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* Simple intro examples on whiteboard
* Six Asynchronous Design Principles:
— Asynchronous Handshaking
— Delay-insensitive Encoding
— Completion Detection
— Causal Acknowledgement
— Full Indication and Early Evaluation
— Time Comparison
* Pros and Cons

 (Some of the) Models, Techniques and Tools for
Asynchronous Design

* Asynchronous Design from Signal Transition Graphs



Asynchronous Behaviour

* Synchronous vs Asynchronous behaviour in general terms,
examples:

— Orchestra playing with vs without a conductor
— Party of people having a set menu vs a la carte

* Synchronous means all parts of the system acting globally in
tact, even if some or all part ‘do nothing’

* Asynchronous means parts of the system act on demand
rather than on global clock tick

* Acting in computation and communication is, generally,
changing the system state

* Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.



Introduction/Motivation: Simple example




Key Principles of Asynchronous Design

* Asynchronous handshaking

* Delay-insensitive encoding
 Completion detection

e Causal acknowledgment (indicatability)

e Strong and weak causality (full indication and early
evaluation)

* “Time comparison” (synchronisation, arbitration)



Why and what is handshaking?

Mutual Synchronisation is via Handshake



Synchronous clocking
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Asynchronous handshaking
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Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)
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Why and what is delay-insensitive coding
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Bundled Data
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Delay-Insensitive encoding (Dual-Rail)

Data.0 RTZ: NULL (spacer) i NULL
Data.l | Data.0 {J)\_,
{ogical 1 i : : i

k : P
ac Data.1 4/_\ P

Onecycle : One cycle

P »" g
< Lo |

a

NRZ coding leads to NRZ:
complex logic Data.0 @ogical 0

implementation; EtﬁsicallE LLogical 1 Logicazll
JOEIRVEW (ORIl @ Data.l : Cﬁ !23

odd and even phases

ack

and logic values are
usually needed

~cycle i cycle i cycle i cycle :

g P
gDl <

< Lo}
n

11



DI codes (1-of-n and m-of-n)

1-of-4:
— 0001=> 00, 0010=>01, 0100=>10, 1000=>11
2-of-4:
— 1100, 1010, 1001, 0110, 0101, 0011 — total 6 combinations
(cf. 2-bit dual-rail — 4 comb.)
3-of-6:
— 111000, 110100, ..., 000111 - total 20 combinations (can
encode 4 bits + 4 control tokens)
2-of-7:
— 1100000, 1010000, ..., 0000011 — total 21 combinations (4
bits + 5 control tokens)
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Why and what is completion detection?

Signalling that the Transients are over
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Bundled-data logic blocks
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True completion detection
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The Muller C element
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Why and what is causal acknowledgment?

O
A, T

Every signal event must be acknowledged
by another event
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Causal acknowledgment
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Principle of causal acknowledgement
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Why and what are strong and weak causality ?

CORRELATION
DOES NOT IMPLY
CAUSATION.

Degree of necessity of precedence of some events for
other events

20



Strong Causality

* Petri net transitions synchronising as rendez-vous

‘\) A Strong precedence
® - @

e Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 transitions)
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Weak Causality

* Petri net transitions communicating via places

Weak precedence

e

(@)
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e Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)
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A(0->1) >
B(0->1)
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Full indication versus Early Evaluation
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Why and what is timing comparison?

Telling if some event happened before
another event
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Synchronizers and arbiters
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Metastability is....

Set-up time violated

D
Request
—| le—
At;,
Processor Clock Clock
At ->0

Not being able to decide...
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Typical responses
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 We assume all starting points are equally probable
 Most are a long way from the “balance point”
* A few are very close and take a long time to resolve
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Two-way arbiter (Mutual exclusion element)

Basic arbitration element: Mutex (due to Seitz, 1979)
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An asynchronous data latch with
metastability resolver can be built similarly
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People have always been excited by asynchronous design, and motivated by:

— Higher performance (work on average not worst case delays)

— Lower power consumption (automatic fine-grain “clock” gating;
automatic instantaneous stand-by at arbitrary granularity in time and
function; distributed localized control; more architectural
options/freedom; more freedom to scale the supply voltage)

— Modularity (Timing is at interfaces)

— Lower EMI and smoother Idd (the local “clocks” tend to tick at
random points in time)

— Low sensitivity to PVT variations (timing based on matched delays
or even delay insensitive)

— Secure chips (white noise current spectrum)

— Plus, ... a lot of scope and fun for research (there are many unexplored
paths in this forest!)
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... cons

* So why have async designers been often “crucified” in the past?
— Overhead (area, speed, power)
e Control and handshaking
* Dual-rail and completion detection costs
— Hard to design

* yes and no, ... It’s different — there are very many styles and variants
to go and one can easily get confused which is better

— Very few **practical™* CAD tools (but many academic tools)

* Tools are quite specific to particular design styles and design niches;
hence don’ t cover the whole spectrum

* Complexity of timing and performance models

* Difficulty with sign-off (for particular frequency requirements)
e ... But the situation is improving

— Hard to Test

* Possible, but not as mature as sync 31



Models and techniques for design

32



Models and techniques for asynchronous design

e Models:

— Delay model (inertial, pure, gate delay, wire delay, bounded and
unbounded delays)

— Models of environment (fundamental mode, input-output)
— Models of switching behaviour (state-based, event-based, hybrid)
* RTLlevel:

— Data and control paths separate (data flow graphs, FSMs, Signal
Transition Graphs, Synchronised Transitions)

— Pipeline based (Combinational logic plus registers and latch controllers,
e.g. micropipelines, gate-level pipelining)

— Process-based (CSP-like, Balsa, Haste, Communicating Hardware
Processes)

* High-level models

— Flow graphs (Marked graphs, extended MGs), Petri nets, Markov
Chains

— Behavioural HDLs (C, SystemC) 33



Gate vs wire delay models

* Gate delay model: delays in gates, no delays in wires

D=

’

 Wire delay model: delays in gates and wires

.—-—




Delay models for async. circuits

* Bounded delays (BD): realistic for gates and wires.
— Technology mapping is easy, verification is difficult

* Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

— Technology mapping is more difficult, verification
Is easy

* Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.

— DI class (built out of basic gates) is almost empty

* Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).

— In practice it is the same as speed independent
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Control Logic

* Control specification based on Petri
nets (Signal Transition graphs)
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Control specification

Signal Transition Graph
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Control specification
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Control specification
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Control specification




Control specification




VME bus example using Petri nets
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STG for the READ cycle
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Choice: Read and Write cycles
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Choice: Read and Write cycles
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Workcraft tool: workcraft.org

* Framework for interpreted graph models
— Circuits, STGs, state graphs, dataflow structures, ...
— Interoperability between different abstraction levels
— Consistency for users; convenience for developers
* Elaborate graphical user interface
— Visual editing, analysis, and simulation
— Easy access to common operations
— Possibility to script specialised actions
* Interface to back-end tools for synthesis and verification

— Reuse of established theory and tools (PETRIFY , MPSAT,
PUNF)
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Synthesis & verification of async circuits
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Logic synthesis: xyz-example
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Token flow
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State graph
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Next-state functions
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y=17+X
Z=X+Y-1]

XyZ
> 000
|x*

2 N

101 110

A)y yk A/z+
001 111

N A

011

\z_

010

52



Deriving next state functions

1) Truth Table 2) Boolean Minimization

S EEEES
state 7
0 ID D ¢

0*00 100
10*0* 111
1 0 0 0 0
01*0 000
110* 111 x:z_.(x+>7)‘
00*1 011
1*0*1 011 Observations in this example:
D1l D00 1) All combinations are used as states
2) All states appear uniquely
1*11 011

Generally, this is not always the case!
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Complex Gate netlist
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Circuit synthesis

e Goal:

— Derive a hazard-free circuit
under a given delay model and
mode of operation

55



Speed independence

* Delay model
— Unbounded gate / environment delays

— Certain wire delays shorter than certain paths in the
circuit

* Conditions for implementability:
— Consistency
— Complete State Coding
— Persistency
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Implementability conditions

* Consistency

— Rising and falling transitions of each signal alternate in
any trace

 Complete state coding (CSC)
— Next-state functions correctly defined

* Persistency

— No event can be disabled by another event (unless they
are both inputs)
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Implementability conditions

* Consistency + CSC + persistency

* There exists a speed-independent circuit that implements
the behavior of the STG

(under the assumption that any Boolean function
can be implemented with one complex gate)
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Persistency
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Speed independence = glitch-free output behavior under any delay




Conclusion

* Asynchronous design is based on rigorous principles of
causality and concurrency

* It allows electronic circuits to operate without centralised
time constraints and adapt to any structural or behavioural
variations and noise

* Nature is largely asynchronous as it is typically structured
around energy supplies; synchronisation takes place in a
distributed way

* Research question: Are reaction systems asynchronous? And
in what way they are or can be asynchronous?

* Attend the workshop on “Bringing Asynchrony to Reaction
Systems”!

* | encourage development of a Reaction Systems modelling
plug-in under Workcraft.org 60



