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Abstract

This paper presents a new evolutionary approach to the machine-part cell formation (MPCF)
problem, generally considered in manufacturing cell design, where a zero-one machine-part
matrix must have its rows and columns moved to form machines and parts clusters. The
Constructive Genetic Algorithm (CGA) was proposed recently to solve clustering problems,
and is applied here to the MPCF. The MPCF is modeled as a bi-objective problem that guides
the construction of feasible assignments of machines and parts to specify clusters, and
provides evaluation of schemata and structures in a common basis. A particularly derived
structure and schema representation considers Jaccard distances for binary strings. A variable
size population is formed only by schemata, considered as building blocks for feasible
solutions construction along the generations. Recombination gives population diversification,
and local search mutation is applied to structures that represent feasible solutions.
Experimental results are shown for instances specially generated and others taken from the
literature.
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1. Introduction

The international competition and its consequent needs for quick answers to the

market demands have lead several companies to consider non-traditional approaches

to control and design the manufacturing systems. One of these approaches is the

application of the “group technology” [Burbidge,1969] to decompose manufacturing

systems into manageable sub-systems, or groups, by aggregating similar parts into

part families and machines into cells. The ideal cell is independent and completely

manufactures its part family(s). Automation and control are simplified through the

creation of independent cells. The production flow analysis of Burbidge [Burbidge,

1963] is one of the first and well-known methodologies associated with group

technology.

There are many methods that works over a machine-part matrix with elements being

zeros or ones, indicating which machines are used to produce each part. Given a

matrix A (figure 1), where the rows corresponds to parts and columns to machines and

aij = 1, if the part i needs the machine j to be produced. Basically, the algorithms

change rows and columns positions to produce blocks of ones, forming parts families

and machine cells simultaneously (figure 2).

Chandrasekharan and Rajagopalan [Chandrasekharan and Rajagopalan, 1989] and

Venugopal and Narendran [Venugopal and Narendran, 1993] present some analysis

over the zero-one matrix to extract properties and to advise for cell formation

algorithms. Other algorithms following these lines can be viewed in the papers of

McCormick [McCormick Jr., Schweitzer and White, 1972], King [King, 1980; King

and Nakornchai, 1982] and Chu and Tsai [Chu and Tsai, 1990].



Many other techniques have been proposed in literature. Hierarchical clustering

methods (Stanfel, 1985 and McAuley, 1972), non-hierarchical clustering

(Chandrasekharan and Rajagopalan, 1986), graph based techniques (Rajagopalan and

Batra, 1975), neural networks (Malave and Ramchandran, 1991), fuzzy logic (Xu and

Wang, 1989) and metaheuristics like Simulated Annealing (Boctor, 1991 and

Venugopal, and Narendran, 1992) and Genetic Algorithms (Joines, 1993).

Genetic Algorithms (GAs) are very well known, having several applications to general

optimization and combinatorial optimization problems [Davis,1991; De Jong, 1975;

Goldberg, 1989; Holland, 1975; Michalewicz, 1996]. A typical GA is based on the

controlled evolution of a structured population, recombination operators and the

schema formation and propagation over generations.

This paper presents an application of a Constructive Genetic Algorithm (CGA) to

solve the MPCF problem. The application is made through an analogy with the p-

median problem, since both are clustering problems. The search for p median vertices

on a network (graph) is a classical location problem. The objective is to locate p

facilities (medians) minimizing the sum of the distances from each demand point to

its nearest facility. Very good results were obtained by Lorena and Furtado [Lorena

and Furtado, 1998] using the CGA.

The MPCF is modeled as a bi-objective p-median problem that is used as a basis to

construct feasible assignments of machines and parts to specified clusters, and

considers evaluation of schemata and structures in a common basis. A particularly



derived structure and schema representation considers Jaccard distances for binary

strings. A variable size population is formed only by schemata, considered as building

blocks for feasible solutions construction along the generations. Recombination gives

population diversification, and a kind of local search mutation is applied to the

generated structures representing feasible solutions.

A CGA review is presented in section two, detailing the schemata representation,

CGA modeling, fg-fitness and the evolution process, and the selection, recombination

and mutation process. Section three presents computational tests considering two

instances from the literature and specially generated instances, providing insights

about the CGA performance on instances of increasing difficulty.

2. CGA review

The CGA is proposed to address the problem of evaluating schemata and structures in

a common basis. While in the other evolutionary algorithms, the evaluation of

individuals is based on a single function (the fitness function), in CGA this process

relies on two functions, mapping the space of structures and schemata onto ℜ + .

We resume the CGA in this section (for a complete description see the paper of

Lorena and Furtado [Lorena and Furtado, 1998 ,

http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF ]).

2.1 Representation

For schema representation, it was used a string of n+m symbols, where n is the

number of parts (or rows in the original matrix) and m is the number of machines (or



columns in the matrix). Each of the two portions of the schema evolves independently

from each other. This application considers only one part family for each machine

cell. The number k of clusters (part families or machine cells) to be formed must be

defined a priori.

The schemata have in each position one of the following three possible symbols:

1, to indicate a median part;

0, to indicate a non-median part assigned to its nearest median; and

#, to indicate a non-median part not yet assigned to a median.

Then, both portions of the schemata (parts and machines) must have exactly k

positions with the symbol 1 and the rest with 0’s or #’s. A schema with no #’s is an

structure that represents a feasible solution, where every non-median part is assigned

to its nearest median, and the same for the columns.

For instance, if we need to form three manufacturing cells, a schema for a problem

with 10 parts and 15 machines could be represented by

si = (0,1,#,1,0,#,1,0,#,0 / 0,0,1,#,#,0,1,#,1,#,0,0,0,#,0).

Where the first 10 symbols represent parts and the last 15 symbols represent

machines. Let pV1 (si)={2,4,7}  be the median part set, pV2 (si)={1,5,8,10} the assigned

non-median part set, and for machines, mV1 (si)={3,7,9},  mV2 (si)={1,2,6,11,12,13,15}.
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clusters will be formed assigning elements from pV2 (si) to elements from pV1 (si) and

the machine clusters assigning elements from mV2 (si) to elements from mV1 (si). The



assignment of each element from pV2 (si) to the nearest element from pV1 (si) (each

element from mV2 (si)  to the nearest from mV1 (si)) is made based on the Jaccard

distance among them (represented here by  qjζµ ).

The Jaccard similarity coefficient for two binary strings is defined as the number of

positions with value 1 in both sequences divided by number of positions with value 1

in both or one of the sequences. This coefficient is used as a "distance" measure

subtracting it from one.

The part clusters )(,...,)(),( 21 i
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2.2. CGA modeling

Let  Χ   be the set of all structures and schemata that can be generated by the 0-1-#

string representation of section 2.1., and consider two functions  f  and  g , defined as

f : Χ  →  ℜ +    and    g : Χ  →  ℜ +  such that  f(si) ≤  g(si) , for all  si ∈  Χ .  We define the

double fitness evaluation of a structure or schema si , due to functions  f  and  g, as  fg-

fitness.

The CGA optimization problem implements the  fg-fitness  considering two

objectives:

( interval minimization) Search for  si ∈  Χ   of minimal  {g(si) - f(si)},

and

( g  maximization) Search for si ∈  Χ   of maximal  g(si) .



The optimization objectives of the MPCF problem must be reflected on the interval

minimization problem. The second objective reflects the constructive phase of a CGA,

as the schema representation drives the fg-fitness evaluation to increase as the number

of labels # decreases and therefore structures have higher fg-fitness evaluation than

schemata.

To attain these purposes, a problem to be solved using CGA is modeled as the

following Bicriterion Optimization Problems (BOP):
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               si ∈Χ

Functions  f  and  g  must be properly identified to represent optimization objectives

of the problems at issue.

2.3. The fg-fitness
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A common upper bound to  f  and  g  will be necessary at the evolution process (see

2.4.). To compute this upper bound gmax, in the very beginning of the process, a

structure srandom representing a feasible solution (no #’s) is randomly generated and

g(srandom) is taken as the gmax value.

For all computational tests, an initial population was randomly created with 20% of

the rows and columns in each schema with symbols 0 and exactly k (number of part

families or machine cells) with symbols 1.

2.4. The evolution process

The evolution process in CGA is conducted to attain the objectives (interval

minimization and  g  maximization) of the BOP. At the beginning of the process, two

expected values are given to these objectives, a non-negative real number gmax  >

)( is sgMax
i Χ∈ , that is an upper bound to  g(si), for each  si ∈  Χ , and the interval

length  d maxg  , obtained from maxg  using a real number 0 < d ≤ 1.

The evolution process is then conducted considering an adaptive rejection

threshold, which contemplates both objectives in BOP. Given a parameter  α ≥ 0 ,  the

expression

g(si ) - f(si ) ≥   d gmax  - α . )]([ max ksggd −     (2.4.1)



presents a condition for rejection from the current population of a schema or structure

si.

The right hand side of  (2.4.1) is the threshold, composed of the expected value to the

interval minimization  d gmax  , and the measure )]([ max ksgg − , that shows the

difference of  g(si)  and gmax  evaluations. For  α = 0 ,  (2.4.1)   is equivalent to

comparing the interval length obtained by  si and the expected length  d gmax .

Schemata or structures are discarded if expression  (2.4.1)  is satisfied. When  α > 0 ,

schemata have higher possibility of being discarded than structures, as structures

present, in general, smaller differences )]([ max ksgg −  than schemata.

Parameter α  is related to time in the evolution process. Considering that the good

schemata need to be preserved for recombination, the evolution parameter  α  starts

from  0 , and then increases slowly, in small time intervals, from generation to

generation. The population at the evolution time α , denoted by Pα  , is dynamic in

size according to the value of the adaptive parameter α , and can be emptied during

the process.

The parameter α  is now isolated in expression  (2.4.1) , thus yielding the following

expression and corresponding  rank  to  si :
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At the time they are created, structures and/or schemata receive their corresponding

rank value )( isδ . The rank of each schema or structure is compared with the current

evolution parameter  α . At the moment a structure or schema is created, it is then

possible to have some figure of its survivability.  The higher the value of  )( isδ , and

better is the structure or schema to the BOP, and they also have more surviving and

recombination time.

2.5. Selection and recombination

The population is kept ordered according to "completeness" of the schema, i.e., the

number of labels #s, and the schema fg-fitness. The schemata in population Pα  are

non-decreasing ordered using the following key
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where  n(si) is the number of labels different from # in si , and 
[ ]

) g(si
 ) f(si - ) g(si=id .

The method used for selection takes the first schema from the best part of the

population (base) and the second one from the whole population (guide). Before

recombination, the first schema is complemented to generate a structure representing

a feasible solution, i.e., all #’s are replaced by 0’s. This complete structure suffers

mutation and is compared to the best one found so far. Only the best one is kept along

the process. The recombination merges information from both selected schemata, but

preserves the number of medians in both portions (parts and machines) of the new

generated schema or structure. If it is a new schema then it is inserted into the

population, otherwise it suffers mutation and is compared to the best one found so far.



The recombination is best described in the following. The assignment operations must

be performed in that order.

RECOMBINATION

Sbase(j) = #  and  Sguide(j)=#  then  Snew(j) ←  #
Sbase(j) = 1  and  Sguide(j)=1  then  Snew(j) ←  1
Sbase(j) = 0  and  Sguide(j)=0  then  Snew(j) ←  0
Sbase(j) = 1  and  Sguide(j)=#  then  Snew(j) ←  1
Sbase(j) = 0  and  Sguide(j)=#  then  Snew(j) ←  0
Sbase(j) = #  and  Sguide(j)=0  then  Snew(j) ←  0
Sbase(j) = # or 0  and  Sguide(j)=1  then

Snew(j) ←  1 and Snew(k) ←  0 for some Snew(k)=1
Sbase(j) = 1  and  Sguide(j)=0  then

Snew(j) ←  0 and Snew(k) ←  1 for some Snew(k)=0

The mutation process used was a technique that implements successive changes in the

median position inside each cluster followed by cluster reconstruction made by vertex

reallocation. The following pseudo-code is more illustrative.

MUTATION
Begin:
  S’ ←  S;
  For each part cluster in S’

Move the median to the cluster vertex which gives the minimum distance sum in the cluster;
  For each machine cluster in S’

Move the median to the cluster vertex which gives the minimum distance sum in the cluster;
  If  S is better than S’

return S;
  else

S’’ ←   S’ with non-median vertex realocation;
If S’’  is better than  S’

S ←  S’’;
Goto Begin;

else
return S’;

End:

At each generation, after new schemata insertion, the population is scanned to remove

all schemata satisfying the condition )( iSδα ≥ . As described earlier in this paper, the

evolution parameter α is initially set to zero and slowly increased at each generation.



2.6. The algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code:

CGA
Given  gmax and  d ;
α := 0 ;
ε := 0.05; { time interval }
Initialize Pα ; { initial population }
Evaluate Pα ; { fg-fitness }
For all  si ∈  Pα  compute )( isδ { rank computation }
end_for
While (not stop condition) do

For all  si ∈  Pα  satisfying  α < )( isδ do { evolution test }
α := α + ε ;
Select Pα from Pα-ε ; { reproduction operator }
Recombine Pα ;       { recombination operators }
Evaluate Pα ;  { fg-fitness }

end_for
For all new si ∈  Pα  compute )( isδ { rank computation }
end_for

end_while

3. Experimental Results

Most of the problem instances were randomly generated for the computational tests.

From the literature were taken two instances, one of them with a 20x35-part/machine

matrix (Burbidge, 1969) and the other one with a 40x100 matrix (Chandrasekharan

and Rajagopalan, 1989).

For performance measure was considered a coefficient that takes into account the

number of zeros inside the clusters and the number of ones outside the clusters,

respectively representing the cluster compactness and intercellular movement:

0

1

ee
ee
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−=



where: e  = number of  1's in the matrix

e0  = number of  0's inside the clusters

e1  = number of  1's outside the clusters

The ideal coefficient value is 1 (no zeros inside and no ones outside the clusters), and

better clustering has greater coefficient value.

To generate the instances, the number of parts, number of machines, within-cellular

density (WCD) and inter-cellular density (ICD) were specified. The WCD is the ratio

between the number of 1’s inside the cluster and its size. The ICD is the ratio between

the number of 1’s outside the clusters and the number of matrix elements outside any

cluster. Initially the matrix is generated with the clusters as specified, and then the

matrix is perturbed randomly changing the rows and columns positions. The final

form of the matrix can be used for the algorithm test.

Table 1 shows the results obtained with the instances taken from the literature, with

three runs for each instance. The performance coefficient values obtained were the

same best values found in the literature [Joines, 1993].

Table 2 shows the results obtained on randomly generated instances that differ from

each other by the inter-cellular density. The purpose was basically verifying the

algorithm sensibility under different inter-cellular densities. The performance

coefficient values obtained can be compared to the values for the original cluster

formation, computed previously by the instance generation program.



Table 3 shows the results obtained with randomly generated instances with different

within-cellular density. Also, the purpose was verifying the algorithm sensibility.

Table 1 shows that CGA can obtain results as good as those listed in the literature for

the two instances being considered. Results in Table 2 were obtained with several

instances of the same size, same WCD and increasing ICD. Table 3 show results

obtained with several other instances of the same size, same ICD and increasing

WCD. In both cases, it seems to indicate that ICD and WCD has no effect over CGA

performance.

All the tests were made using ε=0.01 as the α increment, and d = 0.1 as the overall

proportional deviation from gmax  .

4. Final considerations

This work describes an application of the Constructive Genetic Algorithm - CGA

proposed by Lorena and Lopes [Lorena and Lopes, 1996] to the clustering formation

of parts and machines in manufacturing cells. The CGA provides the following new

features to genetic algorithms, such as the direct evaluation of schemata, population

dynamic in size and formed only by schemata and the new fg-fitness process.

The computational results obtained were very good; presenting performance measure

values as good as those listed in the literature. The algorithm seems to be unaffected

by within-cellular density or inter-cellular density variation.
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Instance Part/
Machine

Cells Coef
Literature

Coef
CGA

0.7571
0.7571Burbidge 20/35 4 0.7571
0.7571
0.8403
0.8403Chandra 40/100 10 0.8403
0.8403

Table 1: Tests using instances from the literature



Instance Part/
Machine

Cells WCD ICD Coef
Original

Coef
CGA

0.7527
0.7527W80i02 20/35 4 0.8 0.02 0.7527
0.7527
0. 7330
0. 7330W80i03 20/35 4 0.8 0.03 0.7330
0. 7330
0. 6931
0. 6931W80i05 20/35 4 0.8 0.05 0.6931
0. 6931
0. 6140
0. 6140W80i10 20/35 4 0.8 0.10 0.6140
0. 6140

Table 2: Tests for ICD sensibility



Instance Part/
Machine

Cells WCD ICD Coef
Original

Coef
CGA

0. 6398
0. 6398W70i02 20/35 4 0.7 0.02 0.6398
0. 6398
0. 7527
0. 7527W80i02 20/35 4 0.8 0.02 0.7527
0. 7527
0. 8280
0. 8280W90i02 20/35 4 0.9 0.02 0.8280
0. 8280

Table 3: Tests for WCD sensibility



Figure 1: Original part-machine matrix

        0     1     2     3     4      5     6     7      8    9    10    11   12   13   14

   --|-------------------------------------------------------------------------------
0 |0  0  0  0  0  0  0  1  0  0  1  0  1  1  0
1 |1  0  1  0  1  0  0  0  0  1  0  0  1  0  0
2 |1  1  0  0  0  0  0  0  1  0  0  0  0  0  0
3 |0  0  1  0  1  1  0  0  0  1  0  0  0  0  0
4 |0  1  0  1  1  0  1  0  1  0  0  1  0  0  0
5 |0  1  0  1  0  0  0  0  0  0  0  1  0  0  0
6 |0  1  0  1  0  0  1  0  1  0  0  1  0  0  0
7 |0  0  0  0  0  0  0  0  0  0  1  0  0  1  1
8 |0  0  0  0  0  0  0  1  0  0  0  0  1  1  1
9 |0  0  1  0  1  0  0  0  0  1  0  0  0  0  0



Figure 2: Processed part-machine matrix

    1  3  6  8 11 | 0  2  4  5  9 | 7 10 12 13 14
-------------------------------------------------
 1                | 1  1  1     1 |       1
 3                |    1  1  1  1 |
 9                |    1  1     1 |
-------------------------------------------------
 2  1        1    | 1             |
 4  1  1  1  1  1 |       1       |
 5  1  1        1 |               |
 6  1  1  1  1  1 |               |
-------------------------------------------------
 0                |               | 1  1  1  1
 7                |               |    1     1  1
 8                |               | 1     1  1  1



Captions to illustrations

Figure 1: Original part-machine matrix

Figure 2: Processed part-machine matrix


