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 What are Asynchronous (digital) Circuits?
 Why are Async circuits needed?
— Tolerant to process variations
— Tolerant to environmental variations
* Success and Obstacles with Async Design
e “Little digital”: Async design for Analog electronics
— Design of Power converters
— Tool Workcraft.org
* Messages and Open challenges



Asynchronous Behaviour

* Synchronous vs Asynchronous behaviour in general terms,
examples:

— Orchestra playing with vs without a conductor
— Party of people having a set menu vs a la carte

* Synchronous means all parts of the system acting globally in
tact, even if some or all part ‘do nothing’

* Asynchronous means parts of the system act on demand
rather than on global clock tick

* Acting in computation and communication is, generally,
changing the system state

* Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.



Synchronous clocking
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Asynchronous handshaking
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Tolerance to
Process variations



Performance/energy/yield trade off

From Asenov,UKDF’ 10
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Asynchronous to cope with uncertainty

Delay insensitive
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Async for energy efficiency

Energy Dissipation (fJ)
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Asynchronous (self-
timed) logic can
provide completion
detection and thus
reduce the interval
of leakage to
minimum, thereby
doing nothing well!

Source: Akgun et al, ASYNC’10



Tolerance to
Environmental conditions



Piezo-Film Experiment




Piezo-experiment with asynchronous counter
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Traditional system

vdd 4

Comms
H
Idle Idle
é I —
tim-n;
power xn:iu:i clk clock
energy supply generatur tirme
Source Sadrce

computational

glectronics




Energy-modulated system
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Async (digital) behaviour

Triggered by events (e.g. level-crossing)
Modelled by
— cause-effect relations

— token flow
— handshakes
— data-flow

Power-driven timing
* Applications: interfacing, control, pipeline
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Example

Self-Timed SRAM under variable Vdd
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SRAM testing and results

 SRAM operations modulated by Vdd from a Capacitor Bank

 When Vdd goes below 0.75v, the ack signal is not generated by
SRAM

* The circuit automatically wakes up when Vdd goes up




Example 2: Power-proportional CPU design (8051)

* CMOS 130nm CMP process, 2013
* 0.89V to 1.5V: full capability mode

* 0.74V to 0.89V: at 0.89V the RAM starts
to fail, so the chip operates using

* 0.22V to 0.74V: at 0.74V the program
counter starts to fail, however the control
logic synthesised using the CPOG model |
continues to operate correctly down to 0.22V §

e 67MIPSatl1.2V
e ~2700 instructions per second at 0.25V



So, if Asynchronous Design is so
cool, why does mainstream
industry not use it!?



Mainstream industry is Big Digital
and has an “established Design
Process” (with commercial tools for
globally clocked designs)

$SS

Design Cost is the main factor!
TOOLS are a key!



It’s hard to beat Synchronous
Design for BIG Digital!

What about Analog-Mixed-Signal?



Motivation for Async for Analog

* Analog and Mixed Signal (AMS) design becomes
more complex:

* More functionality
* Move to deep submicron after all!

— According to Andrew Talbot from Intel (2016)
“transistors are very fast switches, netlists are huge,
parasitics are phenomenally difficult to estimate,
passives don’t follow Moore’s law, reliability is a
brand new landscape”
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Emergence of little digital electronics

|IP cores (big digital)
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* Analog and digital electronics are becoming more

intertwined

* Analog domain becomes complex and needs digital

control
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Example: Buck (DC-DC) converter control
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Example: Buck converter
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Building asynchronous
circuits in Analog-Mixed
Signal context requires
extending traditional
assumptions about speed-
independence ...

Phase diagram specification:

early ZC
I_max_ . s
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zc W oc
Buck conditions: Operating modes:

» under-voltage (UV)
» over-current (OC)
» zero-crossing (ZC)

» NO Zero-crossing
» late zero-crossing
» early zero-crossing
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Starting point —a New Behaviour
Capture Language:

Signal Transition Graph
similar to

Traditional Waveforms
so easy to grasp by industry!



STG Specification of buck controller
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Design Case Study:
Multiphase Buck Converter
Sync vs Async



Multiphase Buck: Sync Control
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* Two clocks: phase activation (slow) and sampling (fast)
* Need for multiple synchronizers (grey boxes) - latency & metastability
* Conventional RTL design flow



Multiphase Buck: Async Control
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* Token ring architecture, no need for phase activation clock
* No need for synchronisers - all signals are asynchronous

* A4A design flow



Simulation results: Comparison

» Verilog-A model of the 3-phase buck

s Control implemented in TSMC 90nm

» AMS simulation in CADENCE NC-VERILOG
» Synchronous design

Phase activation clock — 5 MHz
Clocked FSM-based control — 100 MHz
Sampling and synchronisation

» Asynchronous design

Phase activation - token ring with 200 ns timer (= 5 MHz)
Event-driven control (input-output mode)

Waiting rather than sampling (A2A components)
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Simulation results

N TIME (ps) 0 1 2 3 4 2 6 7 8 9 10
T phase_clk ' ' '
=
[ap] -
2 0.43V i .
V_load (V) 1 :
@ M) 0 startup normal load i highload inormal load
g I L
I
o
- 1
£l LI
Q &
g_‘ s
a
@l
9 3 gt e e et - .
o 2 036V
V_load (V) 1 I
g _ W}D | normal load i highload  normal load
5 hl | 1
= uy —J L L [ L ]l
) ov
g_‘ Tget-’.ﬁ!pssa [TTTTTT T L
w 2 02
a | col (A) O
| 0.1

31



ASYNC

Improvement over 333MHz

dx

X

Ox

Buck controller HL Uv oV OC Z.C
(ns) | (ns) | (ns) | (ns) | (ns)
SYNC @ 100MHz 25.00 | 25.00 | 25.00 | 25.00 | 25.00
SYNC @ 333MHz 7.00 | 750 T7.50 | 7.50 | 7.50
SYNC @ 666 MHz 3.75 | 375 375 3.75 | 3.75
SYNC @ 1GHz 250 | 250 250 2.50 | 2.50
1.87 1 1.02| 1.18 | 0.75 | 0.31

Synchronous buck controllers exhibit latency of 2.5 clock cycles.
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Peak current
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Inductor losses
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Async Design Tools:

Workcraft.org



Workcraft.org

Logic synthesis and formal verification of asynchronous circuits.
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The tool is now used in education, research and industry.
Open source and well supported by tutorials



Messages to take away (for IC design research)

 Asynchronous circuits began their life (in the 50s) for ‘little
digital’ and today is the right time for them

* Analog and mixed-signal is a good application — it combines:
— Need for low latency and high range of feedback types

— Non-traditional benefits (inductor size, peak current) can
be gained
* Productivity in industry is a good drive — and we have tools
accepted by industry

* |Interesting research problems are there — tech mapping,
holistic analog-mixed signal verification, behavioural mining,
dealing with complexity
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viessages to take away

(for materials and devices researchers)

* Think about power and timing and their relationship

* Thanks to Asynchronous logic and Power-modulated
computing we can:

* Tolerate imperfections of technology (e.g. Variability), so
don’t push yourself in optimising devices

* Tolerate environmental variations (e.g. Power doesn’t
need to be perfectly regulated)

* This is a good way towards building trillions of devices
without batteries
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THANK YOU!



