4.1 There are 11 non-isomorphic simple graphs with 4 vertices. Draw all those with
(a) no edges; (b) 1 edge; (c) 2 edges; (d) 3 edges; (e) 4 edges (f) 5 edges;
(g) 6 edges; (h) more than 6 edges (if any).

4.2 In the graph G of Figure 1 below find
(a) an open trail of length 7, which is not a path;
(b) an open path of length 11;
(c) cycles of length 6 and 10. (A cycle is a trail which is closed path of length at
least 1.)

Does the graph G have any circuits, of positive length, which are not cycles? If not
why not?

![Figure 1: G](image)

4.3 Which of the following graphs are Eulerian, which are semi-Eulerian but not Eulerian
and which are not semi-Eulerian? Wheel graphs W_1, W_2 and W_n, where $n \geq 3$.
Complete graphs K_5, K_{2n}, K_{2n+1}, where $n \geq 1$.