2= Newcastle
University

Asynchronous Computing
(Electronic Designer’s perspective)

Alex Yakovlev
Newcastle University
Newcastle upon Tyne, U.K.
http://async.org.uk
http://workcraft.org

First School on Reaction Systems, Torun, Poland, 3-5 June 2019

http://async.org.uk/
http://workcraft.org/

* Simple intro examples on whiteboard
* Six Asynchronous Design Principles:
— Asynchronous Handshaking
— Delay-insensitive Encoding
— Completion Detection
— Causal Acknowledgement
— Full Indication and Early Evaluation
— Time Comparison
* Pros and Cons

 (Some of the) Models, Techniques and Tools for
Asynchronous Design

* Asynchronous Design from Signal Transition Graphs

Asynchronous Behaviour

* Synchronous vs Asynchronous behaviour in general terms,
examples:

— Orchestra playing with vs without a conductor
— Party of people having a set menu vs a la carte

* Synchronous means all parts of the system acting globally in
tact, even if some or all part ‘do nothing’

* Asynchronous means parts of the system act on demand
rather than on global clock tick

* Acting in computation and communication is, generally,
changing the system state

* Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.

Introduction/Motivation: Simple example

Key Principles of Asynchronous Design

* Asynchronous handshaking

* Delay-insensitive encoding
 Completion detection

e Causal acknowledgment (indicatability)

e Strong and weak causality (full indication and early
evaluation)

* “Time comparison” (synchronisation, arbitration)

Why and what is handshaking?

Mutual Synchronisation is via Handshake

Synchronous clocking

CLK

How we :F“: H2:>@: Haﬂdj
think (@)

I \1
| Al
. I
I clock gate signal L B e
What we

v Y Y Y

design
: e jo@: R3H4:>
(b)

Asynchronous handshaking

What we
design

How we
think

CTL CTL —~

— CTL

CL4 R4 j
- 7

[Req |
¥ ¥
N | ™
R1 [Dala > R2 j CL3
- 7 7

R3

ﬁ?ﬁ@ﬁ

"Channel” or "Link”

;

=
(d)

Handshake CL

Handshake latch

Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

req : e \
ack 2ok / \ /
One cycle
(a) :)
Transition Signalling (NRZ or 2-phase)
ack / \
‘ One cycle One cycle :

Why and what is delay-insensitive coding

0
Ol
100
ololo

1001010
01010010
10010010l
olololool00
0010101010010

1001010100100l

Data Token = (Data Value, Validity Flag)

Bundled Data

Data

>

req

ack

Return to Zero:

ate QK <>
«
ack ./ _ /

One cycle

Non-Return-to-Zero

oata QK A< @K
ack / \ E /_

i Onecycle i Onecycle

Delay-Insensitive encoding (Dual-Rail)

Data.0 RTZ: NULL (spacer) i NULL
Data.l | Data.0 {J)_,
{ogical 1 i : : i

k : P
ac Data.1 4/_\ P

Onecycle : One cycle

P »" g
< Lo |

a

NRZ coding leads to NRZ:
complex logic Data.0 @ogical 0

implementation; EtﬁsicallE LLogical 1 Logicazll
JOEIRVEW (ORIl @ Data.l : Cﬁ !23

odd and even phases

ack

and logic values are
usually needed

~cycle i cycle i cycle i cycle :

g P
gDl <

< Lo}
n

11

DI codes (1-of-n and m-of-n)

1-of-4:
— 0001=> 00, 0010=>01, 0100=>10, 1000=>11
2-of-4:
— 1100, 1010, 1001, 0110, 0101, 0011 — total 6 combinations
(cf. 2-bit dual-rail — 4 comb.)
3-of-6:
— 111000, 110100, ..., 000111 - total 20 combinations (can
encode 4 bits + 4 control tokens)
2-of-7:
— 1100000, 1010000, ..., 0000011 — total 21 combinations (4
bits + 5 control tokens)

12

Why and what is completion detection?

Signalling that the Transients are over

13

Bundled-data logic blocks

— . Completion

— N is implicit:

—!{ Single-rail logic by done

— L signal

—_ N The delay must
scale with the worst

start o delay . done case delay path,
w

So ... not really self-
timed

Conventional logic + matched delay

14

True completion detection

Dual-rail
logic

Completion
/ detection for one

dual-rail bit

Multi-input C-
element

done

-

N
N
N
S
RS
N —_—
N [J
N
S []
\ o
~
N
N

AN RN

N
o
J

Completion detection tree

15

The Muller C element

A A—d B—
C —Z L
B—— T
Z_next=AB+Z(A+B) B —d ‘ A—
4 I >0—Z
A B 7 B — , A—
0 0] O A1 . .
Static Logic
0 1| Z a Implementation
1 0| Z
1 111 A B— [van Berkel 91]

Gnd

16

Why and what is causal acknowledgment?

O
A, T

Every signal event must be acknowledged
by another event

17

Causal acknowledgment

S
— >¢2(1‘, }Cj

a- x1+
a+ x1- c+ 7
C_
X2+
b+
X3+

Unack’ed transitions x2-
and x3- may cause a
hazard on output ¢

However, under Fundamental
Mode (slow environment) the

circuit is safe
18

Principle of causal acknowledgement

x1(1)
a(0)

b(0)

=

x4(0)

x2

x3(1)

c(0)

at

b+

C-element implementation using simple gates

a+t

X2+

b+

>){ x4- X3+

\\\\)E
3 x4+

x1+

X2-

C+

Each transition is
causally ack’ed,
hence no hazards

can appear
19

Why and what are strong and weak causality ?

CORRELATION
DOES NOT IMPLY
CAUSATION.

Degree of necessity of precedence of some events for
other events

20

Strong Causality

* Petri net transitions synchronising as rendez-vous

‘\) A Strong precedence
® - @

e Logic circuits: Muller C-element (in 0-1 and 1-0 transitions),
AND gate (in 0-1 transitions), OR gate (in 1-0 transitions)

A
C)* C

B

A c*

(WY

o
~ O L O |W
= O 0O O

(WY

21

Weak Causality

* Petri net transitions communicating via places

Weak precedence

e

(@)
(o

e Logic circuits: AND gate (in 1-0 transitions), OR gate (in 0-1
transitions)

A(1->0)

B(1->0)

D

C(0) C(1)
A(0->1) >
B(0->1)

22

Full indication versus Early Evaluation

At —
At Dual-rail AND gate
| E)— with full input
i': iy acknowledgement
B:t __|¢ D_
A.f
o
Bf ——

At —} i Dual-rail AND gate
Bt —— ' with “early propagation”

Allows outputs to be produced from NULL
Cf to Codeword only when some (required)

B.f inputs have transitioned from NULL to

Codeword (similar for Codeword to NULL) s

A.f

Why and what is timing comparison?

Telling if some event happened before
another event

24

Synchronizers and arbiters

Input
® Synchronizer

Decides which clock
cycle to use for the

input data

Input 1
® Asynchronous
arbiter

Decides the order of
iInputs

Input 2

Metastability is....

Set-up time violated

D
Request
—| le—
At;,
Processor Clock Clock
At ->0

Not being able to decide...

26

Typical responses

Q Trigger
=8 ‘/ Q Output
iq
Clock Clock
\ Y - V
<

 We assume all starting points are equally probable
 Most are a long way from the “balance point”
* A few are very close and take a long time to resolve

27

Two-way arbiter (Mutual exclusion element)

Basic arbitration element: Mutex (due to Seitz, 1979)

Metastability
resolver (0)

reql (1) ack2
4_D3 ‘TI I

> 1

(0) lil M1

req2 (1)

ackl

(0)

An asynchronous data latch with
metastability resolver can be built similarly

29

People have always been excited by asynchronous design, and motivated by:

— Higher performance (work on average not worst case delays)

— Lower power consumption (automatic fine-grain “clock” gating;
automatic instantaneous stand-by at arbitrary granularity in time and
function; distributed localized control; more architectural
options/freedom; more freedom to scale the supply voltage)

— Modularity (Timing is at interfaces)

— Lower EMI and smoother Idd (the local “clocks” tend to tick at
random points in time)

— Low sensitivity to PVT variations (timing based on matched delays
or even delay insensitive)

— Secure chips (white noise current spectrum)

— Plus, ... a lot of scope and fun for research (there are many unexplored
paths in this forest!)

30

... cons

* So why have async designers been often “crucified” in the past?
— Overhead (area, speed, power)
e Control and handshaking
* Dual-rail and completion detection costs
— Hard to design

* yes and no, ... It’s different — there are very many styles and variants
to go and one can easily get confused which is better

— Very few **practical™* CAD tools (but many academic tools)

* Tools are quite specific to particular design styles and design niches;
hence don’ t cover the whole spectrum

* Complexity of timing and performance models

* Difficulty with sign-off (for particular frequency requirements)
e ... But the situation is improving

— Hard to Test

* Possible, but not as mature as sync 31

Models and techniques for design

32

Models and techniques for asynchronous design

e Models:

— Delay model (inertial, pure, gate delay, wire delay, bounded and
unbounded delays)

— Models of environment (fundamental mode, input-output)
— Models of switching behaviour (state-based, event-based, hybrid)
* RTLlevel:

— Data and control paths separate (data flow graphs, FSMs, Signal
Transition Graphs, Synchronised Transitions)

— Pipeline based (Combinational logic plus registers and latch controllers,
e.g. micropipelines, gate-level pipelining)

— Process-based (CSP-like, Balsa, Haste, Communicating Hardware
Processes)

* High-level models

— Flow graphs (Marked graphs, extended MGs), Petri nets, Markov
Chains

— Behavioural HDLs (C, SystemC) 33

Gate vs wire delay models

* Gate delay model: delays in gates, no delays in wires

D=

’

 Wire delay model: delays in gates and wires

.—-—

Delay models for async. circuits

* Bounded delays (BD): realistic for gates and wires.
— Technology mapping is easy, verification is difficult

* Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

— Technology mapping is more difficult, verification
Is easy

* Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.

— DI class (built out of basic gates) is almost empty

* Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).

— In practice it is the same as speed independent

35

Control Logic

* Control specification based on Petri
nets (Signal Transition graphs)

36

Control specification

Signal Transition Graph

-
i i

A-
k Il A Input

B output

Timing Diagram

37

Control specification

38

Control specification

39

Control specification

Control specification

VME bus example using Petri nets

Bus

DSr
DSw
DTACK

Data

ransceiver

[

VME Bus
Controller

Device

LDTACK

D

DTACK

Read Cycle

42

STG for the READ cycle

’/ DSr+ «+—@ DTACK«j

LDS+ — LDTACK+ —» — DTACK+— DSr- —

kf LDTACK- LDS- 42

DSr —-] VME Bus LDS >

Controller

LDTACK
DTACK «— g

43

Choice: Read and Write cycles

DTH
r LDS+ D+
LDTI'ACK?W /'/» LDS+

DTACK- D+ LDTACK- LDTACK- LDTACK+ DTACK-

DTACK+ D-

!

LDS- LDS- DTACK+

T ORT

44

Choice: Read and Write cycles

DTACK-
DSr+ : DSw+
l /\(M\
LDS+ //,_\\\\\\ D+
LDTACK+ LDS+
LDTACK- |
D+ LDTACK+
DTACK+ D-
LDS- l

Dfr /I\ DTTCK+
D- > “ DSw-

()

45

Workcraft tool: workcraft.org

* Framework for interpreted graph models
— Circuits, STGs, state graphs, dataflow structures, ...
— Interoperability between different abstraction levels
— Consistency for users; convenience for developers
* Elaborate graphical user interface
— Visual editing, analysis, and simulation
— Easy access to common operations
— Possibility to script specialised actions
* Interface to back-end tools for synthesis and verification

— Reuse of established theory and tools (PETRIFY , MPSAT,
PUNF)

46

Synthesis & verification of async circuits

¥ Workcraft - x
File Edit View Utility Help Tools
dfs-all_elements - Dataflow Structure = [|| vme_stg - Signal Transiti7" X || mayevsky c el2 - Digital Circuit ' [|| Property editor [
control layer ~DTACK-
fmy |
- D Sr4- O -DSw+
1 — Tool trol (|
| | ool controls
15T JE] (.| ST2CF LDS+= Oun D+
] b cl
- T2
,DI [l:[l H LDTACK+ 1D 5+
e = T \ -] : 1
o] ,_D/ ’E — D+ LDTACK- LDTACK+ .
|
I]:[I "D "[D] DTACK+ B-
complex ST path | .
DSr- LD S- ¢
| c4
= | | ' 1 D-1 -~
- Ngh Sw- —
A - P DS DTACK+/1
ﬁ __Eﬂ ck on the highlighted transitior] DSw-
. /[E] . Vs S DTACK- "
DSr+ DSw+
cpogl - Conditional Partial Ordi@ [||xmas-testl - xMAS = B4 || policy-test2 - Policy Net = H | |LDs- D+/1
Compa sitian Srco LDTACK- LDS- =
LDS+ LDTACK-
o LDTACK+ LDS+/1
D+ LDTACK+/1
//.--— el . -o _D _O - DTACK+ D-/1 -
S/ Signal State
/ -3 - o-o-clp_ o
d |'.|
ax O— e i} O DS 1
’ b Q e { Ds\:r 7
AN DS 1
AN LDTACK 1
'—*.—*O—*ﬂ—*o—*ﬁ—(?)—l:l—*o Editor tools
b
" -0 (m]
X‘.
Output x rProbIems X rjavascript X rTasks X Workspace [
a|||Workspace
INORDER = D5r D5w LDTACK D DTACK LD5S cscO; || ¢ External
OUTORDER = [D] [DTACK] [LDS] [cscO]: cpogl.work
[D] = DSr LDTACK cscO' + DSw (cscO + LDTACK'): dfs-all_slements.work
[DTACK] = D" escO" (DSr" + DSw) + DSw' D; mayevsky_c_el2.work *
[LDS] = esc0'; policy-test2.work
[escO] = D5r" D" (cscO + DSw') + LDTACK cscO: vme_stg.work *
wmas-testl.work
Setfreset pins: reset(csc0)
moved from Untitled to !External/xmas-testl.work L |
correcting open file path... =

47

Logic synthesis: xyz-example

X
X —
y
Z

Z+ —> X~

x+/ y+ \z-
SN

Signal Transition Graph (STG)

49

Token flow

. //\ /

50

State graph

Z+ @ X-

3

X+—@—Yy

Se

o
+ @

o

y_

Z_

XyZ
> 000
|x*

2 N

101 110

A)y yk A/z+
001 111

N A

011

Iz_

010

51

Next-state functions

X=7-(x+Y)]
y=17+X
Z=X+Y-1]

XyZ
> 000
|x*

2 N

101 110

A)y yk A/z+
001 111

N A

011

\z_

010

52

Deriving next state functions

1) Truth Table 2) Boolean Minimization

S EEEES
state 7
0 ID D ¢

0*00 100
10*0* 111
1 0 0 0 0
01*0 000
110* 111 x:z_.(x+>7)‘
00*1 011
1*0*1 011 Observations in this example:
D1l D00 1) All combinations are used as states
2) All states appear uniquely
1*11 011

Generally, this is not always the case!

53

Complex Gate netlist

x:Z(x+7ﬂ

y=17+X)

Z=X+Y-1]

Circuit synthesis

e Goal:

— Derive a hazard-free circuit
under a given delay model and
mode of operation

55

Speed independence

* Delay model
— Unbounded gate / environment delays

— Certain wire delays shorter than certain paths in the
circuit

* Conditions for implementability:
— Consistency
— Complete State Coding
— Persistency

56

Implementability conditions

* Consistency

— Rising and falling transitions of each signal alternate in
any trace

 Complete state coding (CSC)
— Next-state functions correctly defined

* Persistency

— No event can be disabled by another event (unless they
are both inputs)

57

Implementability conditions

* Consistency + CSC + persistency

* There exists a speed-independent circuit that implements
the behavior of the STG

(under the assumption that any Boolean function
can be implemented with one complex gate)

58

Persistency

100 —2— 000 -5 001
| b+ | b+

2\
c S

b /\/
N IS this a pulse ?

59

Speed independence = glitch-free output behavior under any delay

Conclusion

* Asynchronous design is based on rigorous principles of
causality and concurrency

* It allows electronic circuits to operate without centralised
time constraints and adapt to any structural or behavioural
variations and noise

* Nature is largely asynchronous as it is typically structured
around energy supplies; synchronisation takes place in a
distributed way

* Research question: Are reaction systems asynchronous? And
in what way they are or can be asynchronous?

* Attend the workshop on “Bringing Asynchrony to Reaction
Systems”!

* | encourage development of a Reaction Systems modelling
plug-in under Workcraft.org 60

