrl wext = ®
B < WAITX2
HL_CTRL T o0
e S a ° &
I
T 3 3 = 3 o ri rob—>b gp
ro ri ro ri ro ri ap ai aor—agp_ack
PMOS_DELAY_CTRL
MERGE TOKEN_CTRL MODE_CTRL CHARGE_CTRL
NMOS_DELAY CTRL
ao ai ao ai ao ai rn ri rol—bgn
S O
N 3 -3 Y ¢ X N San ai aol—dagn ack
T R
DECOUPLER |- === RWAIT WAIT?2
- © | K fU
N T~ -9 -9
- © 1 0 (V) |
—— S |
L L TOKEN_TIMER $ $ NMIN_TIMER
get pass A5 oc

Design of asynchronous components

e Token control e Speed-independent implementation

ri D—e 3) D ro
—ri rof—

TOKEN_CTRL
— ai - _% aol— aia—H@ ao
|
e
e STG specification .
®
{
output handshake
ro+ a0+ ro- ao-
N . . .
r+ al+ ri- al-

input handshake

ad+ rd- ad-
delay handshake
@

rd+

rd q—G_

ad p

Simulation setup

e \Verilog-A model of the 4-phase buck

e Control implemented in TSMC 90nm

e AMS simulation in CADENCE NC-VERILOG
e Synchronous design

Phase activation clock — 5MHz
Clocked FSM-based control — 100MHz, 333MHz, 666MHz, 1GHz
Sampling and synchronisation

e Asynchronous design

Phase activation — token ring with 200ns timer (= 5MHz)
Event-driven control (input-output mode)
Waiting rather than sampling (A2A components)

Simulation waveforms

TIME (ps) 0 1 2 3 4 > 6 ! 8 9 e
phase_clk : : :
fsm_clk

N : :
o highload normal load
s W g 1 0000] T I
— |
& |
S e T S
>
wn [}

@ 0.1

S |_coil (A) 0

! -0.1

3] S 2 e o e ol e e
> 0.36V
N : : :
V_load (V)1 : : : :

8 - ()0 startup normal load high load :normal load
= h]
O uv |
S
T vYiiin-- - -—+———-—-—-_——--—-—--—
8 T get & Ipass
> O
O % 0.2
g 0.1

Q | _coil (A) 0

| -0.1

Controller HL Uuv | oV | OC | ZC

(ns) | (ns) | (ns) | (ns) | (ns)
100MHz 25.00 | 25.00 | 25.00 | 25.00 | 25.00
333MHz /7950 | 750 | 750 7.50 | 7.50
666 MHz 3.75| 3.75| 3.75| 3.75| 3.75
1GHz 250 | 250 | 250| 250 | 2.50
ASYNC 187 | 1.02| 1.18| 0.75| 0.31
Improvement Ax 7x Bx 10x 54
over 333MHz

Peak current (mA)

—l— 333MHz
600

—¥— 666MHz
500 NO 0 TN e 1GHz
300
200
100

18225 31 47 57 68 82

0 1 2 3 4 5 6 7 8 9 10
Coll inductance (uH)

Conclusions

e Design flow is automated to large extent

Library of A2A components
Automatic logic synthesis
Formal verification at the STG and circuit levels

e Benefits of asynchronous multiphase buck controller

Reliable, no synchronisation failures

Quick response time (few gate delays)

Reaction time can be traded off for smaller colls
Lower voltage ripple and peak current

Asynchronous ADC

Sampling schemes

e Synchronous

il

[}
[}
-

H‘IIIIII||||IIII.Uﬂ'I'I'HHHTT'LI|||||||

.

.
.
.

«/\/\—1 ADC ==l

.
.

Ts
>
e Asynchronous
A
'\/\f\ AADC [=> I”IIJILII!_ﬂ'IIIII_IIIIIMIIIII 17—l
: . |

A. Ogweno, P. Degenaar, V. Khomenko and A. Yakovlev: “A fixed window level crossing ADC with
activity dependent power dissipation”, accepted for NEWCAS-2016.

-
=
7
@
T
O
o
<C

Time to

Vpulse

———»] Digital —>

”muHULConverter

WL riseszfall

<
<

reset

Slope
Detector

Async
controller

Comp,

ack

Ramp

Gen

enable

ramp_

A

||||||||||

Asynchronous controller

e STG specification e Speed-independent implementation
reset
outp+ \‘ req
outp-—»req+< >req- i ack
ack- ‘ 5 outn .
pl p2 <_aCk'|"_C>p3 : outp . Vpulse
ack- T : :
+ack
0utn-—>req+< \FEQ‘ T
outn+/() : req

ramp_en

craft

http://workcraft.org/

What is WORKCRAFT?

o Framework for interpreted graph models

Interoperability between different abstraction levels
Consistency for users; convenience for developers

Elaborate graphical user interface

Visual editing, analysis, and simulation
Easy access to common operations
Possibility to script specialised actions

Interface to back-end tools for synthesis and verification

Reuse of established theory and tools (PETRIFY, MPSAT, PUNF)
Command log for debugging and scripting

Why to use WORKCRAFT?

Availability

Open-source front-end and plugins

Permissive freeware licenses for back-end tools
Frequent releases (4-6 per year)

Specialised tutorials and online training materials

Extendibility

Plugins for new formalisms
Import, export and converter plugins
Interface to back-end tools

Usability

Elaborated GUI developed with much user feedback
Portability

Distributions for Windows, Linux, and OS X

Supported graph models

abstract behaviour

AN

Finate State
Machine

v T4

Petri Net

[Policy Net

;
)

{ Directed Graph)é _ _ _ _(

signal semantics

Digital Timing
Diagram

Finate State
Transducer

! [Occurrence Net
v
AN
Voo
Vo

v 1o .

Signal Transition
Graph

Order Graph

Conditional Partial

structural information

Structured

Digital Circuit

XMAS Circuit

Dataflow Structu re)

lossless translation

lossy translation

synthesis

Supported features

Model Supported features
Editing Simulation Verification Synthesis

abstract behaviour

Directed Graph Yes Yes Yes n/a
Finite State Machine Yes Yes Yes Yes')
Petri Net Yes Yes Yes Yes?)
Policy Net Yes Yes Yes n/a

sighal semantics

Digital Timing Diagram Yes No n/a n/a
Finite State Transducer Yes Yes Yes Yes®)
Signal Transition Graph Yes yes Yes Yes®
Conditional Partial Order Graph Yes Some No Yes

structural information

Structured Occurrence Net Yes Yes Yes n/a
Dataflow Structure Yes Yes Yes No
Digital Circuit Yes Yes Yes n/a
XMAS Circuit Yes Yes Some No

1) synthesis into Petri Net

2) re-synthesis into simpler Petri Net

3) synthesis into Signal Transition Graph

4) synthesis into Digital Circuit and re-synthesis into simpler Petri Net

Design flow

edit

import \

specification

simulate

report

verify
) visualise

export

convert

Import: ASTG, Verilog

Export: ASTG, Verilog, SVG/Dot/PDF/EPS

Convert: synthesis or translation

Verify: reachability analysis (REACH predicates, SVA-like invariants)
Visualise: CSC conflict cores, circuit initialisation, bottleneck

Design flow: Asynchronous circuits

1. Specification of desired circuit behaviour with an STG model
2. Verification of the STG model

(a) Standard implementability properties:
consistency, deadlock freeness, output persistency
(b) Design—specific custom properties

Resolution of complete state coding (CSC) conflicts
Circuit synthesis in one of the supported design styles
Manual tweaking and optimisation of the circuit
Verification of circuit against the initial specification

o O~ W

(a) Synthesis tools are complicated and may have bugs
(b) Manual editing is error-prone

/. Exporting the circuit as a Verilog netlist for conventional EDA backend

What is hidden from the user?

Verification that the circuit conforms to its specification

1. Circuit is converted to an equivalent STG — circuit STG

2. Internal signal transitions in the environment STG (contract between
the circuit and its environment) are replaced by dummies

3. Circuit STG and environment STG are composed by PComMP
back-end

4. Conformation property is expressed in REACH language

5. Composed STG is unfolded by calling PUNF back-end

6. Unfolding prefix and REACH expression are passed to MPSAT
back-end

7. \erification results are parsed by the front-end

8. Violation trace is projected to the circuit for simulation and debugging

Circuit Petri nets as assembly language

ad D—

bp— andZ?

Circuit Petri nets: Dataflow pipelines

WORKCRAFT live demo

File Edit View Tools Help

*circuit-ZCH-map [circuit] = B4 | |stg-ZCH [STG] = B | |Property editor [model] [X
= = Environment, .. | ,../stg-ZC... [x
- iate of id 2C
O- ; 2o+ -ZC =
] i e] b
‘ O - =no_zc
el | e 1y
ri+- —— [0+ - ~ao+
al I e'alTyZC“ -—rl';' T __ZICI
L g ao | l:ﬂ””L:. | 1
‘ ® LEet cro+— a0+ join -0
— 5 is - '_ .) Tool controls
R .5, 13 ——=dal== ~[== —al+ = B0 - M- - 1
' *' CA|lalfi= _1
*circuit-ZCH-map 1 [STG] =

£6863112684546701504 [STG
pcompresu . it [5TG1 = = X B I| @i @

. (o] v, s, Wiz Edltartnnls

Message Eii
|

J/OUtPUt K rPranems = rjavascript b I Tasks under the given environment (stg-ZCH.work) the circuit is: [forkspace P
INORDER = ao ri zc al ro cscl; * conformant rkspace
OUTORDER = [a1] [ro] [cscO]; * deadlock-free External
lail = csc0 ao'; # gate and2 1:combinational Ehazarifros circuit-ZCH-map L.work
[3T = e 26" ol # gate nor3:combinational C”'CUW'ZFH"'”E'P-WW'(*
#PRAGMA: zera delay stg-ZCH.work
[2] = a0'; # gate inv:combinational pcompresult68631126845
[ro] = [1]' esc@' + [2]' ri'; # gate 0al22:combination
[csc@]l = csc@ [1]1' + ao; # gate sr_nor:asynch
Set/reset pins: reset(rao) =
Exporting model "Untitled” to file "/tmp/workcrafi-circult-ZCH-map-8245652389417126911 /dev.g". bl IIE Il | [»

Circuit Petri nets: xMAS circuits

quO snkO

quO_memA_HIGH A_LOW

snk0_iTRdy_LOW qu0_olRdy_HIGH Snk0_iTRdy_LOW -——quo_olRdy_HIGH qu0_hdBDn_LOW quo_tiB0n_LOW

snko_iTRdy_HIGH aw’hcwum ﬂuirm n_Low
—~ =

Src0_olDn_LOW: qu0_olDn-—(®)

quO_memA_HIGH—— snk0_iTRdy_HIGH quO_memB_HIGH——i
gl
quo_olRdy_LOW quo_olRdy_LOW

'},"

$ ﬁ\\ D qu0_mems._ HIGH—qui =0 DYttt
N ——— W
A\ quO_memA_HIGH
\\, \

clk_HIGH Ik LOW
quo_memB_LOW.

quO_memA_HIGH

quOvhdA

quO_memB_HIGH quO_hdADn_HIGH

) in_HIGH
quo_mems_Low——qu0_hdBDn quO_hdBDn_HIGH-

in_HIGH

quo_memB_LOW’ 3

N@ARdy_HIGH quo_memA_LOW / 0 X4BRdy_HIGH
ak LoW \ i LoW \
\Ray_Low

Ry Low
qu0_memA Low——quO0_hdARdy-——{@) O

quo_mems_Low——quO0_hdBRdy-—

quo_mem8_HIGH quO_memA_HIGH quO_memB_HIGH quo_mem, ! !
— | |
src0_oracle+—f (Q-—quO_iTRdy- qu0_mfmA_HIGHrc0_olRdy_HIGH quo_hdARdy_HIGH src0_olRdy_HIGH quo_hdBRdy_HIGH quO_memB._HIt i !
| 00 TR o qu0_iTRay_HIGT™~_ _ | qu0_TRdy_HIGT™~_ | Lsnko iR i
clk_HIGH qu0_memA+-clk HIGH—qu0_memA- qu0_memB+-cik HiGH—qu0_memB- i |
& & — & - — i !
srcO_oracle- | j0_mems_Low quO_tiARdy_HIGH Snk0_iTRdy_HIGH quO_tiBRdy_HIGH Snk0_iTRdy_HIGHuUO_memp_LOW- I
L | —! |

I fma_Low quo_memA_Low quo_memB_Low quo_memB_LOW’

quO_iTRdy_HIGH

UO_tIARdY-——au0_mema_iGH |

-—quO_tIBRdy-

quo_memB_HIGH

snko_iTDn ¥
clk_Low

quo_tiARd) quO_memB_HIGH quo_tiBRdy X / qu0_memA_HIGH

quo_memA_LOW

qu0_memB_LOW '

quo_he quO_tIBDN_HIGH quo_memB_HIGH |
quo_has Gu0_tIADN_HIGH qu0_memA_LOW !

sak0_iTon_HIGH qu0_mems _Low
auo_ o NGK N qu0_mems_ticH auo_EDNGK Y qu0_mema_ticH

clk_LOWEIK_HIGH clk_LOWEIK_HIGH

(®-—quo_iTDn- Snko_iTDn_LOW

=
quo_hdADn, LV \qun tiADn_Low src0_olRdy_HIGH

quo_hdBDn_LOW quo_tiBDn_LOW quO_iTRdy_HIGH

tIA Quo_iTRdy_LOW tIB: quo_iTRdy_LOW

quo_memA_LOW src0_olRdy_HIGH quo_memB_LOW

n-srco_olRdy_Low quo_iTRdy_HIGH tiBON- srco_oray Low

—
qu0_memA_LOW quO_memB_HIGH qu0_tIBDn

qu0_memA_HIGH

qu0_memB_LOW

CIk_HIGH i

quo_iTDn_HIGH /©\ quo_iTDn_Low |
— =

57¢0_o1Dn_HIGH—=CIK+ clk-=srco_oion_Low |
-olbn | = !

quo_olDn_LOW |

quo_olDn_HIGH !

— i

clk_Low.

A Workflow for the Design of Mixed-signal
Systems with Asynchronous Control

Vladimir Dubikhin, Danil Sokolov, Alex Yakovlev, Chris J. Myers

AMS Trends & Challenges

Key Drivers

Trends

Challenges

Based on slide from DAC2014 by ANSYS

Internet of Things
Mobile computing
Automotive electronics

Technology scaling
Multiple power and time domains
Analog and digital integration

Tighter reliability margins
Concurrent analog and digital analysis
Short development cycle

What this means for AMS?

* Achieving better verification of analog
and digital blocks

Verifying the increasing amount of digital
logic in analog designs

Creating a higher level of abstraction for
analog and mixed signal blocks
Automating the manual custom design
steps

Adopting circuit analytics that tell why
and where the circuit is failing to perform

Based on slide from ISQED2013 by Mentor Graphics

Why Asynchronous Logic?

* Insensitive to delays

* Robust to process-voltage-temperature
* Average case performance

* Low power consumption and EMI

Why Asynchronous Logic?

* Insensitive to delays

* Robust to process-voltage-temperature
* Average case performance

* Low power consumption and EMI

* Incompatible with commercial EDA tools

* Modeling with signal transition graphs (STG)
* Formal verification of STG models
* Logic synthesis of asynchronous circuits

File Edit View Utility Tools Help

celement2null [STG] @ X | Property editor X
|-10.00 |00 Jo.00 Is.00 |10.09 A name A
Atype input
B name B
Biype input
Cname c
Ciype loutput

|:20.00

A+ B+

o
Editor tools 5|
[B[all-"[©][E [O[>]
Output Problems ~ | Javascript Tasks =
EQN file Tor model /tnp/S1GSB73461030858768952 || |workspace
i Generated by petrify 4.2 (compiled 15-Oct-03 at 3:06 PM) i+ Extornal
Outputs between brackets "[out]” indicate a feedback to input ~out” 7 celementz.work

= Estimated area = 1.00

INORDER = A B C
QUTORDER = [C]
Icl =B

i No set/reset pins required.

Available at

Why Formal Verification?

* Increased robustness of the system
* Abstract modeling
* Reduced need for conventional simulation

Why Formal Verification?

* Increased robustness of the system

* Abstract modeling

* Reduced need for conventional simulation
* Limited tool support

LEMA

Modeling with labeled Petri nets(LPN)
Automatic model generation

Property expression and checking

Model extraction as SystemVerilog netlist

File Edit View Tools Help File Edit View Tools Help
bl b | (>
rclxmi® 54 rclver b4 celement model ana b4 rczxmi* i3 c_element_waveform rclxmi* 34 rclver b4 c_element model ana 4| rezxmi i
- Schematic | Constants | Functions | Units & B c_element.xmi ulation Op! Advanced Options | Schematic | Parameters | TSD Graph | Histogram
9 (B c_element_ideal_envam| | ¢ (3 c_element_ideal_envam| = = =
B c_clem_idealenv.ver| | [S]C]| B|U| @)= R | C [200m [un-zoom | Pan c_elem ideal_env_ver| C_ 1t_model_ana ion results
¢ B c_element_model.xm! ¢ &8 c_element_model.xml
c_element_model_an, c_element_model an:
- e R 50,000
c_element_model ver| c_element_model ver|
(3 Id=al_envml (B 1deal_env.xml 147,500
¢ GB relaml ¢ B relml
B 1 _ver A 1 ver 45,000
B rcl_to_Axml B rel_to_Axml
¢ (B2 42,500
rc2_ver
B rc2.to_Bxml B rc2.to Bxml 40,000
o (B testaml o (B testxml
3 3 37.500
35,000
32,500
30,000
27.500
=l
]
£ 25.000
&
22,500
71 20,000
/ 17.500
/ 15,000
/ 12,500
/ 10.000
5,000
2500
o
t4 o 1,000 2,000 3000 4000 5000 6000 7.000 8000 9,000 10,0
time
Ll D] 0}

Available at

LEMA Tool Flow

VHDL-AMS
Subset

Safety
Property

Simulation
Traces Thresholds

VAR

VHDL-AMS
Compiler

Petri Net (LHPN)

/

Model
Generator

\

Labeled Hybrid

#

AN

Verilog-AMS VHDL-AMS
Model Model

|

T

BDD-Based
Model Checker

SMT Bounded
Model Checker

DBM-Based
Model Checker

+

/

\
[

Pass or Fail + Error Trace]

Labeled Petri Nets

- Composed of a Petri net and
labels operating on continuous
variables and Boolean signals.

* Label types are:

(LPNSs)

Po

{1 > 18}

— Enablings (max := T A\ x :=2)

— Delay bounds

— Boolean assignments
— Value assignments

— Rate assignments

P1

LPN Model Generation

* Build abstract models of the circuit using:
— Simulation traces.
— Thresholds on the design variables.
— A property to verify.

Switched Capacitor

Co
AY
A
by b,
' '
\/in O -
Ql QQ O Vout
|
G~
C1 =1 pF

Vin = £1000 mV
freq(Vin) = 5 kHz

L G, =254+25pF

freq(®,1) = freq(P2) = 500 kHz
dVyu/dt = +(18 to 22) mV /us

Simulation Trace

Voltage (V)

Time (s)

Vin
Vout (27 pF)
Vout (23pF)
1 L
0 L
-1
Oe + 00 le — 04 2e — 04 3e — 04 4e — 04

Data Binning

 Each data point is assigned a bin based upon thresholds.
* Each bin represents an operating region of the system.

1000 mV

—1000 mV

Data Binning

—1000 mV

< Vin V()ut>
1000 mV

1

0mV
0

—1000 mV

Data Binning

1000 mV

—1000 mV

< Vin Vout>
1000 mV

1

0mV
0

—1000 mV

Data Binning

1000 mV

—1000 mV

< Vin Vout>
1000 mV

1

0mV
0

—1000 mV

Data Binning

1000 mV

—1000 mV

< Vin Vout>
1000 mV

—1000 mV

(00) (01) (11) (10) (00) (01) (11) (10)
Vi,
I 1O(I),us | 20(|),us I 30(IJ,us | 40(|),us

Rate Calculation

* Rates are calculated for each eligible data point in each bin.
* Low pass filtering smooths edge effects and transitory pulses.

* Minimu
1000 mV

0mV

—1000 mV

m and maximum rates are tabulated for each bin.
- —— 23 pF
Vout — 27 pF

Rate Calculation

1000 mV

0mV

71000 mv | ' ' '
T 507z 10045 15075 2005

0.51 15.0

(—=652——1000)/(15.0—0.51)=23.93mV /s
Vt;ut00:[231 24]

Rate Calculation

1000 mV

0mV

3.52 18.0

|
50us 100us

(-608——-913)/(18.0 —3.52)=21.06 mV /s
V:0o=121,24]

|
150us

J
200s

Rate Calculation

1000 mV

1840V
Y R
—1000 mV 1 ' ' '
H 50/s | 1001 15015 200,15
48.063.47

No rate calculated.
V! 00=[19,24]

Rate Calculation

1000 mV
Vout —_— 27 pF

0mV

_1000 V]]] |
H 5075 1001 15015 200,15

Final rate calculations after C,=27pF.

V;ut00:[17' 24|

DMV Variables

Stable signals are handled differently to aid
efficiency.

Stability is determined by:

— Remaining constant within an epsilon
value for a specified time.

— Total percent of the entire signal marked
stable.

Delay is calculated for each constant value.

Min/max delay and constant values are
extracted.

Generating an LPN

Initial values={V ,,=—1000mV ,V, ,=—1000mV , fail=F} ; Initial rates={V{,=0,V ,,,=[17,24]}

{Vin > 0} [0,0] [100, 101]
Vour LPN (V7 o= [—24, —17]) (V,, == 1000)
ps(Ol)CP >I (Opi(1r) P10 O Vs LPN
t3
[0,0] { Vit > 0} L6 oy (7Vour 203 [0.0] () p2(1000)
B t [99, 100]
(Vi := —1000)

t5
ps(00)(@)= I< é ps(10) t
{ﬂ\/m > 0} 0.0 p()(:)—’l Property LPN

— [17,24]) {(=Viue > —2000) V Ve > 2000}
[0,0](fail == T)

< out -

Property Language

* delay(d) - wait for d time units.

* wait(b) - wait until boolean expression, b, becomes
true.

 waitPosedge(b) - wait for a positive edge on b.

 wait(b, d) - wait at most d time units for b to become
true.

 assert(b, d) - ensure that b remains true for d time
units.

 assertUntil(bl, b2) - ensure that bl remains true
until b2 is true.

- if-else - statement for selections.

- always(conditionsList){statements} - continue to
execute statements until one of the signals in the list
of variables condistionsList changes, then break out.

LEMA DEMO

C-element Example

Analog | Digital — A+ B+=

(R) C+

- ° > 1
e \

R,C,?R,C,

C-element Example

Analog | Digital — A+ B+=

(R) C+

- ° > 1
e \

R,C,<R,C,

C-element Example

Analog | Digital —~ A+ B+ -

R,C,<R,C,

C-element Example

Analog | Digital At B+ -
! "/
C+
C Dw ® / \\ 0
A- B-
4
| .

R,C,<R,C,

AMS verification workflow
C Informal specification >

Specification formalization

_Wclrkirait ____________ Simulation environment
I P [N e —
Control specification ' Dlgital Analo I‘/Behavioural model/:

_'_7| (STG) / | i |

| Control verification Logic synthesis | | \/ Control Implementation / I Simulator I

I (MPSAT) (Petrify) I 7 (Verilog netlist) F | |

| I | gl Rl

| Verified specification | Simulation traces

I (STG) | (CSvV)

| W —————————————— RS d

AMS model generation

) 2
/AMS system model

(LPN)

S/ /

Error trace
/ /

Model verification

Control optimization

ﬁ/Timing assumptions

v
Optimized implementation
(Verilog netlist)

Buck converter

over-current (oc)

L control
gp_ack
ocC

Model generation example

o
(@)]
0 | | |
1 e
o | I
(&)
S
(o}
(@)]
0 | | |

PMOS

1180 1185 1190 1195 1200 1205 1210 1215 1220
dischargingl chargingl
{gp & (gp_gate >= 4)} ® {~gp & ~(gp_gate >=6)}
[0] o [0]
< gp_gate_rate:= uniform(-0.27,-0.28)> < gp_gate_rate:= uniform(0.295,0.305)>
O O
pl p3
discharging2 charging2
{ ~(gp_gate >=4)} {9p_gate >= 6}
[0] [0]
< gp_gate_rate:= uniform(-0.03,-0.048)> < gp_gate_rate := uniform(0.09,0.13)>
l corner2 cornerl l
{~(gp_gate >=0)} {gp_gate >= 10}
O [0] [0] O
p2

<gp_gate_rate:= 0>

<gp_gate_rate:= 0>

p4

1225

1230 1235
ack neg
{gp_gate >= 6}
(p? 0]
i <gp_ack := false>
ack_pos T
{~(gp_gate >=4)}
[0] gs)
<gp_ack := true>

Initial conditions:

gp_ack = false
gp = false
gp_gate = 10000
gp_gate rate =0

Optimized specification

* Concurrency reduction

gn+=—_ —-9p-
] R ey

uv-—+ p3 . uv-

oc- ® — -uv+ ~oc+
: / P "\l

gn+- - gp-

e Scenario elimination

gp+- gn_ack-— gn-— OC- - gn_ack-
\
p1 ()= gp+- uv+-— ®
pO

oC+ -~gp_ack+ ~gp- —gp_ack- -gn+

Verification challenges

* Modules partitioning - trade-off between
model’s accuracy and verification speed

* False positives - dealing with verification false fail
states due to overapporximation

* Properties expression - models properties
expressed via non-standard language

