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Abstract

This paper offers a comprehensive review and classification of techniques to manip-
ulate part routing sequences for manufacturing cell formation. Individual techniques
are aggregated into methodological groups including array-based clustering, hierar-
chical clustering, non-h ierarchical clustering, graph theoretic approaches, artificial
intelligence, math programming, and other heuristic approaches. Discussion of each
model includes assumptions, analytic approach, performance criteria, and limitations.
Where possible, empirical results and comparisons of methods are provided. Evalua-
tion measures are discussed in terms of their practical consequences on the cell design
process. Recommendations are made for future research in the domain of stochastic
search techniques.

1 Introduction

International competitiveness and market demand for rapid response have led many firms
to consider non-traditional approaches to the design and control of manufacturing systems.
Flexibility and efficiency in producing a large number of products in small-to-medium lot
sizes are necessary to be competitive. One approach is the application of Group Technology
(GT) described as “recognizing and exploiting similarities in three distinct ways: (1) by
performing like activities together, (2) by standardizing similar tasks, and (3) by efficiently
storing and retrieving information about recurring problems.”[155] In essence, GT attempts
to decompose the manufacturing system into several manageable subsystems or groups.[194,

248, 283]

One important facet of GT is the development of a cellular manufacturing (CM) system in
which similar parts are aggregated into part families and dissimilar machines are grouped into
cells. The ideal cell (1) is independent, i.e., part family(s) are completely produced within the
cell; (2) has balanced setups; and (3) requires minimal backtracking. The result is simplified
scheduling, control, and implementation of automation. CM provides the benefits of a mass
production system for a discrete part, batch production system[59, 82, 79] including reduced
setup times, work in progress (WIP), throughput time, and material handling as well as
encouraging improved product quality.[35, 155, 272, 372] Employee/worker benefits include
worker flexibility, importance of social group, reduced frustration, and improved status and
job security.[107]

At the highest level, methods for part family/machine cell formation can be classified
as design-oriented or production- oriented. Design-oriented approaches group parts into
families based on similar design features while production-oriented techniques aggregate
parts requiring similar processing. Classification and coding schemes are design-oriented
tools that can be used to implement GT applications.[202, 155, 269, 268, 372] An overview of
classification and coding is presented by Askin and Vakharia[17] while a survey of the various
techniques is provided by Ham et al.[135] Analysis of codes facilitates rapid prototyping,
the development of new parts, and can be used for machine cell formation. Since part



codes are assigned based upon physical geometry, parts having similar design features have
similar codes providing a weak connection between part features and machine groupings.[83,
179, 371] Ham and Han[136] as well as Jung[165] have developed a multi- objective cluster
analysis tool using design features to form machine cells while Offodile [266, 264] used a
hierarchical clustering technique. Lee et al.,[210] Li and Ding,[213] Xu and Wang,[378] and
Ben-Arieh and Triantaphyllou[24] used fuzzy logic and design features to form part families
while Dutta et al. applied design-based grouping to a flexible manufacturing system.[102]
Several researchers have used the artificial neural network back-propagation algorithm to
form part families from design features [86, 171, 166, 243] while Awwal[19] used Hopfield
neural networks. El Maraghy and Gu[104] used expert systems, pattern recognition and
formal languages to design cells based on design features. Classification and coding involves
substantial implementation effort and cost. Much prerequisite part data must be developed
in order to apply the design-oriented techniques.[349] To aid in this developement, Billo
et al. [34, 33, 30] and Huq et al. [153] have applied engineering database modeling and
object-oriented modeling principles to the classification and coding problem.

This paper focuses on production-oriented cell formation techniques that manipulate
part routing sequences. FEarly work in this area was performed by Mitrofanov [239, 240]
and Burbidge.[38] Production flow analysis (PFA) by Burbidge [38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 53, 53, 99, 373] is one of the first and most comprehensively
recognized methodologies associated with GT.[113] Component flow analysis by El-Essawy
and Torrance[103]is considered by many to be equivalent to PFA. The goal of most of these
techniques is to obtain independent machine cells by minimizing intercell movement.

Within the same context, previous reviews of clustering methods for the cell formation
problem include. [70, 21, 79, 82, 150, 146, 182, 193, 200, 252, 248, 265, 309, 325, 371]
Comprehensive comparisons of several cell formation techniques have been developed.[55,
342, 131, 129, 37, 60, 85, 83, 145, 168, 197, 193, 203, 236, 250, 299, 304, 314, 321, 351, 352]
In addition, several researchers have utilized simulation as a means to compare different
cell formation solutions, design cells, and to justify manufacturing cell formation/group
technology versus functional and/or job shop layouts.[341, 340, 8, 27, 54, 88, 93, 101, 106,
109, 110, 115, 128, 228, 246, 289, 294, 315, 322, 336, 343, 313, 320, 247, 116, 319, 261, 270, 271]

Variations in breadth of coverage, timeliness, and level of detail concerning model de-
scription exist in all previous reviews. The objective of this paper is to provide an exhaustive
survey of research to date including emerging work in the area of stochastic search techniques
such as genetic algorithms and neural network approaches. Models are discussed in terms
of assumptions, analytic methods, performance criteria, and limitations. Emphasis is given
to reporting empirical results and comparative evaluations of techniques. A methodologi-
cal classification of techniques (shown in Figure 1) is adopted to improve readability and
to facilitate an understanding of the basic advantages/limits of generic approaches. The
impact of various cell formation evaluation measures on the cell design process is discussed
from a practical standpoint. Finally, recommendations on the most promising techniques for
continuing research are offered.
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Figure 1: Categories of Grouping Approaches

2 Array-Based Clustering

Array-based clustering is one of the simplest classes of production-oriented cell formation
methods. It operates on a 0-1 part/machine incidence array performing a series of column
and row manipulations trying to produce small clustered blocks along the diagonal (see Fig-
ure 2). The part/machine incidence matrix, A, consists of elements a;; = 1 if part j requires
processing on machine z, otherwise a;; = 0. Any tightly clustered blocks represent the can-
didate part families and machine cells, which are formed simultaneously. Chandrasekharan
and Rajagopalan [64] and Venugopal and Narendran[360] have done analysis of the 0-1 ma-
chine/part incidence matrix in order to exploit properties of this matrix for developing cell
formation algorithms. Arvindh and Irani [12] used principal component analysis to deter-
clustering. Table 1

mine the block diagonal format (BDF) capability of the matrix before
contains the major contributions for this method.
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(a) Part/Machine Matrix (b) Optimal Clustering

Figure 2: Part/Machine Matrix and Optimal Clustering




Table 1: Contributions in Array-Based Clustering

Method Approach References
BEA General [4,9, 83, 121, 120, 122, 233]
Worst Case Bound  [257]
TSP (212, 257]
DCA [59, 83, 370]
ROC General (83, 87, 180, 181, 235]
ROC2 [182]
MODROC [62]
OVM [158, 179]
Others  CIA (199, 191, 193]
ECA [26]
Order-Based GA [160]
SSP [15, 327]

2.1 Bond Energy Algorithm (BEA)

BEA[233] is a general purpose clustering algorithm that can be applied to any non-negative
array of numbers. It exploits the interrelationships (or bonds) between an element in the
array and its four neighboring elements. These bonds create an energy which is defined as
the sum of products of adjoining elements. For a particular row permutation(r) and column
permutation(p), the total bond energy (T BE) is given by the following.

1 m n
TBE(m,p) = 533 aij* i1 + aijar + dictj + dia g]
=1 5=1
where
apg,; = Om41,; = G0 = Gipy1 = 0
m = the number of machines
n = the number of parts

BEA seeks to maximize the TBE over all n!m! permutations. McCormick et al. [233] no-
ticed that since the vertical bonds are unaffected by rearrangement of columns and likewise
for the horizontal bonds by rows, the problem is decomposed into two separate optimiza-
tion problems. Arabie [9] termed a variation of BFEA the best insertion algorithm since
the next column or row to be placed can be located at the beginning, end, or anywhere
in between the previously positioned columns or rows. Another version, termed the best



neighbor algorithm,[9, 83] efficiently locates the next column or row immediately following
the previously positioned one. King [181] applied this algorithm to cell formation. Lenstra
[212] showed that this problem is a traveling salesman problem ( T'SP), and Ng [257] used a
graph theoretic approach (Christofides’ algorithm) [77] to solve the T'SP in order to establish
a worst-case bound.Even though BFEA produces tight clusters, they sometimes resemble a
checker board rather than a diagonal. In order to ensure that BEA produces what Arabie
termed a matrix in Robinson form, an alternative objective with a pairwise interchange of
columns/rows must be employed.[9]

2.2 Rank Order Clustering (ROC)

ROC: as proposed by King,[180, 181] rearranges columns and rows using a binary representa-
tion to reduce the computational effort of BEA. With the iterative procedures of King,[182]
Chan and Milner,[59] and Chu and Tsai,[83] exceptional elements (out-of-cell operations) are
first identified and temporarily removed. Then the algorithm is applied to the reduced ma-
trix in an attempt to produce the proper diagonal form. Bottleneck machines are duplicated
for each part and the algorithm is reapplied to this new matrix. If any of the duplicated
machines fall within the same cell, they are recomposed into a single machine.

Several limitations have been identified and explained by other researchers as well as
by King himself. The quality of the result is dependent upon the initial machine/part
incidence matrix.[59, 83, 371] Therefore, identification of exceptional elements and bottleneck
machines is somewhat arbitrary.[62] Also, a binary representation restricts the size of the
matrix to the internal word size of the computer .[83, 371] If exceptional elements exist,
the influence is much greater in the higher order bits, which can lead to a non-block form.
Even if natural diagonal clusters exist, ROC (or ROC2 discussed below) may not be able
to find them,[62] contrary to statements by King and Nakornchai.[182] A revised version,
ROC?2, was developed which overcomes the size limitation and increases the computational
efficiency.[182] However, other drawbacks were not addressed.

2.2.1 Modified Rank Order Clustering (MODROC)

MODROC [62] helps to overcome some of the limitations of ROC. ROC tends to produce
one cluster in the northwest corner, leaving the rest of the matrix relatively disorganized.
MODROC identifies this block, removes the columns associated with the block, and then
reapplies ROC' to the sub-matrix. This technique generally produces a large number of
clusters with a small number of parts/machines associated with them. In a subsequent
stage, some of the clusters are combined using a hierarchical clustering method (described
below) to form larger clusters.

2.3 Direct Clustering Algorithm (DCA)

DCA [59] was proposed to form tight groups along the diagonal of the machine/part matrix.
It rearranges the matrix by moving the rows with the left-most positive cells to the top



and the columns with the top-most positive cells to the left where a positive cell has a;;=1.
Identical outcomes result from any initial starting matrix, unlike ROC. DCA does not have
any size limitation due to computer word length and converges in a relatively few iterations.
Exceptional elements and bottleneck machines are removed from consideration by marking
them and reapplying the algorithm.

There are inherent flaws with the statement of the algorithm and the implementation
used in the paper. According to Wemmerlov,[370, 371] the proposed algorithm may not
produce viable or acceptable solutions because it redirects the diagonal with each iteration.
A modified version, DCA by Wemmerlov,[370] removes this flaw and can reproduce the
examples in the original paper by Chan and Milner.[59] If one removes the initialization
stage, DCA and DCA look very much like ROC2.[370, 371] Chu and Tsai[83] showed that
even the modified version of DCA has difficulty producing natural diagonal blocks even when
they exist in the input matrix. DCA has been shown to perform poorly when applied to
large, real-world data sets as it tends to form one small group in the northwest corner and

then a very large, sparse group containing the rest of the machines and parts.[370, 371]

2.4 Comparison of Array-Based Methods

Comparing each of the three array-based clustering techniques, BEA, ROC and DCA, Chu
concluded that BEA significantly outperformed the other two in problems with and without
exceptional elements and bottleneck machines.[83] The array-based clustering techniques
used in the design of manufacturing cells are both efficient and simple to apply to the
part/machine matrix. However, these algorithms generally do not take into account other
types of manufacturing data such as cost of machines and maximum cell size, and they usually
require visual inspection of the output to determine the composition of the manufacturing
cells.

3 Hierarchical Clustering

Hierarchical clustering techniques operate on an input data set described in terms of a
similarity or distance function and produce a hierarchy of clusters or partitions. At each
similarity level in the hierarchy, there can be a different number of clusters with different
numbers of members. Unlike the array-based techniques, hierarchical clustering methods do
not form machine cells and part families simultaneously. These methods can be described
as either divisive and agglomerative. Divisive algorithms start with all data (machines or
parts) in a single group and create a series of partitions until each machine (part) is in a
singleton cluster. Stanfel [332] is the only researcher to apply a divisive method to cellular
manufacturing; therefore, attention is focused on agglomerative clustering algorithms that
start with singleton clusters and proceed to merge them into larger partitions until a partition
containing the whole set is obtained.

Hierarchical clustering methods involve a two-stage process that first calculates similarity
coefficients between each pair of individuals (machines or parts). This can be represented as



a lower triangular matrix since the similarity coefficient between individuals is commutative.
The second stage of the process determines how the pairs with roughly equivalent similarity
levels should be merged. The specific logic for each individual method is described below.

3.1 Choice of Similarity Measure

Because similarity coefficients can incorporate manufacturing data other than just the binary
part/machine incidence matrix,[132, 305, 297] a variety of similarity measures have been
defined. McAuley[232] used the generic Jaccard coefficient to form machine cells. Carrie,[57]
who applied McAuley’s work to several real problems, defined a similarity coefficient between
pairs of parts to form part families first. There does not appear to be any inherent advantage
to forming the part families or machine cells first.[371]

Gupta and Seifoddini’s [132] similarity coefficient incorporates production requirements,
the machine/part incidence matrix, the actual sequence of operations, the average produc-
tion volume for each part, and the unit processing time for each of the part’s operations.
Seifoddini and Djassemi [303] modified the Jaccard similarity to take into account produc-
tion volume. When compared with the Jaccard similarity, the production volume based
similarity reduces the sum of intercellular and intracelluar movements as well as improves
the scheduling process. Mosier [252, 251] proposed the additive similarity coefficient (ASC),
a weighted adaptation of the Jaccard coefficient that incorporates the relative importance
of each part, and the multiplicative similarity coefficient (MSC), which is approximately a
correlation coefficient. De Witte [98] and Taboun et al. [343] compared a variety of different
similarity measures and coefficients.

3.2 Hierarchical Clustering Algorithms

The first step in hierarchical clustering is to group the two individuals, ¢ and j, with the
highest level of similarity into one cluster, zj. The combined cluster behaves as if it is a single
individual. The similarity between this cluster and individual &, as defined by the SLC [232]
algorithm, is the maximum of the similarities between k£ and the component members of
the cluster zj. Iterations continue to merge the groups with the largest similarity coefficient
until a single group exists.

The most common way to display the hierarchy of clusters generated by the algorithm is
in the form of a dendrogram. The cell designer must choose a similarity level or threshold
in order to define the number of clusters. As the threshold increases, the number of cells in-
creases while the size of each cell decreases. Seifoddini and Wolfe [306] selected a threshold
that produces the minimum total material handling cost (intercellular plus intracellular).
Hierarchical clustering algorithms do not cluster machines and parts simultaneously, so ini-
tially only cells or families are formed. The final step is to reapply hierarchical clustering or
a secondary procedure, such as ROC, to allocate parts (machines) to the families (cells).

SLC'has a severe chaining problem, which means that two clusters can be grouped based
merely upon a single bond between one machine in each cluster.[132, 232, 249, 305, 295, 297]



The chaining problem can lead to improper machine assignment in the groups.[297, 317, 318]
To help reduce the chaining problem, Seifoddini and Wolfe [295] applied the average linkage
clustering (ALC) algorithm. The similarity between two clusters is defined as the average
of the similarity coefficients for all of the members of the two clusters. A weighted average
can also be employed.[132] Complete linkage clustering (CLC) further reduces the chaining
problem by selecting the minimum similarity coefficient as the in-between cluster relationship
instead of the maximum.[132, 249]

SLC, ALC, and CLC algorithms can deal with both similarity coefficients as well as
Euclidean distances. The Centroid and the Ward method [348] deal with Euclidean distance
measures only. Clusters are merged by selecting the minimum distance between clusters
instead of the maximum similarity. Miyamoto [241] presented more efficient ways of updating
the similarity or distance measures for SLC, ALC, CLC, Centroid, and Ward algorithms.

3.3 Comparison of Hierarchical Methods

Hierarchical clustering methods can be implemented easily and have an advantage relative
to array-based clustering, i.e., they have the flexibility to incorporate manufacturing data
other than the binary machine/part incidence matrix.[132, 305, 297] One disadvantage is that
the designer must decide on an appropriate similarity level to select the groups. In small
applications, this is not a problem since the designer can visually evaluate the dendrogram.
However, as applications become too large for output in the form of a dendrogram, other
means of storing the hierarchy must be employed, such as minimum spanning trees.[232] The
duplication of bottleneck machines is not handled by most algorithms, although Seifoddini
and Wolf [305] employed a strategy for this problem.

Mosier,[249] Shafer,[317, 318] and Vakharia and Wemmerlov([352] conducted an in-depth
comparison of many different hierarchical clustering algorithms with different similarity and
distance coefficients. Gupta compared four hierarchical clustering algorithms, SLC, ALC)
CLC, and weighted average linkage clustering (WALC) and evaluated their performance
with respect to their chaining effect. He concluded that the chaining problem is increasingly
severe in order of CLC, WALC , ALC, and SLC.[132, 129] Seifoddini and Hsu [304] show
that the weighted similarity coefficient produces better solutions based on the number of
exceptional elements than the Jacard similarity and the commonality score. They show that
grouping efficiency, grouping efficacy, and the grouping capability indices were not consistent
performance evaluation measures (see Section 10 on performance measures). Table 2 lists
the contributions in the area of hierarchical clustering methods.

4 Non-hierarchical Clustering

Non-hierarchical clustering techniques operate on an input data set by prespecifying the
number of clusters to be formed using a similarity or distance function. These techniques
produce a single partition of the data. The advantage of non- hierarchical clustering over



Table 2: Agglomerative Hierarchical Clustering Methods

Method Approach References
SLC General (32, 298, 304, 235, 376, 29, 264,
318, 323, 350]
Jacard/Modified Jacard [57, 232, 302, 304]
ASC/WSC Measure (252, 251, 304]
Different Measures (249, 317, 348, 350, 343]
Different Process Plans  [323]
ALC General [303, 132, 131, 129, 297, 305,
295, 298, 299, 318, 350]
Weighted ALC (132, 132, 129]
CLC (132, 131, 129, 130, 249, 318,
348, 350]
Median/Lance and Williams [348]
Centroid (249, 348, 350]
Wards [249, 318, 348, 350]
Set Merging (74, 76, 354, 350]
Selection of a Threshold [306]

hierarchical clustering is that a similarity or distance matrix does not need to be computed or
stored.[7] More natural clusters tend to be formed because data members are not permanently
bound to a group in the early stages of clustering.[61] The obvious disadvantage is that the
number of clusters must be specified a priori, potentially forcing some natural clusters to
be merged or partitioned. However, the number of clusters can be changed and the data
reprocessed in order to evaluate the sensitivity of the results. Table 3 summarizes the work
in this area.

4.1 Ideal Seed Non-hierarchical Clustering (ISNC)

Chandrasekharan and Rajagopalan [61] applied a non-hierarchical technique (ISNC) using
an evaluation criterion called “grouping efficiency,” n , which measures intercell movement
and within-cell machine utilization. To overcome the limitation of specifying the number of
clusters, k, a priori, the problem is first formed as a bipartite graph. Then, a theoretical
upper limit on the maximum number of independent part families or machine cells is devel-
oped. A modified MacQueen’s k-means method was adopted.[229] The original MacQueen
algorithm selects the first & data units or vectors as the initial seed points. The remaining
data units are assigned to the cluster with the nearest centroid. After each assignment, the
centroid is updated to include the current data unit. After all the data units have been as-
signed to a cluster, the existing cluster centroids are taken as fixed seeds and the algorithm



Table 3: Non-Hierarchical Clustering Methods

Method Approach References

Classical Approaches General [211]
K-means/Revised K-means [229, 63, 61, 124, 123]
GRAPHICS [331]

Non-Classical Approaches Fuzzy C-Means [80]
Unsupervised Neural [173,174, 172, 216, 215, 285, 90,
Networks 284, 287, 359, 55, 342]

reassigns all data units to the nearest seed points without any updating.[7] The number of
natural clusters is more likely to be smaller than the initial upper limit. However, the orig-
inal algorithm forces every cluster to have at least one member (the initial seed selection),
which is not appropriate for this problem. The modified algorithm selects the last & data
units as the initial seed points. By the time these units are assigned to clusters, the cluster
centroids will have shifted considerably from the original values.[61]

4.2  Zero-One Data: ISNC (ZODIAC)

ZODIAC, developed by Chandrasekharan and Ragagopalan,[63] is a much improved and
expanded version of ISNC.[61] The initial seed selections in the first stage can be arbitrary,
artificial, representative, or natural and are no longer limited to an arbitrary choice like that
of classical cluster analysis.[7] The evaluation criterion, n , was expanded by the introduction
of a “limiting efficiency,” no, or upper bound. Seed selection uses the statistical distribu-
tion of inter-point distances to ensure that all the seeds belong to different clusters. The
authors suggest that the selection process could be based upon similarities rather than dis-
tances. Natural seeding tends to produce better groupings over the artificial-representative

method.[63]

4.3 Grouping Using Assignment Method for Initial Seed Selection
(GRAFICS)

Srinivasan and Narendran [331] showed that the initial seed selection of ZODIAC can still
lead to a collapse of some beneficial clusters or numerous groups with singleton members.
Even natural seeds can produce erroneous results by generating fewer seeds than is needed,
thus reducing the machine utilization.[331] Also, the minimum rectilinear distance used as
the basis for clustering does not truly represent the machine processing that is required by
an individual part.

GRAFICS overcomes these limitations by generating initial seeds from an assignment
problem, which maximizes the similarity between machines. Each of the sub-tours is iden-



tified and used as initial seeds in a non-hierarchical clustering algorithm using a maximum
density rule as the clustering criterion.

5 Comparison of Non-hierarchical Methods

An extensive comparison using 38 data sets was made between GRAFICS[331] and ZODIAC.[63]
GRAFICS outperformed ZODIAC'in the areas of grouping efficiency, grouping efficacy [183],
and computational requirements. GRAFICS performed better for matrices containing ex-
ceptional elements.[331] Miltenburg and Zhang,[236] in a comprehensive comparison of nine
well-known algorithms including array-based and hierarchical clustering techniques, found
that the non-hierarchical clustering method, ISNC, outperformed the other eight. This con-
clusion was based upon an evaluation using a primary measure, 1, (grouping measure) and
two secondary measures, 7. (clustering measure), and TBE (bond energy). The measures 7.
andn, are discussed in Section 10.

6 Graph Theoretic Approaches

Graph theoretic approaches, listed in Table 4, structure the cell formation problem in the
form of networks, bipartite graphs, etc. Rajagopalan and Batra were among the first to
apply a purely graph theoretic approach to the cell formation problem in which the nodes
represent the machines and the arcs indicate the similarity among the machines.[279] They
employed a graph partitioning approach to form the machine cells by assembling cliques
determined from the graph and point out that the minimum amount of intercell movement
does not always reflect the true cost. For example, if the intercell movement occurs in the
middle of the operational sequence, two (not one) intercell movements will be required. After
the allocation has taken place, the intercell movement, along with the machine loads, can be
used to assign duplicate machines to individual cells. De Witte [98] used this approach with
different similarity coefficients to expand on earlier work by de Beer et al. [97] to design
primary, secondary, and tertiary cells. Other approaches include the minimum spanning tree

(MST) by Ng [260, 258] and a heuristic graph partitioning approach by Askin and Chiu.[13]

6.1 The Network Flow Approach

Vohra et al. [364] applied a network approach using a modified Gomory-Hu algorithm [119]
to find the minimum intercellular interaction. Lee and Garcia-Diaz [206] represented the
clustering problem as a capacitated circulation network that measures the functional simi-
larity between machines. They employed the primal-dual algorithm developed by Bertsekas
and Tseng [25] to determine a complete loop and several sub-loops representing the machine
cells. Once the machine cells have been determined, other algorithms are needed to assign
parts or part families to the various machine cells.



Table 4: Graph Theoretic Methods

Method Approach References
Graph Partitioning Algorithms [13, 98, 279, 278]
Network Flow Relaxation Method [25, 206]
Gomory-Hu [364, 375]
Bipartite Graphs (63, 61, 148, 184, 186, 357]
Minimum Spanning Tree [3, 60, 67, 258, 260, 329]
SSP [15, 327]
Other [6, 10, 105, 156, 275]

The special properties of a network flow problem can be exploited to outperform math-
ematical programming approaches.[206] There are several specific advantages of using the
network approach versus the p-median model described in Section 8. Natural clusters can
be formed since there is no a priori specification of the required number of clusters, and the
approach is more computationally and memory efficient.

6.2 Bipartite Graph

King and Nakornchai [182] suggested that cell formation could be represented as a bipartite
graph by letting the parts and machines represent the two sets. An edge between the
sets represents the processing of a part on a machine. Chandrasekharan and Rajagopalan
demonstrated that the existence of independent machine cells and part families could be
represented by the disjoint components of the bipartite graph. The authors then determined
the maximum number of disjoint components (clusters) that can exist for any given bipartite

graph.[61, 63]

7 Methods Based on Artificial Intelligence

Researchers have increasingly applied artificial intelligence (AI) techniques to the cellular
manufacturing problem as shown in Table 5. Many of these methods use solution method-
ologies patterned after non-hierarchical clustering methods, array-based clustering methods,
etc. However, their Al implementation offers advantages over traditional cell formation
methods.



Table 5: Artificial Intelligence Methods

Method Approach Subcategory References
Artificial Neural ~ Supervised - Back Propagation [170, 171, 245, 340] [243,
Networks Learning 242, 244]
- Hebbian Learning [231]
Unsupervised - ART [69, 201, 91, 230, 173, 174,
Learning 172, 216, 215, 285, 90, 89,
284, 287, 359]
- Fuzzy ART [55, 342]
- Other [207, 286]
- Competitive - Learning [84, 243, 359]
- Kohenen [359]
Expert Systems/ [75, 138, 147, 189, 204,
Knowledge Base 190, 284]
Formal Logic/ (346, 374]
Language Theory
Fuzzy Logic [379, 278, 80, 78, 55, 342]
Simulated [209, 5, 36, 217, 321, 352,
Annealing 361, 140]
Tabu Search [149, 223, 224, 321, 352]
Genetic Order-Based [177, 29, 28, 96, 160]
Algorithms
Integer-Based (339, 133, 162, 160, 161,
163, 362]

7.1 Artificial Neural Networks

Artificial neural networks have been applied successfully to many manufacturing areas.[380]
Several researchers have applied a supervised learning approach to the classification and
coding problem based on the back-propagation learning algorithm.[86, 171, 166, 242] This
method can be also applied to a production- oriented method to determine the machine
cells and part families. Unsupervised learning techniques are better suited for the general
clustering problem. It is not necessary to specify a priori the number of clusters nor the
representative members of these clusters. Once the part families and machine cells are
determined, a supervised model can be trained to assign new parts to the existing cells.

Malave and Ramchandran [231] applied a modified version of the Hebbian learning rule
to the cell formation problem, while others have applied other unsupervised neural learn-
ing algorithms such as competitive learning [84, 243, 359] and Kohonen nets.[359] Several
researchers used the neural network classifier based on an unsupervised learning model by
Carpenter-Grossberg [56] called adaptive resonance theory (ART1) and its variants.[69, 201,



91,230, 173, 174, 172, 216, 215, 285, 90, 284, 287, 359] Unsupervised learning techniques such
as ART1 cluster the input vectors into separate groups based upon similarities.[174, 216, 285]
Kaparthi and Suresh applied this technique to three data sets in the literature as well as
several larger data sets. The artificial neural network technique executed quickly and ob-
tained good clusters.[216] The real advantage is its ability to solve large data sets ( 10,000
parts and 100 machine types). ART and its variants can be classified as non-hierarchical
clustering methods.

Another variant of the ART models, Fuzzy-ART, handles both analogue and binary-
valued inputs while utilizing a new learning law.[55, 342] Burke and Kamal [55] compared
Fuzzy-ART with ART1, DCA,[59] Hebbian Learning,[231] and a procedure by Ballakur and
Steudel [22] and concluded that Fuzzy-ART was a viable algorithm that outperformed all
the other algorithms. However, this comparison was based on very small data sets and did
not test the robustness of each algorithm. Suresh and Kaparthi [341] tested Fuzzy-ART
against ART1, ART1/KS,[174] ROC2,[182] and DCA [59] on large, imperfect data sets in a
replicated set of experiments. Fuzzy-ART produced superior solutions in terms of the bond
energy recovery ratio (BERR), where BERR is the ratio of the final bond energy to the initial
bond energy. However, ART1 and ART1/KS had faster execution times than Fuzzy-ART,
which was faster than ROC2 and DCA.

7.2 Fuzzy Logic

Most clustering methods assume “that part families are mutually exclusive and collectively
exhaustive.”[379, 80] While some parts definitely belong to certain part families, it is not
always clear which family is appropriate.[80, 213, 378] Li and Ding [213] and Xu and Wang
[378] applied fuzzy mathematics to this problem. Chu and Hayya [80] applied a fuzzy ¢-means
clustering algorithm to production data. The fuzzy ¢-means clustering can be classified as a
non-hierarchical method and suffers from the same problems associated with those methods.
The number of part families, ¢, must be specified a priori. The authors stated that if ¢
is underestimated, the result is far from optimal. Also, a poor stopping criterion leads to
inferior clusters. However, the technique is unaffected by exceptional elements. The workload
among machine cells can be balanced better by using a reallocation scheme that utilizes the
degree of membership a part has in a particular family. Chu and Hayya compared the fuzzy
approach to the optimal 0-1 integer programming model and an heuristic approach.[81] The
fuzzy approach was clearly better than the integer programming (IP) approach in both
execution time and the quality of the solution. It was not as efficient as the heuristic but
provided more information than is available from a “crisp” definition of families and cells.

7.3 Syntactic Pattern Recognition

Wu et al. [374] applied a syntactic pattern recognition approach to forming the cellular
manufacturing system. Utilizing analytic methods from formal language theory, complex
patterns (routing sequences) are represented as strings of primitive characters (machine
identifiers). The grammar of the language provides a set of rules for constructing complex



sub-patterns and patterns out of the primitives (simple primitives or prime sub- patterns)
and for identifying relations between these patterns. Given a set of complex patterns and
rules, the recognition process, i.e., the assignment of new parts to cells, involves parsing
the primitives. The authors note that “the similarity between manufacturing cells and
grammars is immediately noticed by recognizing that each cell can speak a language (the
family of components it can produce).” Advantages of syntactic pattern recognition include
cell formation taking into account material flow patterns, operation precedence relations,
and non-uniform importance of machines.[346]

7.4 Genetic Algorithms and Simulated Annealing

Genetic algorithms and simulated annealing are very efficient stochastic search algorithms
that try to emulate natural phenoneoma. These algorithms have been used successfully to
solve a wide range of optimization problems, especially combinatorial problems. Because of
the NP-completeness of the grouping problem and existence of local minima, these stochastic
search algorithms [184, 212, 361] offer promising solution techniques for large scale problems.
Simulated annealing mimics the process of cooling a physical system slowly in order to reach a
state of globally minimum potential energy.[209, 5, 36, 217, 321, 352, 361, 140] The stochastic
nature of the algorithm allows it to escape local minimum, explore the state space, and find
optimal or near- optimal solutions. Boctor [36] and Venugopal et. al. [361] used simulated
annealing to solve integer programming formulations of the cell formation problem.

Genetic algorithms (GAs) mimic the evolutionary process by implementing a “survival
of the fittest” strategy. (GAs solve linear and nonlinear problems by exploring all regions of
the state space and exponentially exploiting promising areas through mutation, crossover,
and selection operations.[234] They have proven to be an effective and flexible optimization
tool that can produce optimal or near-optimal solutions. Joines et al. [160, 161, 164]
developed a genetic algorithm approach to solve integer programming formulations of the cell
design problem, allowing multi-criteria objective functions and constraints on the number
of permissible cells. The algorithm was tested on 17 data sets from the literature and was
able to find as good solutions as, if not better than, those in the literature. Venugopal et al.
[362] also used GAs to solve a multi-objective integer programming formulation of the cell
formation problem.

These stochastic search techniques offer capabilities (missing in many of the more tradi-
tional methods) that can provide the basis for more practically useful cell formation algo-
rithms. G'As do not make strong assumptions about the form of the objective function as do
many other optimization techniques.[234] Also, the objective function is independent of the
algorithm, 1.e., the stochastic decision rules. The only objective function requirement is that
it maps the solutions into a partially ordered set. This offers the flexibility to interchange
various objective functions and to utilize multi-criteria objective functions. Convenient sub-
stitution of various evaluation functions allows the system designer to generate and review
alternative cell designs quickly. Single-criteria objective functions limit a method’s useful-
ness to that of assisting the cell designer rather than autonomously forming the system. To
move toward a satisfactory algorithmic result, multiple criteria objective functions that in-



clude such things as setup time requirements, tooling and crewing requirements, alternative
routings, cost of machines, intercell transfers, and reduced machine utilization are needed.

(GGAs also offer the ability to constrain the number of permissible cells or part families
selectively. Most clustering algorithms cannot identify all naturally occurring clusters and
find solutions with a constrained number of clusters. The cell designer, at least initially,
might specify an unconstrained problem to identify the naturally occurring groups of parts
and/or machines. Afterwards, practical limits on the number of cells arising from availability
of floor space, maximum work team sizes, or excessive machine redundancy requirements can
be imposed.

The ability to analyze the ordering of operations within routing sequences is important
not just for material flow considerations, but also because cell throughputs are dependent
upon setup times, which are usually sequence dependent. Joines [160] and Daskin [96] devel-
oped non- classical, array-based clustering techniques using order-based genetic algorithms.
Order-based (GAs have the potential for analyzing operation precedence relationships to fur-
ther refine the cell design process.

Industrial data sets are often too large for visual methods to associate machine cells and
part families effectively. (GAs can form machine cells and part families simultaneously and
avoid visual inspection of the data. Further exploitation of genetic algorithm capabilities
makes practical solutions to industrial scale problems more realistic.

8 Mathematical Programming

Purcheck [274, 276] was among the first to apply linear programming techniques to the GT
problem. As an optimization technique, the objective in cluster analysis is to maximize the
total sum of similarities between each pair of individuals (machines or parts) or to minimize
the distances between each pair. As stated by Kusiak,[200] the distance between any pair can
be any symmetric function such that d;x =0, d;; = d;;, and d;; = d;;, + d,,,. The Minkowksi,
the weighted Minkowksi, and the Hamming distance measures are the most often used in
connection with cell formation.[188, 200] Models developed with distance-based objective
functions can easily be extended to similarities.

Mathematical programming approaches for the clustering problem are nonlinear or linear
integer programming problems.[36, 188, 200] These approaches offer the distinct advantage
of being able to incorporate ordered sequences of operations, alternative process plans, non-
consecutive part operations on the same machine, setup and processing times, the use of
multiple identical as well as outsourcing of parts. These formulations also suffer from three
critical limitations. First, because of the resulting nonlinear form of the objective function,
most approaches do not concurrently group machines into cells and parts into families.[36]
Second, the number of machine cells must be specified a priori, affecting the grouping pro-
cess and potentially obscuring natural cell formations in the data. Third, since the variables
are constrained to integer values, most of these models are computationally intractable for
realistically sized problems.[36, 206] Large scale problems typically require heuristic and ap-
proximate methods with Lagrangean relaxation and subgradient optimization having been



proposed,[125, 126] as well as a variety of simulated annealing and genetic algorithm ap-
proaches. Table 6 summarizes the efforts of mathematical programming applied to the cell
formation problem.

Table 6: Analytic Methods[307]

Method Approach References
Linear Programming General [78, 137, 256, 267, 274,
276, 275, 277]

Dealing with exceptional elements  [312, 220]
Integer Programming  P-Median/Generalized P-Median [114, 23, 106, 200, 188,

108]

Alternative Process Plans [18, 162, 188, 215, 280,
326]

Budget and capacity of plans (280, 72]

Column Generation (Process plans) [282]

Comparison [85]

Cells and families (363, 36, 127, 221, 222,
224, 280]

Knap Snack Problem [108]

General [87, 92, 95, 94, 125, 126,

127, 159, 175, 202, 214,
291, 338, 353, 352]

NonLinear [127, 222, 334, 292]
Lagrangian Relaxations [187, 205, 245, 255, 328,
358]
Lot Splitting /Non-consective [224]
Operations
Mixed [16, 1, 134, 281, 344, 167]
Goal programming [121, 120, 122, 237, 290,
316, 318]
Assignment Problem (363, 221, 233, 263, 324,
328, 330, 331]
Dynamic Programming (186, 335, 357]
Eigenvectors [356]

8.1 The p-median Model

A classical clustering model, the p-median model, is used to cluster n parts (machines) into p
part families (machine cells). Constraints specify that each part can belong to only one part



family and the required number of part families is p. A part can be only assigned to a part
family that has been formed. Solutions obtained are optimal for a specified p, requiring that
all values of p be evaluated to find the minimum objective function value.[330] The p-median
model assumes that each part, ¢, has only one set of machining operations, i.e., one process
plan. Kusiak [188, 200] relaxed this assumption in the generalized p-median model.

8.2 Assignment Problem

McCormick et al. formulated the clustering problem as a quadratic assignment problem.
They chose to apply BEA to determine a good solution instead of optimally solving the
assignment problem because of the computational inefficiencies.[233] Srinivasan and Naren-
dran [331] solved a simple assignment problem as part of the non-hierarchical clustering

technique, GRAFICS.

Shtub [324] proved that the general formulation of the GT problem (the p-median model)
and the generalized GT problem (the generalized p-median model) are equivalent to the
generalized assignment problem (GAP). He used a branch and bound algorithm by Ross and
Soland [288] to solve the GAP where tasks are considered part processes and agents are the
process families.

Srinivasan et al. [330] showed that the assignment model can overcome some of the
limitations of the p- median model, i.e., the number of part families, p, is not specified a
priori. A similarity measure between machines is maximized to determine closed loops that
represent the groups. Their approach determines the machine cells by an assignment model.
If the parts can be assigned to these machine cells such that they are disjoint, the algorithm
stops. If this condition does not hold, another assignment problem is solved to determine
the part families, which then are assigned to the machine cells.

8.3 Dynamic Programming

Steudel and Ballakur [335] developed a two-stage heuristic to solve the machine cell formation
problem. The first stage uses a dynamic programming approach to determine a sequence or
chain of machines, which maximizes a machine similarity. The second stage partitions the
maximum machine chain into individual cells. A new similarity measure, Cell Bond Strength
(CBS), was developed to overcome the underestimation of similarity inherent in the Jaccard
coefficient. CBS incorporates the processing times of the parts.

8.4 Other Analytic Approaches

The optimization techniques discussed to this point are limited to the formation of part
families or machine cells and require some other means to perform the assignment of machines
to the cells. Boctor developed an analytic model that simultaneously clusters or assigns
machines and parts to cells [36] while minimizing the number of exceptional elements. For
problems of meaningful scale, this technique is inefficient due, in part, to the number of



integrality constraints. However, the constraints for the parts can be relaxed to improve
efficiency and not affect the solution adversely. Since the model has the unimodularity
property and all right-hand side values are integers, all the basic solutions are integer. The
number of parts is usually larger than the number of machines, which greatly increases the
computational efficiency. Optimal solutions for large-scale problems were computationally
intractable, leading Boctor to recommend a simulated annealing approach.

Gunasingh and Lashkari performed extensive research in the area of mathematical opti-
mization applied to cell formation.[125, 126, 127] They developed several models that elim-
inate the assumption that each part operation is restricted to one machine, allowing more
flexibility in forming cells and families. They also developed two 0-1 nonlinear integer models
that simultaneously cluster parts and machines into families and cells, respectively. The first
model groups the parts and machines by maximizing the compatibility between the parts
and machines. The second model clusters the parts and machines into cells by minimizing
the cost of duplicating the machines and the cost of intercell movements. The method of
Glover and Woosley [118] was used to linearize the objective function of both formulations.

Kusiak’s generalized p-median model [188, 200] considered alternative process plans to
improve the quality of the cells but did not include the cost and capacity of machines.
Choobineh’s integer programming model [72] takes these into account but does not include
different process plans explicitly. Rajamani et al. [280] developed three integer programming
models that incorporate both budget and machine capacity, as well as alternative process
plans. Logendran [220] developed a two-phase methodology to model the process of duplica-
tion of bottleneck machines that takes into account the sequence of operations and budgetary
limitations. Then the model is solved using 0-1 integer programming.

8.5 Techniques Applied to Flexible Manufacturing Systems (FMS)

Ventura et al. [358] formulated the grouping of parts and tools in an FMS as a 0-1 integer
programming model equivalent to a model by Kusiak et al..[188] An upper bound on this
model was determined using a Lagrangian dual approach. Jain et al. [159] developed a
0-1 integer programming model with resource constraints, i.e., number of machines and the
number of copies of tools, to minimize overall system cost. Mulvey and Crowder [255] and
Kusiak [187] also employed a Lagrangian relaxation but only to the part family formation
problem in FMS. Stecke [334] and Sankaran and Kasilingam [292] formulated the machine
grouping problem as a nonlinear mixed integer problem, while Hwang [154] developed a
mathematical model that does not require that a similarity criterion be maximized. Kumar
et al. [184] developed a 0-1 quadratic program using a modified eigenvector approach to
solve the problem.

9 Effective Heuristic Approaches

Other than the mathematical programming techniques, most cell formation methods are
heuristics. However, those discussed so far have been placed in aggregate categories, e.g.,



array- based clustering, artificial intelligence techniques, etc., based on their general solution
approach. This section explains an additional diverse set of heuristics as listed in Table 7.

9.1 Branch and Bound Based Algorithms

Branch and bound methods have been used to solve the integer programming models de-
scribed earlier. The Cluster Identification Algorithm, CIA, is an efficient cell formation
heuristic that works only for perfect data sets, i.e., data sets with no exceptional elements
or bottleneck parts/machines. To overcome this limitation, Kusiak [192] developed three
branch and bound schemes to be used in conjunction with CIA4.[199] Kusiak [193] compared
his procedure with nine other cell formation algorithms and concluded that the branch and
bound approach produced better quality solutions.

Al-Qattan [4] formed machine cells and part families using a branch and bound method
that uses network analysis by branching from a seed machine (the starting node) and bound-
ing on a completed part, i.e., a part not requiring any more operations. It has been shown

to outperform ROC [180, 181] and the hierarchical methods by Seifoddini and Wolfe.[305]

9.2 Multi-Objective Procedures

Practical cell formation objectives, such as minimizing machine duplication and crew and
tooling requirements, must be balanced against conflicting objectives such as minimizing
intercell transfers and maximizing machine utilization. Toward this goal, Wei and Gaither
[366] extended Kumar and Vannelli’s [186] single objective heuristic into a multi-objective
heuristic. The heuristic averaged 96% of the optimal solution in minimizing bottleneck costs
and intra/intercell load imbalances while maximizing the average cell utilization. Frazier et
al. [112] developed an interactive,multi-objective cell formation heuristic. As an illustration,
the authors chose to minimize the total cost of exceptional elements, the number of excep-
tional elements, and the utilization imbalance among the cells while maximizing the overall
machine utilization across all cells.

9.3 Other Heuristics

MAchine-component CEll formation (MACE) of Waghodekar and Sahu [365] groups ma-
chines into cells based upon a product similarity measure. It minimizes the number of
exceptional elements that occur and outperforms the ROC algorithm.[180, 181] Co and Ar-
rar [87] used a 0-1 integer programming model to maximize machine utilization and then
apply a modified King’s algorithm [180, 181] to cluster the machines. A direct-search algo-
rithm is used to determine the number of cells and the composition of each cell. Chakravarty
and Shtub [58] combined layout decisions with production scheduling decisions in the design
process to minimize the setup and inventory carrying costs.



A simple two-part heuristic algorithm, which minimizes intercell movement for realisti-
cally dimensioned problems, was developed by Harhalakis et al.[139] This procedure takes
into account the sequence of operations and number of non-consecutive operations on the
same machine when minimizing intercell movement. Seifoddini [300] developed a proba-
bilistic model to overcome assumptions of deterministic demand for parts. A variety of
product mixes with different probabilities of occurrence was used to yield several different
part/machine incidence matrices, which were then used as input to an existing grouping
algorithm. An expected intercellular material handling cost was determined.

Kusiak and Chow [199] developed algorithms to solve standard and augmented formu-
lations. The standard formulation uses the machine incidence matrix, while the augmented
formulation associates each part with a cost and constrains the size of the cell. The ap-
proaches used, cluster identification algorithm (O(2mn)) and cost analysis algorithm (O(2mn
+ nlog(n)), are more efficient than BEA,[233] ROC,[180, 181] or p-median model.[200]

Wei and Kern [368, 369] used a similarity between machines score adapted from Kusiak[188]
to aid in grouping. This algorithm can be tied loosely to the hierarchical methods.[73] Sun-
daram and Shong[338] used an integer programming model based on the hospitality and
flexibility relationships advocated by Purcheck.[273] Other researchers have introduced la-
bor resource allocation into the cell formation problem.[141, 151, 152, 237, 289]

Most cellular manufacturing techniques try to minimize intercell movement as repre-
sented by the number of exceptional elements. However, the number of exceptional elements
may not reflect accurately the level of intercell movement required. To eliminate exceptional
elements, the machine causing intercell movement can be duplicated or the parts routing
sequence can be changed by subcontracting the part, redesigning the part, or using an alter-
native routing. Exceptional elements are interdependent because actions used to eliminate
one element may affect other elements in the incidence matrix. Kern and Wei [178] presented
a systematic approach for the elimination of exceptional elements.

Vannelli and Kumar [357] developed a methodology to minimize the number of bottleneck
cells (cells containing a bottleneck part or machine) based on finding the minimal cut-
nodes in either partition of a bipartite part-machine graph. These cells can be eliminated
through duplication of the machines or subcontracting the parts. Two efficient algorithms
by Kumar and Vannelli [186] were used to find the minimal number or minimal total cost
of subcontracting parts that will produce disaggregated cells. Several researchers [200, 184]
have used a linear transportation model to approximate this problem. Kumar and Vannelli
[186] expanded earlier work to find the minimal number of bottleneck cells or bottleneck
machines.

Okogbaa et al. [117] developed a versatile intercell flow reduction heuristic, which pro-
duces different alternatives for different designer input, e.g., number of cells, cell size restric-
tions, etc. It outperformed another reduction heuristic, [CRMA[345] and in terms of total
intercell flow, outperformed ROC [180] and WCU.[22] Selvam and Balasubramanian [311]
developed a similarity coefficient-based heuristic for cell formation which minimizes material
handling cost plus machine idle time cost.

Logendran [218] developed an efficient heuristic that minimizes a weighted sum of both



intercell and intracell movement. It also considers workload balance and determines machine
utilization in the cell formation process. Stanfel [332] also included intracell movement, but
it was not a true representation of the total intracell movement nor did it consider the
workload on the machines. Askin and Subramanin [14] developed a cost-based heuristic
approach to the cell formation problem. This procedure can be classified as a similarity
coefficient-based method that takes into account the fixed machine costs, material handling
costs, WIP inventory costs, production cycle inventory costs, variable production costs. and
setup costs.

Minis et al. [238] developed a technique that groups production machines into cells
and parts into families by minimizing the intercell traffic subject to capacity constraints.
This method has the capability of including unique, as well as multiple-function, identical
machines in the grouping procedure. Part setup and run times are used to evaluate capacity
constraints using pallet traffic rather than part traffic in the minimization stage.

Vakharia and Wemmerlov [355] developed a similarity-based heuristic considering within-
cell material flow. Boe and Cheng [37] used a closest-neighbor algorithm (CNA) in an
extensive comparison against 10 other grouping algorithms on 11 different data sets from
the literature. C'NA was able to find the best results for all 11 data sets and, on average,
it obtained the highest grouping efficiency while being the most efficient among the reliable
methods (ALC, BEA, and SSP).

10 Cluster Evaluation

The designer of cellular manufacturing systems is faced with several decisions concerning a
methodology for cell formation. These include: the algorithm(s) to employ; the criterion
to use as the basis for clustering; and the policies used to handle exceptional elements and
bottleneck machines. It is possible to utilize several techniques, compare solutions, and
determine which one is most appropriate. However for problems of even moderate size,
determination of algorithm performance becomes very difficult. A variety of performance
measures have been proposed.[61, 63, 64, 183, 233, 258, 260, 308, 310] stated by Chu,[82, T9]
the performance of cell formation algorithms can be based on their computational efficiency
or their grouping effectiveness. According to Chu,[82, 79] Kusiak,[199] and Wei [368] compu-
tational efficiency of a method can be measured by the computational complexity, execution
time, or memory storage requirements.

Computational issues aside, the determination of the grouping effectiveness measure is in
itself a challenging task. Some measurement criterion is necessary to compare the clustering
solution to the original data, a standard result, or solutions from other algorithms.[82, 79]
This criterion can be an independent measure or an aggregate measure. Two of the most
commonly used independent measures are the number of exceptional elements produced and
the total bond energy (McCormick et al. [233]). Since many heuristics use an objective
function based on costs, a natural aggregate measure can be based on the minimum cost.

Chandrasekharan and Rajagopalan [61, 63] developed grouping efficiency to measure the
effectiveness of forming disjointed block diagonal submatrices. Grouping efficiency, n, is a



weighted sum of intercell movements and within-group utilization (see below). A perfectly
diagonal block solution with no voids in the blocks and no exceptional elements has an

efficiency of 100%.

n = qgqn+(l—q¢n 0<¢<1

ed
)
_ 1 b
"= mn — D
eq = the # of elements along the diagonal blocks
e, = the # of exceptional elements
D = sum of the area covered by the diagonal blocks

Grouping efficiency has been used widely to determine cluster performance.[37, 61, 63, 82,
79, 83, 139, 260, 259, 258, 331] Chandrasekharan and Rajagopalan [63] showed that certain
data sets could impose restrictions such that 100% efficiency is not possible. Therefore, the
concept of a “limiting efficiency,” a maximum attainable efficiency, and a “relative efficiency”
(the ratio of grouping efficiency and limiting efficiency) was introduced. The maximum
attainable grouping efficiency is a reflection of the mean and standard deviation of the
Jaccard similarity coefficient.[64] If the standard deviation falls between 0.2 and 0.35, the
problem is well structured for attaining block diagonalization; outside the range, the data is
ill structured.

Chandrasekharan and Rajagopalan [61, 63] suggested giving equal weighting to intercell
movement and machine utilization. However, Kumar and Chandrasekharan [183] observed
in cases with more than two cells and large and/or sparse solution matrices, the machine
utilization factor overshadows the intercell movement factor, making it virtually absent in
the computation of the criterion.

There is evidence that large data matrices produce efficiency values close to one. Kumar
and Chandrasekharan demonstrated this using the ZODIAC algorithm by solving 100 data
sets that produced block diagonal solutions. Even in the worst cases where there was a large
percentage of exceptional elements, the grouping efficiency never fell below 75%. “Grouping
efficacy,” I, which is unaffected by the size of the data set, was developed to overcome this
limitation.[183]

where:



e = the # of operations in the data matrix

e, = the # of voids in the diagonal blocks

eq = the # of elements along the diagonal blocks
e, = the # of exceptional elements

D = the area covered by the diagonal blocks

As was the case with grouping efficiency, two additional efficacy measures, “limiting
efficacy” and “relative efficacy” were also developed.

Ng [259] experimentally showed that grouping efficiency is not entirely dependent on
the mean and standard deviation but also on the size of the matrix and demonstrated that

grouping efficiency and efficacy are not appropriate for the cell formation problem.[257, 259,

258, 260] Consider the following two partial derivatives of grouping efficiency, 77:3872 =&

reflects the rate of change of grouping efficiency with respect to the nonzero elements in the

diagonal blocks (e4), while 5—;70 = mqn__lD reflects the rate of change of grouping efficiency with

respect to the exceptional elements (e,). In many situations, the designer would want the

effect of exceptional elements on 1 to be much larger than the effect of nonzero entries in the
diagonal blocks. In this case, the cost of an intercell movement would be greater than the
cost of a slight reduction in machine utilization within the cell. Therefore, Ng [259, 258, 260]
developed a weighted grouping efficacy, 7, measure that correctly addresses this issue.

. r(l —¢) _ q(e —e,) _ et (-
v4+r(l4+¢—1) gle+ e, —e) + (1 —qe, gD+ (1 —q)e,
where:
r= = 0<g<1
l—g¢
g = the weight associated with the voids in the diagonal blocks
(1 —q) = the weight associated with the exceptional elements

In comparing 11 data sets from the literature and 10 randomly generated problems, solu-
tions obtained using the weighted grouping efficacy had a smaller percentage of exceptional
elements than grouping efficacy and grouping efficiency. While the differences between the
two efficacies are minor for well-structured matrices, the differences are significant when they
are ill-structured.[260]

In Chu and Tsai’s [83] comparison of three array- based clustering methods, they chose
four measures of performance: total bond energy, percentage of exceptional elements, ma-
chine utilization, and grouping efficiency. Kusiak,[193] in a comparison of ten different

algorithms, found that BEA, SSP, ROC, and DCA did not always produce block diagonal

structures. CIA also could not solve all the problems correctly since it was designed to solve



problems without bottleneck machines and exceptional elements. Of the techniques that
solved all the problems, the branch and bound scheme by Kusiak gave, on average, the best
quality solutions, outperforming the WCU algorithm of Ballakur and Steudal.[22] However,
the SLC, ALC and ZODIAC algorithms produced the best results for at least one of the

problems.

Miltenburg and Zhang [236] stated that the objectives of any cell formation algorithm
should be to maximize the machine utilization while minimizing the number of exceptional
elements. They chose to use one primary measure and two secondary measures to evaluate
the effectiveness of nine different algorithms. The primary measure was

Mg = fu=Nm;  —L <7 <1
where:
€4 . e
Tu = 7, measure of machine utilization
€o
nm = — measure of part movement between groups
€

Notice that eta, is the first term, 77, from grouping efficiency[61, 63] while etla,, is a
term from grouping efficacy. Miltenburg and Zhang stated that they chose to use eta,, over
the ny term from grouping efficiency for three reasons: (1) 7, does not satisfy 0 < gy < 1;
(2) m2 # 0 when there are no exceptional elements; and (3) 7, is more complex than eta,,.
However, their comparison of eta,, with ny was invalid. The term, eta,,, is a reflection of
the number of exceptional elements while 73 is a reflection of the number of void elements
outside the cluster groups. As the number of exceptional elements decreases, eta,, decreases
while 7y increases. Therefore, the more appropriate comparison would have been 1 — 5, with
eta,,. They also used two secondary measures to aid in the comparison of the algorithms:
the ability to produce tight clusters around the diagonal and the total bond energy.

In Boe and Cheng’s[37] comparison of 11 different algorithms, they chose to use grouping
efficiency and the minimum number of exceptional elements for comparison. The algorithms
were ranked on their ability to give the best result for 11 data sets. The computational
efficiency of each algorithm was also compared in terms of the average execution time.
The interested reader is referred to Chu,[79, 82] Selim et al.,[309] and Offodille[265] for

comprehensive review of various evaluation measures.

11 Conclusions and Recommendations for Further Study

A comprehensive overview of the production-oriented cell formation literature has been pre-
sented. Although much overlap naturally occurs, major methodological categories have been
identified, partitioning the paper into discussions of array- based methods, hierarchical clus-
tering techniques, non- hierarchical clustering, graph-theoretic approaches, methods based



on artificial intelligence, mathematical programming models, and various heuristics. Within
each category, breadth of coverage has been the target, reserving detailed discussion for the
most significant approaches. The results of several comparative studies of cell formation
techniques are provided to reinforce the relative strengths/weaknesses of various methods.
Finally, a number of useful evaluation measures employed in cell formation problems are
discussed in terms of their practical implications on cell configuration.

Clearly, the literature is rich with a large and diverse set of clustering methodologies for
cell design and part family identification. It is also clear that no methodology addresses all
of the issues needed to solve large-scale industrial applications. Burbidge’s recent caution
that many of the papers “seem to have lost touch with the basic need to design methods that
can be used in industry” [52] is noteworthy. Further research in the area should focus on
avoiding incremental improvements in favor of developing innovative approaches that meet
the test of industrial application.

To stimulate this activity, attention has been given to some of the newer Al techniques
such as artificial neural networks, simulated annealing and genetic algorithms. Inherent
advantages of these stochastic search techniques include the ability to: (1) employ multi-
criteria objective functions; (2) conveniently, and interchangeably, utilize several non-linear
evaluation measures; (3) selectively include or exclude constraints on the number of part
families/machine cells, and (4) simultaneously form part families and machine cells without
visual inspection of the output.



Table 7: Other Heuristics

Network Analysis

]
209, 28, 286, 230, 92, 112, 111,

Method Approach References
Branch and Bound General [176, 328]
Alternative Process Plans [198, 262]
CIA [71, 196, 192, 195]
A* [195, 68]
[4
[

Multi-objective

Cost based heuristics

Other

General

Mulitple, Functionally Identical
Machines

Covering Problem

Intracell and intercell moves
along with workload balancing
Virtual Cell layout/Intercell
and Intracell Layout Included
Alternative Routings

Capacity Constraints

Cell Similarity Coefficient Alg.
Closet Neighbor Algorithm
Moments-based

Hospital. and flexibil. relation.
Inter-cell flow reduction

Linear Cell Clustering Alg.
MACE

Machine and Human cells
Machine and Robotic cells
Material Flow with Constraints
Probabilistic demands
Eliminate Exceptional Elements
Duplication of bottleneck mach.

Subcontracting parts

Principal Component Analysis
Design Constraints
AGYV considerations

Within Cell Utilization

121, 120, 122, 136, 149, 237
290,326,366]

[2, 14, 58, 311]

[72]

[367, 66, 87, 81, 100, 134, 142,
139, 225, 228, 235, 254, 301,
333, 347, 228]

363, 224, 286, 238, 377]

20, 218]
89, 218, 224, 219, 226]

16,293, 58, 143, 5, 11, 156, 157,
65, 215, 320]

[18, 31, 198, 262, 326, 323, 223,
162, 188, 215, 280, 326, 130,
123, 169, 256, 337, 323]

286, 377, 142, 366, 134, 256]

[

[37
[253]

273]

[117, 345]

73, 368, 369, 304]

[365]

319, 141, 151, 152, 237, 289]
1200, 264]

[355]

300, 137]

[178, 312]

356, 312, 148, 220, 293, 296,
360]

357, 356, 312, 148, 185, 186,
360]

[12]

[286, 142, 144, 145, 320]
(106, 208]
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