2 Graph Theory

2.1 Where possible draw the graphs below. If you can’t draw the graph say why not.

(a) A simple graph with 1 edge and 2 vertices.
(b) A simple graph with 2 edges and 2 vertices.
(c) A non-simple graph with no loops.
(d) A non-simple graph with no multiple edges.
(e) A graph with 6 vertices and degree sequence \(1, 2, 3, 4, 5, 5\).
(f) A simple graph with 6 vertices and degree sequence \(1, 2, 3, 4, 5, 5\).
(g) A simple graph with 6 vertices and degree sequence \(2, 3, 3, 4, 5, 5\).

Answer:

(a) \(\text{\includegraphics{graph.png}}\)

(b) Not possible. A simple graph with 2 vertices has at most 1 edge.
(f) Not possible. If a and b are the vertices of degree 5 then a is adjacent to all the other vertices (except itself). Similarly b is adjacent to all the other vertices. Therefore vertices all have degree at least 2.

(g) $\vdash 2$ Show, by labelling the vertices, that the graphs below are isomorphic.
Answer:
First label the vertices of the LH graph.
Then label the vertices \(g, i, k\) on the RH graph. (Vertices of degree 3 lying on a circuit of degree 3.)
Then label \(a, c, e\) adjacent to them.
then \(b, d, f\).
Then \(h, j, l\).

\[\textbf{I.3} \quad (a) \quad \text{Is it true that any two isomorphic graphs have the same number of vertices? If so why?}
(b) \quad \text{Let } G_1 \text{ and } G_2 \text{ be graphs and let } \phi \text{ be an isomorphism from } G_1 \text{ to } G_2. \text{ If } v \text{ is a vertex of } G_1 \text{ is it true that } \deg(v) = \deg(\phi(v)) \text{ and if so why? Show, using the Handshaking Lemma, that } G_1 \text{ and } G_2 \text{ have the same number of edges.}
(c) \quad \text{Show that isomorphic graphs have the same degree sequence.} \]
(d) If two graphs have the same degree sequence, need they be isomorphic?

Answer: Let \(\phi : G_1 = (V_1, E_1) \to G_2 = (V_2, E_2) \) be an isomorphism.

(a) Yes: \(\phi : V_1 \to V_2 \) is bijective.

(b) If the \(d \) vertices \(v_1, \ldots, v_d \) are adjacent to \(v \) in \(G_1 \) then (from the definition of isomorphism) the \(d \) vertices \(\phi(v_1), \ldots, \phi(v_d) \) are adjacent to \(\phi(v) \) in \(G_2 \). Also the number of loops incident to \(v \) and \(\phi(v) \) are equal. Hence \(v \) and \(\phi(v) \) have the same degree.

From the Handshaking Lemma,

\[
|E_1| = \frac{1}{2} \sum_{v \in V_1} \deg(v) = \frac{1}{2} \sum_{v \in V_2} \deg(v) = |E_2|.
\]

(c) If the degree sequence of \(G_1 \) is \(\langle d_1, \ldots, d_k \rangle \), where \(d_i = \deg(v_i) \), then from the previous part of the question, \(d_i = \deg(\phi(v_i)) \) so \(\langle d_1, \ldots, d_k \rangle \) is also the degree sequence of \(G_2 \).

(d) No. The graphs of Example 4.6 in the notes all have the same degree sequence but no two of them are isomorphic.

4.9 Let \(G \) be a graph and let \(u \) and \(v \) be vertices of \(G \) (which may or may not be the same). Suppose that \(G \) contains two distinct paths \(P \) and \(P' \) from \(u \) to \(v \). ("Distinct" means "not equal".) Show that \(G \) contains a cycle.

Answer: There are two paths from \(u \) to \(v \). Look at where they first diverge (at vertex \(a \) say) then where they first meet again (at vertex \(b \) say) then put together the two paths from \(a \) to \(b \) and from \(b \) to \(a \) together to form a cycle.